Identifier
-
Mp00102:
Dyck paths
—rise composition⟶
Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000063: Integer partitions ⟶ ℤ
Values
[1,0] => [1] => [1,0] => [] => 1
[1,0,1,0] => [1,1] => [1,0,1,0] => [1] => 2
[1,1,0,0] => [2] => [1,1,0,0] => [] => 1
[1,0,1,0,1,0] => [1,1,1] => [1,0,1,0,1,0] => [2,1] => 6
[1,0,1,1,0,0] => [1,2] => [1,0,1,1,0,0] => [1,1] => 3
[1,1,0,0,1,0] => [2,1] => [1,1,0,0,1,0] => [2] => 3
[1,1,0,1,0,0] => [2,1] => [1,1,0,0,1,0] => [2] => 3
[1,1,1,0,0,0] => [3] => [1,1,1,0,0,0] => [] => 1
[1,0,1,0,1,0,1,0] => [1,1,1,1] => [1,0,1,0,1,0,1,0] => [3,2,1] => 24
[1,0,1,0,1,1,0,0] => [1,1,2] => [1,0,1,0,1,1,0,0] => [2,2,1] => 12
[1,0,1,1,0,0,1,0] => [1,2,1] => [1,0,1,1,0,0,1,0] => [3,1,1] => 12
[1,0,1,1,0,1,0,0] => [1,2,1] => [1,0,1,1,0,0,1,0] => [3,1,1] => 12
[1,0,1,1,1,0,0,0] => [1,3] => [1,0,1,1,1,0,0,0] => [1,1,1] => 4
[1,1,0,0,1,0,1,0] => [2,1,1] => [1,1,0,0,1,0,1,0] => [3,2] => 12
[1,1,0,0,1,1,0,0] => [2,2] => [1,1,0,0,1,1,0,0] => [2,2] => 6
[1,1,0,1,0,0,1,0] => [2,1,1] => [1,1,0,0,1,0,1,0] => [3,2] => 12
[1,1,0,1,0,1,0,0] => [2,1,1] => [1,1,0,0,1,0,1,0] => [3,2] => 12
[1,1,0,1,1,0,0,0] => [2,2] => [1,1,0,0,1,1,0,0] => [2,2] => 6
[1,1,1,0,0,0,1,0] => [3,1] => [1,1,1,0,0,0,1,0] => [3] => 4
[1,1,1,0,0,1,0,0] => [3,1] => [1,1,1,0,0,0,1,0] => [3] => 4
[1,1,1,0,1,0,0,0] => [3,1] => [1,1,1,0,0,0,1,0] => [3] => 4
[1,1,1,1,0,0,0,0] => [4] => [1,1,1,1,0,0,0,0] => [] => 1
[1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => [4,3,2,1] => 120
[1,0,1,0,1,0,1,1,0,0] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0] => [3,3,2,1] => 60
[1,0,1,0,1,1,0,0,1,0] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0] => [4,2,2,1] => 60
[1,0,1,0,1,1,0,1,0,0] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0] => [4,2,2,1] => 60
[1,0,1,0,1,1,1,0,0,0] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0] => [2,2,2,1] => 20
[1,0,1,1,0,0,1,0,1,0] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0] => [4,3,1,1] => 60
[1,0,1,1,0,0,1,1,0,0] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0] => [3,3,1,1] => 30
[1,0,1,1,0,1,0,0,1,0] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0] => [4,3,1,1] => 60
[1,0,1,1,0,1,0,1,0,0] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0] => [4,3,1,1] => 60
[1,0,1,1,0,1,1,0,0,0] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0] => [3,3,1,1] => 30
[1,0,1,1,1,0,0,0,1,0] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0] => [4,1,1,1] => 20
[1,0,1,1,1,0,0,1,0,0] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0] => [4,1,1,1] => 20
[1,0,1,1,1,0,1,0,0,0] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0] => [4,1,1,1] => 20
[1,0,1,1,1,1,0,0,0,0] => [1,4] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1] => 5
[1,1,0,0,1,0,1,0,1,0] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => [4,3,2] => 60
[1,1,0,0,1,0,1,1,0,0] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0] => [3,3,2] => 30
[1,1,0,0,1,1,0,0,1,0] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => [4,2,2] => 30
[1,1,0,0,1,1,0,1,0,0] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => [4,2,2] => 30
[1,1,0,0,1,1,1,0,0,0] => [2,3] => [1,1,0,0,1,1,1,0,0,0] => [2,2,2] => 10
[1,1,0,1,0,0,1,0,1,0] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => [4,3,2] => 60
[1,1,0,1,0,0,1,1,0,0] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0] => [3,3,2] => 30
[1,1,0,1,0,1,0,0,1,0] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => [4,3,2] => 60
[1,1,0,1,0,1,0,1,0,0] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => [4,3,2] => 60
[1,1,0,1,0,1,1,0,0,0] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0] => [3,3,2] => 30
[1,1,0,1,1,0,0,0,1,0] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => [4,2,2] => 30
[1,1,0,1,1,0,0,1,0,0] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => [4,2,2] => 30
[1,1,0,1,1,0,1,0,0,0] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => [4,2,2] => 30
[1,1,0,1,1,1,0,0,0,0] => [2,3] => [1,1,0,0,1,1,1,0,0,0] => [2,2,2] => 10
[1,1,1,0,0,0,1,0,1,0] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0] => [4,3] => 20
[1,1,1,0,0,0,1,1,0,0] => [3,2] => [1,1,1,0,0,0,1,1,0,0] => [3,3] => 10
[1,1,1,0,0,1,0,0,1,0] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0] => [4,3] => 20
[1,1,1,0,0,1,0,1,0,0] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0] => [4,3] => 20
[1,1,1,0,0,1,1,0,0,0] => [3,2] => [1,1,1,0,0,0,1,1,0,0] => [3,3] => 10
[1,1,1,0,1,0,0,0,1,0] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0] => [4,3] => 20
[1,1,1,0,1,0,0,1,0,0] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0] => [4,3] => 20
[1,1,1,0,1,0,1,0,0,0] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0] => [4,3] => 20
[1,1,1,0,1,1,0,0,0,0] => [3,2] => [1,1,1,0,0,0,1,1,0,0] => [3,3] => 10
[1,1,1,1,0,0,0,0,1,0] => [4,1] => [1,1,1,1,0,0,0,0,1,0] => [4] => 5
[1,1,1,1,0,0,0,1,0,0] => [4,1] => [1,1,1,1,0,0,0,0,1,0] => [4] => 5
[1,1,1,1,0,0,1,0,0,0] => [4,1] => [1,1,1,1,0,0,0,0,1,0] => [4] => 5
[1,1,1,1,0,1,0,0,0,0] => [4,1] => [1,1,1,1,0,0,0,0,1,0] => [4] => 5
[1,1,1,1,1,0,0,0,0,0] => [5] => [1,1,1,1,1,0,0,0,0,0] => [] => 1
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [5,4,3,2,1] => 720
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0] => [4,4,3,2,1] => 360
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0] => [5,3,3,2,1] => 360
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0] => [5,3,3,2,1] => 360
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0] => [3,3,3,2,1] => 120
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0] => [5,4,2,2,1] => 360
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0] => [4,4,2,2,1] => 180
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0] => [5,4,2,2,1] => 360
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0] => [5,4,2,2,1] => 360
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0] => [4,4,2,2,1] => 180
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0] => [5,2,2,2,1] => 120
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0] => [5,2,2,2,1] => 120
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0] => [5,2,2,2,1] => 120
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0] => [2,2,2,2,1] => 30
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0] => [5,4,3,1,1] => 360
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0] => [4,4,3,1,1] => 180
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => [5,3,3,1,1] => 180
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => [5,3,3,1,1] => 180
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0] => [3,3,3,1,1] => 60
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0] => [5,4,3,1,1] => 360
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0] => [4,4,3,1,1] => 180
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0] => [5,4,3,1,1] => 360
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0] => [5,4,3,1,1] => 360
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0] => [4,4,3,1,1] => 180
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => [5,3,3,1,1] => 180
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => [5,3,3,1,1] => 180
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => [5,3,3,1,1] => 180
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0] => [3,3,3,1,1] => 60
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0] => [5,4,1,1,1] => 120
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0] => [4,4,1,1,1] => 60
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0] => [5,4,1,1,1] => 120
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0] => [5,4,1,1,1] => 120
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0] => [4,4,1,1,1] => 60
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0] => [5,4,1,1,1] => 120
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0] => [5,4,1,1,1] => 120
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0] => [5,4,1,1,1] => 120
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0] => [4,4,1,1,1] => 60
>>> Load all 288 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of linear extensions of a certain poset defined for an integer partition.
The poset is constructed in David Speyer's answer to Matt Fayers' question [3].
The value at the partition $\lambda$ also counts cover-inclusive Dyck tilings of $\lambda\setminus\mu$, summed over all $\mu$, as noticed by Philippe Nadeau in a comment.
This statistic arises in the homogeneous Garnir relations for the universal graded Specht modules for cyclotomic quiver Hecke algebras.
The poset is constructed in David Speyer's answer to Matt Fayers' question [3].
The value at the partition $\lambda$ also counts cover-inclusive Dyck tilings of $\lambda\setminus\mu$, summed over all $\mu$, as noticed by Philippe Nadeau in a comment.
This statistic arises in the homogeneous Garnir relations for the universal graded Specht modules for cyclotomic quiver Hecke algebras.
Map
bounce path
Description
The bounce path determined by an integer composition.
Map
to partition
Description
The cut-out partition of a Dyck path.
The partition $\lambda$ associated to a Dyck path is defined to be the complementary partition inside the staircase partition $(n-1,\ldots,2,1)$ when cutting out $D$ considered as a path from $(0,0)$ to $(n,n)$.
In other words, $\lambda_{i}$ is the number of down-steps before the $(n+1-i)$-th up-step of $D$.
This map is a bijection between Dyck paths of size $n$ and partitions inside the staircase partition $(n-1,\ldots,2,1)$.
The partition $\lambda$ associated to a Dyck path is defined to be the complementary partition inside the staircase partition $(n-1,\ldots,2,1)$ when cutting out $D$ considered as a path from $(0,0)$ to $(n,n)$.
In other words, $\lambda_{i}$ is the number of down-steps before the $(n+1-i)$-th up-step of $D$.
This map is a bijection between Dyck paths of size $n$ and partitions inside the staircase partition $(n-1,\ldots,2,1)$.
Map
rise composition
Description
Send a Dyck path to the composition of sizes of its rises.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!