*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000075

-----------------------------------------------------------------------------
Collection: Standard tableaux

-----------------------------------------------------------------------------
Description: The orbit size of a standard tableau under promotion.

-----------------------------------------------------------------------------
References: [1]   Schützenberger, M. P. Promotion des morphismes d'ensembles ordonnés [[MathSciNet:0299539]]
[2]   Stanley, R. P. Promotion and evacuation [[MathSciNet:2515772]]

-----------------------------------------------------------------------------
Code:
def statistic(self):
    n = self.size() -1
    new = self.promotion(n)
    i = 1
    while new != self:
        new = new.promotion(n)
        i = i+1
    else:
        return i

-----------------------------------------------------------------------------
Statistic values:

[[1]]                     => 1
[[1,2]]                   => 1
[[1],[2]]                 => 1
[[1,2,3]]                 => 1
[[1,3],[2]]               => 2
[[1,2],[3]]               => 2
[[1],[2],[3]]             => 1
[[1,2,3,4]]               => 1
[[1,3,4],[2]]             => 3
[[1,2,4],[3]]             => 3
[[1,2,3],[4]]             => 3
[[1,3],[2,4]]             => 2
[[1,2],[3,4]]             => 2
[[1,4],[2],[3]]           => 3
[[1,3],[2],[4]]           => 3
[[1,2],[3],[4]]           => 3
[[1],[2],[3],[4]]         => 1
[[1,2,3,4,5]]             => 1
[[1,3,4,5],[2]]           => 4
[[1,2,4,5],[3]]           => 4
[[1,2,3,5],[4]]           => 4
[[1,2,3,4],[5]]           => 4
[[1,3,5],[2,4]]           => 2
[[1,2,5],[3,4]]           => 3
[[1,3,4],[2,5]]           => 3
[[1,2,4],[3,5]]           => 2
[[1,2,3],[4,5]]           => 3
[[1,4,5],[2],[3]]         => 4
[[1,3,5],[2],[4]]         => 2
[[1,2,5],[3],[4]]         => 4
[[1,3,4],[2],[5]]         => 4
[[1,2,4],[3],[5]]         => 2
[[1,2,3],[4],[5]]         => 4
[[1,4],[2,5],[3]]         => 3
[[1,3],[2,5],[4]]         => 2
[[1,2],[3,5],[4]]         => 3
[[1,3],[2,4],[5]]         => 3
[[1,2],[3,4],[5]]         => 2
[[1,5],[2],[3],[4]]       => 4
[[1,4],[2],[3],[5]]       => 4
[[1,3],[2],[4],[5]]       => 4
[[1,2],[3],[4],[5]]       => 4
[[1],[2],[3],[4],[5]]     => 1
[[1,2,3,4,5,6]]           => 1
[[1,3,4,5,6],[2]]         => 5
[[1,2,4,5,6],[3]]         => 5
[[1,2,3,5,6],[4]]         => 5
[[1,2,3,4,6],[5]]         => 5
[[1,2,3,4,5],[6]]         => 5
[[1,3,5,6],[2,4]]         => 5
[[1,2,5,6],[3,4]]         => 4
[[1,3,4,6],[2,5]]         => 5
[[1,2,4,6],[3,5]]         => 5
[[1,2,3,6],[4,5]]         => 4
[[1,3,4,5],[2,6]]         => 4
[[1,2,4,5],[3,6]]         => 5
[[1,2,3,5],[4,6]]         => 5
[[1,2,3,4],[5,6]]         => 4
[[1,4,5,6],[2],[3]]       => 5
[[1,3,5,6],[2],[4]]       => 5
[[1,2,5,6],[3],[4]]       => 5
[[1,3,4,6],[2],[5]]       => 5
[[1,2,4,6],[3],[5]]       => 5
[[1,2,3,6],[4],[5]]       => 5
[[1,3,4,5],[2],[6]]       => 5
[[1,2,4,5],[3],[6]]       => 5
[[1,2,3,5],[4],[6]]       => 5
[[1,2,3,4],[5],[6]]       => 5
[[1,3,5],[2,4,6]]         => 2
[[1,2,5],[3,4,6]]         => 3
[[1,3,4],[2,5,6]]         => 3
[[1,2,4],[3,5,6]]         => 2
[[1,2,3],[4,5,6]]         => 3
[[1,4,6],[2,5],[3]]       => 12
[[1,3,6],[2,5],[4]]       => 12
[[1,2,6],[3,5],[4]]       => 4
[[1,3,6],[2,4],[5]]       => 12
[[1,2,6],[3,4],[5]]       => 12
[[1,4,5],[2,6],[3]]       => 4
[[1,3,5],[2,6],[4]]       => 12
[[1,2,5],[3,6],[4]]       => 12
[[1,3,4],[2,6],[5]]       => 12
[[1,2,4],[3,6],[5]]       => 12
[[1,2,3],[4,6],[5]]       => 4
[[1,3,5],[2,4],[6]]       => 12
[[1,2,5],[3,4],[6]]       => 12
[[1,3,4],[2,5],[6]]       => 4
[[1,2,4],[3,5],[6]]       => 12
[[1,2,3],[4,5],[6]]       => 12
[[1,5,6],[2],[3],[4]]     => 5
[[1,4,6],[2],[3],[5]]     => 5
[[1,3,6],[2],[4],[5]]     => 5
[[1,2,6],[3],[4],[5]]     => 5
[[1,4,5],[2],[3],[6]]     => 5
[[1,3,5],[2],[4],[6]]     => 5
[[1,2,5],[3],[4],[6]]     => 5
[[1,3,4],[2],[5],[6]]     => 5
[[1,2,4],[3],[5],[6]]     => 5
[[1,2,3],[4],[5],[6]]     => 5
[[1,4],[2,5],[3,6]]       => 3
[[1,3],[2,5],[4,6]]       => 2
[[1,2],[3,5],[4,6]]       => 3
[[1,3],[2,4],[5,6]]       => 3
[[1,2],[3,4],[5,6]]       => 2
[[1,5],[2,6],[3],[4]]     => 4
[[1,4],[2,6],[3],[5]]     => 5
[[1,3],[2,6],[4],[5]]     => 5
[[1,2],[3,6],[4],[5]]     => 4
[[1,4],[2,5],[3],[6]]     => 4
[[1,3],[2,5],[4],[6]]     => 5
[[1,2],[3,5],[4],[6]]     => 5
[[1,3],[2,4],[5],[6]]     => 4
[[1,2],[3,4],[5],[6]]     => 5
[[1,6],[2],[3],[4],[5]]   => 5
[[1,5],[2],[3],[4],[6]]   => 5
[[1,4],[2],[3],[5],[6]]   => 5
[[1,3],[2],[4],[5],[6]]   => 5
[[1,2],[3],[4],[5],[6]]   => 5
[[1],[2],[3],[4],[5],[6]] => 1
[[1,2,3,4,5,6,7]]         => 1

-----------------------------------------------------------------------------
Created: Jun 11, 2013 at 15:46 by Jessica Striker

-----------------------------------------------------------------------------
Last Updated: Oct 16, 2015 at 11:54 by Christian Stump