***************************************************************************** * www.FindStat.org - The Combinatorial Statistic Finder * * * * Copyright (C) 2019 The FindStatCrew * * * * This information is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * ***************************************************************************** ----------------------------------------------------------------------------- Statistic identifier: St000093 ----------------------------------------------------------------------------- Collection: Graphs ----------------------------------------------------------------------------- Description: The cardinality of a maximal independent set of vertices of a graph. An independent set of a graph is a set of pairwise non-adjacent vertices. A maximum independent set is an independent set of maximum cardinality. This statistic is also called the independence number or stability number $\alpha(G)$ of $G$. ----------------------------------------------------------------------------- References: ----------------------------------------------------------------------------- Code: def statistic(x): return x.independent_set(value_only=True) ----------------------------------------------------------------------------- Statistic values: ([],0) => 0 ([],1) => 1 ([],2) => 2 ([(0,1)],2) => 1 ([],3) => 3 ([(1,2)],3) => 2 ([(0,2),(1,2)],3) => 2 ([(0,1),(0,2),(1,2)],3) => 1 ([],4) => 4 ([(2,3)],4) => 3 ([(1,3),(2,3)],4) => 3 ([(0,3),(1,3),(2,3)],4) => 3 ([(0,3),(1,2)],4) => 2 ([(0,3),(1,2),(2,3)],4) => 2 ([(1,2),(1,3),(2,3)],4) => 2 ([(0,3),(1,2),(1,3),(2,3)],4) => 2 ([(0,2),(0,3),(1,2),(1,3)],4) => 2 ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2 ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 1 ([],5) => 5 ([(3,4)],5) => 4 ([(2,4),(3,4)],5) => 4 ([(1,4),(2,4),(3,4)],5) => 4 ([(0,4),(1,4),(2,4),(3,4)],5) => 4 ([(1,4),(2,3)],5) => 3 ([(1,4),(2,3),(3,4)],5) => 3 ([(0,1),(2,4),(3,4)],5) => 3 ([(2,3),(2,4),(3,4)],5) => 3 ([(0,4),(1,4),(2,3),(3,4)],5) => 3 ([(1,4),(2,3),(2,4),(3,4)],5) => 3 ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 3 ([(1,3),(1,4),(2,3),(2,4)],5) => 3 ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 3 ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3 ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 3 ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3 ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 3 ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3 ([(0,4),(1,3),(2,3),(2,4)],5) => 3 ([(0,1),(2,3),(2,4),(3,4)],5) => 2 ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => 2 ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 2 ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2 ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 2 ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 2 ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 2 ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2 ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2 ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2 ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => 2 ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 2 ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2 ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1 ([],6) => 6 ([(4,5)],6) => 5 ([(3,5),(4,5)],6) => 5 ([(2,5),(3,5),(4,5)],6) => 5 ([(1,5),(2,5),(3,5),(4,5)],6) => 5 ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 5 ([(2,5),(3,4)],6) => 4 ([(2,5),(3,4),(4,5)],6) => 4 ([(1,2),(3,5),(4,5)],6) => 4 ([(3,4),(3,5),(4,5)],6) => 4 ([(1,5),(2,5),(3,4),(4,5)],6) => 4 ([(0,1),(2,5),(3,5),(4,5)],6) => 4 ([(2,5),(3,4),(3,5),(4,5)],6) => 4 ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 4 ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4 ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4 ([(2,4),(2,5),(3,4),(3,5)],6) => 4 ([(0,5),(1,5),(2,4),(3,4)],6) => 4 ([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 4 ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 4 ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4 ([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 4 ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 4 ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 4 ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4 ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 4 ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4 ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 4 ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 4 ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 4 ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4 ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4 ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4 ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 4 ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4 ([(0,5),(1,4),(2,3)],6) => 3 ([(1,5),(2,4),(3,4),(3,5)],6) => 4 ([(0,1),(2,5),(3,4),(4,5)],6) => 3 ([(1,2),(3,4),(3,5),(4,5)],6) => 3 ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 3 ([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 3 ([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 3 ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 3 ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 3 ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 3 ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 3 ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 3 ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => 3 ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 3 ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => 3 ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 3 ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 3 ([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => 3 ([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => 3 ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => 3 ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => 3 ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 3 ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) => 3 ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) => 3 ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 3 ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 3 ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6) => 3 ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 3 ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 3 ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 3 ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 3 ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 3 ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 3 ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 3 ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 3 ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => 3 ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => 3 ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => 3 ([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 3 ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 3 ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 3 ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 3 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 3 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 3 ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => 3 ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 3 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 3 ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 3 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 3 ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 3 ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 3 ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => 2 ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => 3 ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => 2 ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 2 ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) => 2 ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 2 ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 2 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6) => 3 ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 2 ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 2 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 2 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 2 ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 2 ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 2 ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 2 ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 2 ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 2 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1 ([],7) => 7 ([(5,6)],7) => 6 ([(4,6),(5,6)],7) => 6 ([(3,6),(4,6),(5,6)],7) => 6 ([(2,6),(3,6),(4,6),(5,6)],7) => 6 ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 6 ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 6 ([(3,6),(4,5)],7) => 5 ([(3,6),(4,5),(5,6)],7) => 5 ([(2,3),(4,6),(5,6)],7) => 5 ([(4,5),(4,6),(5,6)],7) => 5 ([(2,6),(3,6),(4,5),(5,6)],7) => 5 ([(1,2),(3,6),(4,6),(5,6)],7) => 5 ([(3,6),(4,5),(4,6),(5,6)],7) => 5 ([(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 5 ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 5 ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 5 ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 5 ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 5 ([(3,5),(3,6),(4,5),(4,6)],7) => 5 ([(1,6),(2,6),(3,5),(4,5)],7) => 5 ([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => 5 ([(1,6),(2,6),(3,4),(4,5),(5,6)],7) => 5 ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5 ([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => 5 ([(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 5 ([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => 5 ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => 5 ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5 ([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => 5 ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 5 ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5 ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5 ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 5 ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => 5 ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 5 ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 5 ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5 ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5 ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => 5 ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5 ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5 ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 5 ([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 5 ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)