Identifier
-
Mp00010:
Binary trees
—to ordered tree: left child = left brother⟶
Ordered trees
St000084: Ordered trees ⟶ ℤ
Values
[.,.] => [[]] => 1
[.,[.,.]] => [[[]]] => 1
[[.,.],.] => [[],[]] => 2
[.,[.,[.,.]]] => [[[[]]]] => 1
[.,[[.,.],.]] => [[[],[]]] => 1
[[.,.],[.,.]] => [[],[[]]] => 2
[[.,[.,.]],.] => [[[]],[]] => 2
[[[.,.],.],.] => [[],[],[]] => 3
[.,[.,[.,[.,.]]]] => [[[[[]]]]] => 1
[.,[.,[[.,.],.]]] => [[[[],[]]]] => 1
[.,[[.,.],[.,.]]] => [[[],[[]]]] => 1
[.,[[.,[.,.]],.]] => [[[[]],[]]] => 1
[.,[[[.,.],.],.]] => [[[],[],[]]] => 1
[[.,.],[.,[.,.]]] => [[],[[[]]]] => 2
[[.,.],[[.,.],.]] => [[],[[],[]]] => 2
[[.,[.,.]],[.,.]] => [[[]],[[]]] => 2
[[[.,.],.],[.,.]] => [[],[],[[]]] => 3
[[.,[.,[.,.]]],.] => [[[[]]],[]] => 2
[[.,[[.,.],.]],.] => [[[],[]],[]] => 2
[[[.,.],[.,.]],.] => [[],[[]],[]] => 3
[[[.,[.,.]],.],.] => [[[]],[],[]] => 3
[[[[.,.],.],.],.] => [[],[],[],[]] => 4
[.,[.,[.,[.,[.,.]]]]] => [[[[[[]]]]]] => 1
[.,[.,[.,[[.,.],.]]]] => [[[[[],[]]]]] => 1
[.,[.,[[.,.],[.,.]]]] => [[[[],[[]]]]] => 1
[.,[.,[[.,[.,.]],.]]] => [[[[[]],[]]]] => 1
[.,[.,[[[.,.],.],.]]] => [[[[],[],[]]]] => 1
[.,[[.,.],[.,[.,.]]]] => [[[],[[[]]]]] => 1
[.,[[.,.],[[.,.],.]]] => [[[],[[],[]]]] => 1
[.,[[.,[.,.]],[.,.]]] => [[[[]],[[]]]] => 1
[.,[[[.,.],.],[.,.]]] => [[[],[],[[]]]] => 1
[.,[[.,[.,[.,.]]],.]] => [[[[[]]],[]]] => 1
[.,[[.,[[.,.],.]],.]] => [[[[],[]],[]]] => 1
[.,[[[.,.],[.,.]],.]] => [[[],[[]],[]]] => 1
[.,[[[.,[.,.]],.],.]] => [[[[]],[],[]]] => 1
[.,[[[[.,.],.],.],.]] => [[[],[],[],[]]] => 1
[[.,.],[.,[.,[.,.]]]] => [[],[[[[]]]]] => 2
[[.,.],[.,[[.,.],.]]] => [[],[[[],[]]]] => 2
[[.,.],[[.,.],[.,.]]] => [[],[[],[[]]]] => 2
[[.,.],[[.,[.,.]],.]] => [[],[[[]],[]]] => 2
[[.,.],[[[.,.],.],.]] => [[],[[],[],[]]] => 2
[[.,[.,.]],[.,[.,.]]] => [[[]],[[[]]]] => 2
[[.,[.,.]],[[.,.],.]] => [[[]],[[],[]]] => 2
[[[.,.],.],[.,[.,.]]] => [[],[],[[[]]]] => 3
[[[.,.],.],[[.,.],.]] => [[],[],[[],[]]] => 3
[[.,[.,[.,.]]],[.,.]] => [[[[]]],[[]]] => 2
[[.,[[.,.],.]],[.,.]] => [[[],[]],[[]]] => 2
[[[.,.],[.,.]],[.,.]] => [[],[[]],[[]]] => 3
[[[.,[.,.]],.],[.,.]] => [[[]],[],[[]]] => 3
[[[[.,.],.],.],[.,.]] => [[],[],[],[[]]] => 4
[[.,[.,[.,[.,.]]]],.] => [[[[[]]]],[]] => 2
[[.,[.,[[.,.],.]]],.] => [[[[],[]]],[]] => 2
[[.,[[.,.],[.,.]]],.] => [[[],[[]]],[]] => 2
[[.,[[.,[.,.]],.]],.] => [[[[]],[]],[]] => 2
[[.,[[[.,.],.],.]],.] => [[[],[],[]],[]] => 2
[[[.,.],[.,[.,.]]],.] => [[],[[[]]],[]] => 3
[[[.,.],[[.,.],.]],.] => [[],[[],[]],[]] => 3
[[[.,[.,.]],[.,.]],.] => [[[]],[[]],[]] => 3
[[[[.,.],.],[.,.]],.] => [[],[],[[]],[]] => 4
[[[.,[.,[.,.]]],.],.] => [[[[]]],[],[]] => 3
[[[.,[[.,.],.]],.],.] => [[[],[]],[],[]] => 3
[[[[.,.],[.,.]],.],.] => [[],[[]],[],[]] => 4
[[[[.,[.,.]],.],.],.] => [[[]],[],[],[]] => 4
[[[[[.,.],.],.],.],.] => [[],[],[],[],[]] => 5
[.,[.,[.,[.,[.,[.,.]]]]]] => [[[[[[[]]]]]]] => 1
[.,[.,[.,[.,[[.,.],.]]]]] => [[[[[[],[]]]]]] => 1
[.,[.,[.,[[.,.],[.,.]]]]] => [[[[[],[[]]]]]] => 1
[.,[.,[.,[[.,[.,.]],.]]]] => [[[[[[]],[]]]]] => 1
[.,[.,[.,[[[.,.],.],.]]]] => [[[[[],[],[]]]]] => 1
[.,[.,[[.,.],[.,[.,.]]]]] => [[[[],[[[]]]]]] => 1
[.,[.,[[.,.],[[.,.],.]]]] => [[[[],[[],[]]]]] => 1
[.,[.,[[.,[.,.]],[.,.]]]] => [[[[[]],[[]]]]] => 1
[.,[.,[[[.,.],.],[.,.]]]] => [[[[],[],[[]]]]] => 1
[.,[.,[[.,[.,[.,.]]],.]]] => [[[[[[]]],[]]]] => 1
[.,[.,[[.,[[.,.],.]],.]]] => [[[[[],[]],[]]]] => 1
[.,[.,[[[.,.],[.,.]],.]]] => [[[[],[[]],[]]]] => 1
[.,[.,[[[.,[.,.]],.],.]]] => [[[[[]],[],[]]]] => 1
[.,[.,[[[[.,.],.],.],.]]] => [[[[],[],[],[]]]] => 1
[.,[[.,.],[.,[.,[.,.]]]]] => [[[],[[[[]]]]]] => 1
[.,[[.,.],[.,[[.,.],.]]]] => [[[],[[[],[]]]]] => 1
[.,[[.,.],[[.,.],[.,.]]]] => [[[],[[],[[]]]]] => 1
[.,[[.,.],[[.,[.,.]],.]]] => [[[],[[[]],[]]]] => 1
[.,[[.,.],[[[.,.],.],.]]] => [[[],[[],[],[]]]] => 1
[.,[[.,[.,.]],[.,[.,.]]]] => [[[[]],[[[]]]]] => 1
[.,[[.,[.,.]],[[.,.],.]]] => [[[[]],[[],[]]]] => 1
[.,[[[.,.],.],[.,[.,.]]]] => [[[],[],[[[]]]]] => 1
[.,[[[.,.],.],[[.,.],.]]] => [[[],[],[[],[]]]] => 1
[.,[[.,[.,[.,.]]],[.,.]]] => [[[[[]]],[[]]]] => 1
[.,[[.,[[.,.],.]],[.,.]]] => [[[[],[]],[[]]]] => 1
[.,[[[.,.],[.,.]],[.,.]]] => [[[],[[]],[[]]]] => 1
[.,[[[.,[.,.]],.],[.,.]]] => [[[[]],[],[[]]]] => 1
[.,[[[[.,.],.],.],[.,.]]] => [[[],[],[],[[]]]] => 1
[.,[[.,[.,[.,[.,.]]]],.]] => [[[[[[]]]],[]]] => 1
[.,[[.,[.,[[.,.],.]]],.]] => [[[[[],[]]],[]]] => 1
[.,[[.,[[.,.],[.,.]]],.]] => [[[[],[[]]],[]]] => 1
[.,[[.,[[.,[.,.]],.]],.]] => [[[[[]],[]],[]]] => 1
[.,[[.,[[[.,.],.],.]],.]] => [[[[],[],[]],[]]] => 1
[.,[[[.,.],[.,[.,.]]],.]] => [[[],[[[]]],[]]] => 1
[.,[[[.,.],[[.,.],.]],.]] => [[[],[[],[]],[]]] => 1
[.,[[[.,[.,.]],[.,.]],.]] => [[[[]],[[]],[]]] => 1
[.,[[[[.,.],.],[.,.]],.]] => [[[],[],[[]],[]]] => 1
>>> Load all 196 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of subtrees.
Map
to ordered tree: left child = left brother
Description
Return an ordered tree of size $n+1$ by the following recursive rule:
- if $x$ is the left child of $y$, $x$ becomes the left brother of $y$,
- if $x$ is the right child of $y$, $x$ becomes the last child of $y$.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!