Identifier
Values
=>
[1]=>[1]=>1 [1,1]=>[1,1]=>1 [1,2]=>[1,2]=>2 [2,1]=>[1,2]=>2 [1,1,1]=>[1,1,1]=>1 [1,1,2]=>[1,1,2]=>1 [1,2,1]=>[1,1,2]=>1 [2,1,1]=>[1,1,2]=>1 [1,1,3]=>[1,1,3]=>2 [1,3,1]=>[1,1,3]=>2 [3,1,1]=>[1,1,3]=>2 [1,2,2]=>[1,2,2]=>2 [2,1,2]=>[1,2,2]=>2 [2,2,1]=>[1,2,2]=>2 [1,2,3]=>[1,2,3]=>3 [1,3,2]=>[1,2,3]=>3 [2,1,3]=>[1,2,3]=>3 [2,3,1]=>[1,2,3]=>3 [3,1,2]=>[1,2,3]=>3 [3,2,1]=>[1,2,3]=>3 [1,1,1,1]=>[1,1,1,1]=>1 [1,1,1,2]=>[1,1,1,2]=>1 [1,1,2,1]=>[1,1,1,2]=>1 [1,2,1,1]=>[1,1,1,2]=>1 [2,1,1,1]=>[1,1,1,2]=>1 [1,1,1,3]=>[1,1,1,3]=>1 [1,1,3,1]=>[1,1,1,3]=>1 [1,3,1,1]=>[1,1,1,3]=>1 [3,1,1,1]=>[1,1,1,3]=>1 [1,1,1,4]=>[1,1,1,4]=>2 [1,1,4,1]=>[1,1,1,4]=>2 [1,4,1,1]=>[1,1,1,4]=>2 [4,1,1,1]=>[1,1,1,4]=>2 [1,1,2,2]=>[1,1,2,2]=>1 [1,2,1,2]=>[1,1,2,2]=>1 [1,2,2,1]=>[1,1,2,2]=>1 [2,1,1,2]=>[1,1,2,2]=>1 [2,1,2,1]=>[1,1,2,2]=>1 [2,2,1,1]=>[1,1,2,2]=>1 [1,1,2,3]=>[1,1,2,3]=>1 [1,1,3,2]=>[1,1,2,3]=>1 [1,2,1,3]=>[1,1,2,3]=>1 [1,2,3,1]=>[1,1,2,3]=>1 [1,3,1,2]=>[1,1,2,3]=>1 [1,3,2,1]=>[1,1,2,3]=>1 [2,1,1,3]=>[1,1,2,3]=>1 [2,1,3,1]=>[1,1,2,3]=>1 [2,3,1,1]=>[1,1,2,3]=>1 [3,1,1,2]=>[1,1,2,3]=>1 [3,1,2,1]=>[1,1,2,3]=>1 [3,2,1,1]=>[1,1,2,3]=>1 [1,1,2,4]=>[1,1,2,4]=>2 [1,1,4,2]=>[1,1,2,4]=>2 [1,2,1,4]=>[1,1,2,4]=>2 [1,2,4,1]=>[1,1,2,4]=>2 [1,4,1,2]=>[1,1,2,4]=>2 [1,4,2,1]=>[1,1,2,4]=>2 [2,1,1,4]=>[1,1,2,4]=>2 [2,1,4,1]=>[1,1,2,4]=>2 [2,4,1,1]=>[1,1,2,4]=>2 [4,1,1,2]=>[1,1,2,4]=>2 [4,1,2,1]=>[1,1,2,4]=>2 [4,2,1,1]=>[1,1,2,4]=>2 [1,1,3,3]=>[1,1,3,3]=>2 [1,3,1,3]=>[1,1,3,3]=>2 [1,3,3,1]=>[1,1,3,3]=>2 [3,1,1,3]=>[1,1,3,3]=>2 [3,1,3,1]=>[1,1,3,3]=>2 [3,3,1,1]=>[1,1,3,3]=>2 [1,1,3,4]=>[1,1,3,4]=>3 [1,1,4,3]=>[1,1,3,4]=>3 [1,3,1,4]=>[1,1,3,4]=>3 [1,3,4,1]=>[1,1,3,4]=>3 [1,4,1,3]=>[1,1,3,4]=>3 [1,4,3,1]=>[1,1,3,4]=>3 [3,1,1,4]=>[1,1,3,4]=>3 [3,1,4,1]=>[1,1,3,4]=>3 [3,4,1,1]=>[1,1,3,4]=>3 [4,1,1,3]=>[1,1,3,4]=>3 [4,1,3,1]=>[1,1,3,4]=>3 [4,3,1,1]=>[1,1,3,4]=>3 [1,2,2,2]=>[1,2,2,2]=>2 [2,1,2,2]=>[1,2,2,2]=>2 [2,2,1,2]=>[1,2,2,2]=>2 [2,2,2,1]=>[1,2,2,2]=>2 [1,2,2,3]=>[1,2,2,3]=>2 [1,2,3,2]=>[1,2,2,3]=>2 [1,3,2,2]=>[1,2,2,3]=>2 [2,1,2,3]=>[1,2,2,3]=>2 [2,1,3,2]=>[1,2,2,3]=>2 [2,2,1,3]=>[1,2,2,3]=>2 [2,2,3,1]=>[1,2,2,3]=>2 [2,3,1,2]=>[1,2,2,3]=>2 [2,3,2,1]=>[1,2,2,3]=>2 [3,1,2,2]=>[1,2,2,3]=>2 [3,2,1,2]=>[1,2,2,3]=>2 [3,2,2,1]=>[1,2,2,3]=>2 [1,2,2,4]=>[1,2,2,4]=>3 [1,2,4,2]=>[1,2,2,4]=>3 [1,4,2,2]=>[1,2,2,4]=>3 [2,1,2,4]=>[1,2,2,4]=>3 [2,1,4,2]=>[1,2,2,4]=>3 [2,2,1,4]=>[1,2,2,4]=>3 [2,2,4,1]=>[1,2,2,4]=>3 [2,4,1,2]=>[1,2,2,4]=>3 [2,4,2,1]=>[1,2,2,4]=>3 [4,1,2,2]=>[1,2,2,4]=>3 [4,2,1,2]=>[1,2,2,4]=>3 [4,2,2,1]=>[1,2,2,4]=>3 [1,2,3,3]=>[1,2,3,3]=>3 [1,3,2,3]=>[1,2,3,3]=>3 [1,3,3,2]=>[1,2,3,3]=>3 [2,1,3,3]=>[1,2,3,3]=>3 [2,3,1,3]=>[1,2,3,3]=>3 [2,3,3,1]=>[1,2,3,3]=>3 [3,1,2,3]=>[1,2,3,3]=>3 [3,1,3,2]=>[1,2,3,3]=>3 [3,2,1,3]=>[1,2,3,3]=>3 [3,2,3,1]=>[1,2,3,3]=>3 [3,3,1,2]=>[1,2,3,3]=>3 [3,3,2,1]=>[1,2,3,3]=>3 [1,2,3,4]=>[1,2,3,4]=>4 [1,2,4,3]=>[1,2,3,4]=>4 [1,3,2,4]=>[1,2,3,4]=>4 [1,3,4,2]=>[1,2,3,4]=>4 [1,4,2,3]=>[1,2,3,4]=>4 [1,4,3,2]=>[1,2,3,4]=>4 [2,1,3,4]=>[1,2,3,4]=>4 [2,1,4,3]=>[1,2,3,4]=>4 [2,3,1,4]=>[1,2,3,4]=>4 [2,3,4,1]=>[1,2,3,4]=>4 [2,4,1,3]=>[1,2,3,4]=>4 [2,4,3,1]=>[1,2,3,4]=>4 [3,1,2,4]=>[1,2,3,4]=>4 [3,1,4,2]=>[1,2,3,4]=>4 [3,2,1,4]=>[1,2,3,4]=>4 [3,2,4,1]=>[1,2,3,4]=>4 [3,4,1,2]=>[1,2,3,4]=>4 [3,4,2,1]=>[1,2,3,4]=>4 [4,1,2,3]=>[1,2,3,4]=>4 [4,1,3,2]=>[1,2,3,4]=>4 [4,2,1,3]=>[1,2,3,4]=>4 [4,2,3,1]=>[1,2,3,4]=>4 [4,3,1,2]=>[1,2,3,4]=>4 [4,3,2,1]=>[1,2,3,4]=>4
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of lucky cars of the parking function.
A lucky car is a car that was able to park in its prefered spot.
The generating function,
$$ q\prod_{i=1}^{n-1} (i + (n-i+1)q) $$
was established in [1].
Map
to non-decreasing parking function
Description
Return the non-decreasing parking function which underlies the parking function.
Sorts the parking function into an increasing sequence.