Identifier
Values
[(1,2)] => [2,1] => [[0,1],[1,0]] => [[0,1],[1,0]] => 2
[(1,2),(3,4)] => [2,1,4,3] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]] => 2
[(1,3),(2,4)] => [3,4,1,2] => [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]] => [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]] => 3
[(1,4),(2,3)] => [3,4,2,1] => [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]] => [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]] => 3
[(1,2),(3,4),(5,6)] => [2,1,4,3,6,5] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => 2
[(1,3),(2,4),(5,6)] => [3,4,1,2,6,5] => [[0,0,1,0,0,0],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => [[0,0,1,0,0,0],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => 3
[(1,6),(2,4),(3,5)] => [4,5,6,2,3,1] => [[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0]] => [[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0]] => 4
[(1,5),(2,4),(3,6)] => [4,5,6,2,1,3] => [[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0]] => [[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0]] => 4
[(1,4),(2,5),(3,6)] => [4,5,6,1,2,3] => [[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0]] => [[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0]] => 4
[(1,3),(2,5),(4,6)] => [3,5,1,6,2,4] => [[0,0,1,0,0,0],[0,0,0,0,1,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0]] => [[0,0,1,0,0,0],[0,0,0,0,1,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0]] => 3
[(1,2),(3,5),(4,6)] => [2,1,5,6,3,4] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0]] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0]] => 2
[(1,5),(2,6),(3,4)] => [4,5,6,3,1,2] => [[0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0]] => [[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0]] => 4
[(1,6),(2,5),(3,4)] => [4,5,6,3,2,1] => [[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0]] => [[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0]] => 4
[(1,2),(3,4),(5,6),(7,8)] => [2,1,4,3,6,5,8,7] => [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]] => [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]] => 2
[(1,3),(2,4),(5,6),(7,8)] => [3,4,1,2,6,5,8,7] => [[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]] => [[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]] => 3
[(1,4),(2,5),(3,6),(7,8)] => [4,5,6,1,2,3,8,7] => [[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]] => [[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]] => 4
[(1,3),(2,5),(4,6),(7,8)] => [3,5,1,6,2,4,8,7] => [[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]] => [[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]] => 3
[(1,2),(3,5),(4,6),(7,8)] => [2,1,5,6,3,4,8,7] => [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]] => [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]] => 2
[(1,5),(2,6),(3,7),(4,8)] => [5,6,7,8,1,2,3,4] => [[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]] => [[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]] => 5
[(1,4),(2,6),(3,7),(5,8)] => [4,6,7,1,8,2,3,5] => [[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]] => [[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0]] => 4
[(1,3),(2,6),(4,7),(5,8)] => [3,6,1,7,8,2,4,5] => [[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0]] => [[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0]] => 3
[(1,2),(3,6),(4,7),(5,8)] => [2,1,6,7,8,3,4,5] => [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0]] => [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0]] => 2
[(1,2),(3,5),(4,7),(6,8)] => [2,1,5,7,3,8,4,6] => [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]] => [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]] => 2
[(1,3),(2,5),(4,7),(6,8)] => [3,5,1,7,2,8,4,6] => [[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]] => [[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0]] => 3
[(1,4),(2,5),(3,7),(6,8)] => [4,5,7,1,2,8,3,6] => [[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0]] => [[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0]] => 4
[(1,3),(2,4),(5,7),(6,8)] => [3,4,1,2,7,8,5,6] => [[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]] => [[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]] => 3
[(1,2),(3,4),(5,7),(6,8)] => [2,1,4,3,7,8,5,6] => [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]] => [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0]] => 2
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The column of the unique '1' in the first row of the alternating sign matrix.
The generating function of this statistic is given by
$$\binom{n+k-2}{k-1}\frac{(2n-k-1)!}{(n-k)!}\;\prod_{j=0}^{n-2}\frac{(3j+1)!}{(n+j)!},$$
see [2].
Map
transpose
Description
The transpose of an alternating sign matrix.
Map
to alternating sign matrix
Description
Maps a permutation to its permutation matrix as an alternating sign matrix.
Map
non-nesting-exceedence permutation
Description
The fixed-point-free permutation with deficiencies given by the perfect matching, no alignments and no inversions between exceedences.
Put differently, the exceedences form the unique non-nesting perfect matching whose openers coincide with those of the given perfect matching.