Identifier
-
Mp00321:
Integer partitions
—2-conjugate⟶
Integer partitions
St000142: Integer partitions ⟶ ℤ
Values
[1] => [1] => 0
[2] => [2] => 1
[1,1] => [1,1] => 0
[3] => [2,1] => 1
[2,1] => [3] => 0
[1,1,1] => [1,1,1] => 0
[4] => [2,2] => 2
[3,1] => [2,1,1] => 1
[2,2] => [4] => 1
[2,1,1] => [3,1] => 0
[1,1,1,1] => [1,1,1,1] => 0
[5] => [2,2,1] => 2
[4,1] => [3,2] => 1
[3,2] => [4,1] => 1
[3,1,1] => [2,1,1,1] => 1
[2,2,1] => [5] => 0
[2,1,1,1] => [3,1,1] => 0
[1,1,1,1,1] => [1,1,1,1,1] => 0
[6] => [2,2,2] => 3
[5,1] => [2,2,1,1] => 2
[4,2] => [4,2] => 2
[4,1,1] => [4,1,1] => 1
[3,3] => [3,2,1] => 1
[3,2,1] => [3,3] => 0
[3,1,1,1] => [2,1,1,1,1] => 1
[2,2,2] => [6] => 1
[2,2,1,1] => [5,1] => 0
[2,1,1,1,1] => [3,1,1,1] => 0
[1,1,1,1,1,1] => [1,1,1,1,1,1] => 0
[7] => [2,2,2,1] => 3
[6,1] => [3,2,2] => 2
[5,2] => [4,2,1] => 2
[5,1,1] => [2,2,1,1,1] => 2
[4,3] => [4,3] => 1
[4,2,1] => [5,2] => 1
[4,1,1,1] => [4,1,1,1] => 1
[3,3,1] => [3,2,1,1] => 1
[3,2,2] => [6,1] => 1
[3,2,1,1] => [3,3,1] => 0
[3,1,1,1,1] => [2,1,1,1,1,1] => 1
[2,2,2,1] => [7] => 0
[2,2,1,1,1] => [5,1,1] => 0
[2,1,1,1,1,1] => [3,1,1,1,1] => 0
[1,1,1,1,1,1,1] => [1,1,1,1,1,1,1] => 0
[8] => [2,2,2,2] => 4
[7,1] => [2,2,2,1,1] => 3
[6,2] => [4,2,2] => 3
[6,1,1] => [4,2,1,1] => 2
[5,3] => [3,2,2,1] => 2
[5,2,1] => [3,3,2] => 1
[5,1,1,1] => [2,2,1,1,1,1] => 2
[4,4] => [4,4] => 2
[4,3,1] => [4,3,1] => 1
[4,2,2] => [6,2] => 2
[4,2,1,1] => [6,1,1] => 1
[4,1,1,1,1] => [4,1,1,1,1] => 1
[3,3,2] => [5,2,1] => 1
[3,3,1,1] => [3,2,1,1,1] => 1
[3,2,2,1] => [5,3] => 0
[3,2,1,1,1] => [3,3,1,1] => 0
[3,1,1,1,1,1] => [2,1,1,1,1,1,1] => 1
[2,2,2,2] => [8] => 1
[2,2,2,1,1] => [7,1] => 0
[2,2,1,1,1,1] => [5,1,1,1] => 0
[2,1,1,1,1,1,1] => [3,1,1,1,1,1] => 0
[1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1] => 0
[9] => [2,2,2,2,1] => 4
[8,1] => [3,2,2,2] => 3
[7,2] => [4,2,2,1] => 3
[7,1,1] => [2,2,2,1,1,1] => 3
[6,3] => [4,3,2] => 2
[6,2,1] => [5,2,2] => 2
[6,1,1,1] => [4,2,1,1,1] => 2
[5,4] => [4,4,1] => 2
[5,3,1] => [3,2,2,1,1] => 2
[5,2,2] => [6,2,1] => 2
[5,2,1,1] => [4,3,1,1] => 1
[5,1,1,1,1] => [2,2,1,1,1,1,1] => 2
[4,4,1] => [5,4] => 1
[4,3,2] => [6,3] => 1
[4,3,1,1] => [5,2,1,1] => 1
[4,2,2,1] => [7,2] => 1
[4,2,1,1,1] => [6,1,1,1] => 1
[4,1,1,1,1,1] => [4,1,1,1,1,1] => 1
[3,3,3] => [3,3,2,1] => 1
[3,3,2,1] => [3,3,3] => 0
[3,3,1,1,1] => [3,2,1,1,1,1] => 1
[3,2,2,2] => [8,1] => 1
[3,2,2,1,1] => [5,3,1] => 0
[3,2,1,1,1,1] => [3,3,1,1,1] => 0
[3,1,1,1,1,1,1] => [2,1,1,1,1,1,1,1] => 1
[2,2,2,2,1] => [9] => 0
[2,2,2,1,1,1] => [7,1,1] => 0
[2,2,1,1,1,1,1] => [5,1,1,1,1] => 0
[2,1,1,1,1,1,1,1] => [3,1,1,1,1,1,1] => 0
[1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => 0
[10] => [2,2,2,2,2] => 5
[9,1] => [2,2,2,2,1,1] => 4
[8,2] => [4,2,2,2] => 4
[8,1,1] => [4,2,2,1,1] => 3
[7,3] => [3,2,2,2,1] => 3
>>> Load all 352 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of even parts of a partition.
Map
2-conjugate
Description
Return a partition with the same number of odd parts and number of even parts interchanged with the number of cells with zero leg and odd arm length.
This is a special case of an involution that preserves the sequence of non-zero remainders of the parts under division by $s$ and interchanges the number of parts divisible by $s$ and the number of cells with zero leg length and arm length congruent to $s-1$ modulo $s$.
In particular, for $s=1$ the involution is conjugation, hence the name.
This is a special case of an involution that preserves the sequence of non-zero remainders of the parts under division by $s$ and interchanges the number of parts divisible by $s$ and the number of cells with zero leg length and arm length congruent to $s-1$ modulo $s$.
In particular, for $s=1$ the involution is conjugation, hence the name.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!