*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000063

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The number of linear extensions of a certain poset defined for an integer partition.

The poset is constructed in David Speyer's answer to Matt Fayers' question [3].

The value at the partition $\lambda$ also counts cover-inclusive Dyck tilings of $\lambda\setminus\mu$, summed over all $\mu$, as noticed by Philippe Nadeau in a comment.

This statistic arises in the homogeneous Garnir relations for the universal graded Specht modules for cyclotomic quiver Hecke algebras.

-----------------------------------------------------------------------------
References: [1]   Fayers, M. Dyck tilings and the homogeneous Garnir relations for graded Specht modules [[arXiv:1309.6467]]
[2]   Kenyon, R. W., Wilson, D. B. Double-dimer pairings and skew Young diagrams [[MathSciNet:2811099]]
[3]   Fayers, M. A function from partitions to natural numbers - is it familiar? [[MathOverflow:132338]]

-----------------------------------------------------------------------------
Code:
def statistic( P ):
    if P.is_empty():
        return 1
    cells = P.cells()
    m = max( i+j for i,j in cells )
    found_max = False
    while found_max is False:
        i,j = cells.pop()
        if i+j == m:
            found_max = True
    P1 = Partition( P[i+1:] )
    P2 = Partition( P.conjugate()[j+1:] ).conjugate()
    return binomial(i+j+2,i+1)*statistic(P1)*statistic(P2)


-----------------------------------------------------------------------------
Statistic values:

[]                        => 1
[1]                       => 2
[2]                       => 3
[1,1]                     => 3
[3]                       => 4
[2,1]                     => 6
[1,1,1]                   => 4
[4]                       => 5
[3,1]                     => 8
[2,2]                     => 6
[2,1,1]                   => 8
[1,1,1,1]                 => 5
[5]                       => 6
[4,1]                     => 10
[3,2]                     => 12
[3,1,1]                   => 12
[2,2,1]                   => 12
[2,1,1,1]                 => 10
[1,1,1,1,1]               => 6
[6]                       => 7
[5,1]                     => 12
[4,2]                     => 15
[4,1,1]                   => 15
[3,3]                     => 10
[3,2,1]                   => 24
[3,1,1,1]                 => 15
[2,2,2]                   => 10
[2,2,1,1]                 => 15
[2,1,1,1,1]               => 12
[1,1,1,1,1,1]             => 7
[7]                       => 8
[6,1]                     => 14
[5,2]                     => 18
[5,1,1]                   => 18
[4,3]                     => 20
[4,2,1]                   => 30
[4,1,1,1]                 => 20
[3,3,1]                   => 20
[3,2,2]                   => 20
[3,2,1,1]                 => 30
[3,1,1,1,1]               => 18
[2,2,2,1]                 => 20
[2,2,1,1,1]               => 18
[2,1,1,1,1,1]             => 14
[1,1,1,1,1,1,1]           => 8
[8]                       => 9
[7,1]                     => 16
[6,2]                     => 21
[6,1,1]                   => 21
[5,3]                     => 24
[5,2,1]                   => 36
[5,1,1,1]                 => 24
[4,4]                     => 15
[4,3,1]                   => 40
[4,2,2]                   => 30
[4,2,1,1]                 => 40
[4,1,1,1,1]               => 24
[3,3,2]                   => 30
[3,3,1,1]                 => 30
[3,2,2,1]                 => 40
[3,2,1,1,1]               => 36
[3,1,1,1,1,1]             => 21
[2,2,2,2]                 => 15
[2,2,2,1,1]               => 24
[2,2,1,1,1,1]             => 21
[2,1,1,1,1,1,1]           => 16
[1,1,1,1,1,1,1,1]         => 9
[9]                       => 10
[8,1]                     => 18
[7,2]                     => 24
[7,1,1]                   => 24
[6,3]                     => 28
[6,2,1]                   => 42
[6,1,1,1]                 => 28
[5,4]                     => 30
[5,3,1]                   => 48
[5,2,2]                   => 36
[5,2,1,1]                 => 48
[5,1,1,1,1]               => 30
[4,4,1]                   => 30
[4,3,2]                   => 60
[4,3,1,1]                 => 60
[4,2,2,1]                 => 60
[4,2,1,1,1]               => 48
[4,1,1,1,1,1]             => 28
[3,3,3]                   => 20
[3,3,2,1]                 => 60
[3,3,1,1,1]               => 36
[3,2,2,2]                 => 30
[3,2,2,1,1]               => 48
[3,2,1,1,1,1]             => 42
[3,1,1,1,1,1,1]           => 24
[2,2,2,2,1]               => 30
[2,2,2,1,1,1]             => 28
[2,2,1,1,1,1,1]           => 24
[2,1,1,1,1,1,1,1]         => 18
[1,1,1,1,1,1,1,1,1]       => 10
[10]                      => 11
[9,1]                     => 20
[8,2]                     => 27
[8,1,1]                   => 27
[7,3]                     => 32
[7,2,1]                   => 48
[7,1,1,1]                 => 32
[6,4]                     => 35
[6,3,1]                   => 56
[6,2,2]                   => 42
[6,2,1,1]                 => 56
[6,1,1,1,1]               => 35
[5,5]                     => 21
[5,4,1]                   => 60
[5,3,2]                   => 72
[5,3,1,1]                 => 72
[5,2,2,1]                 => 72
[5,2,1,1,1]               => 60
[5,1,1,1,1,1]             => 35
[4,4,2]                   => 45
[4,4,1,1]                 => 45
[4,3,3]                   => 40
[4,3,2,1]                 => 120
[4,3,1,1,1]               => 72
[4,2,2,2]                 => 45
[4,2,2,1,1]               => 72
[4,2,1,1,1,1]             => 56
[4,1,1,1,1,1,1]           => 32
[3,3,3,1]                 => 40
[3,3,2,2]                 => 45
[3,3,2,1,1]               => 72
[3,3,1,1,1,1]             => 42
[3,2,2,2,1]               => 60
[3,2,2,1,1,1]             => 56
[3,2,1,1,1,1,1]           => 48
[3,1,1,1,1,1,1,1]         => 27
[2,2,2,2,2]               => 21
[2,2,2,2,1,1]             => 35
[2,2,2,1,1,1,1]           => 32
[2,2,1,1,1,1,1,1]         => 27
[2,1,1,1,1,1,1,1,1]       => 20
[1,1,1,1,1,1,1,1,1,1]     => 11
[11]                      => 12
[10,1]                    => 22
[9,2]                     => 30
[9,1,1]                   => 30
[8,3]                     => 36
[8,2,1]                   => 54
[8,1,1,1]                 => 36
[7,4]                     => 40
[7,3,1]                   => 64
[7,2,2]                   => 48
[7,2,1,1]                 => 64
[7,1,1,1,1]               => 40
[6,5]                     => 42
[6,4,1]                   => 70
[6,3,2]                   => 84
[6,3,1,1]                 => 84
[6,2,2,1]                 => 84
[6,2,1,1,1]               => 70
[6,1,1,1,1,1]             => 42
[5,5,1]                   => 42
[5,4,2]                   => 90
[5,4,1,1]                 => 90
[5,3,3]                   => 60
[5,3,2,1]                 => 144
[5,3,1,1,1]               => 90
[5,2,2,2]                 => 60
[5,2,2,1,1]               => 90
[5,2,1,1,1,1]             => 70
[5,1,1,1,1,1,1]           => 40
[4,4,3]                   => 60
[4,4,2,1]                 => 90
[4,4,1,1,1]               => 60
[4,3,3,1]                 => 80
[4,3,2,2]                 => 90
[4,3,2,1,1]               => 144
[4,3,1,1,1,1]             => 84
[4,2,2,2,1]               => 90
[4,2,2,1,1,1]             => 84
[4,2,1,1,1,1,1]           => 64
[4,1,1,1,1,1,1,1]         => 36
[3,3,3,2]                 => 60
[3,3,3,1,1]               => 60
[3,3,2,2,1]               => 90
[3,3,2,1,1,1]             => 84
[3,3,1,1,1,1,1]           => 48
[3,2,2,2,2]               => 42
[3,2,2,2,1,1]             => 70
[3,2,2,1,1,1,1]           => 64
[3,2,1,1,1,1,1,1]         => 54
[3,1,1,1,1,1,1,1,1]       => 30
[2,2,2,2,2,1]             => 42
[2,2,2,2,1,1,1]           => 40
[2,2,2,1,1,1,1,1]         => 36
[2,2,1,1,1,1,1,1,1]       => 30
[2,1,1,1,1,1,1,1,1,1]     => 22
[1,1,1,1,1,1,1,1,1,1,1]   => 12
[12]                      => 13
[11,1]                    => 24
[10,2]                    => 33
[10,1,1]                  => 33
[9,3]                     => 40
[9,2,1]                   => 60
[9,1,1,1]                 => 40
[8,4]                     => 45
[8,3,1]                   => 72
[8,2,2]                   => 54
[8,2,1,1]                 => 72
[8,1,1,1,1]               => 45
[7,5]                     => 48
[7,4,1]                   => 80
[7,3,2]                   => 96
[7,3,1,1]                 => 96
[7,2,2,1]                 => 96
[7,2,1,1,1]               => 80
[7,1,1,1,1,1]             => 48
[6,6]                     => 28
[6,5,1]                   => 84
[6,4,2]                   => 105
[6,4,1,1]                 => 105
[6,3,3]                   => 70
[6,3,2,1]                 => 168
[6,3,1,1,1]               => 105
[6,2,2,2]                 => 70
[6,2,2,1,1]               => 105
[6,2,1,1,1,1]             => 84
[6,1,1,1,1,1,1]           => 48
[5,5,2]                   => 63
[5,5,1,1]                 => 63
[5,4,3]                   => 120
[5,4,2,1]                 => 180
[5,4,1,1,1]               => 120
[5,3,3,1]                 => 120
[5,3,2,2]                 => 120
[5,3,2,1,1]               => 180
[5,3,1,1,1,1]             => 105
[5,2,2,2,1]               => 120
[5,2,2,1,1,1]             => 105
[5,2,1,1,1,1,1]           => 80
[5,1,1,1,1,1,1,1]         => 45
[4,4,4]                   => 35
[4,4,3,1]                 => 120
[4,4,2,2]                 => 90
[4,4,2,1,1]               => 120
[4,4,1,1,1,1]             => 70
[4,3,3,2]                 => 120
[4,3,3,1,1]               => 120
[4,3,2,2,1]               => 180
[4,3,2,1,1,1]             => 168
[4,3,1,1,1,1,1]           => 96
[4,2,2,2,2]               => 63
[4,2,2,2,1,1]             => 105
[4,2,2,1,1,1,1]           => 96
[4,2,1,1,1,1,1,1]         => 72
[4,1,1,1,1,1,1,1,1]       => 40
[3,3,3,3]                 => 35
[3,3,3,2,1]               => 120
[3,3,3,1,1,1]             => 70
[3,3,2,2,2]               => 63
[3,3,2,2,1,1]             => 105
[3,3,2,1,1,1,1]           => 96
[3,3,1,1,1,1,1,1]         => 54
[3,2,2,2,2,1]             => 84
[3,2,2,2,1,1,1]           => 80
[3,2,2,1,1,1,1,1]         => 72
[3,2,1,1,1,1,1,1,1]       => 60
[3,1,1,1,1,1,1,1,1,1]     => 33
[2,2,2,2,2,2]             => 28
[2,2,2,2,2,1,1]           => 48
[2,2,2,2,1,1,1,1]         => 45
[2,2,2,1,1,1,1,1,1]       => 40
[2,2,1,1,1,1,1,1,1,1]     => 33
[2,1,1,1,1,1,1,1,1,1,1]   => 24
[1,1,1,1,1,1,1,1,1,1,1,1] => 13
[5,4,3,1]                 => 240
[5,4,2,2]                 => 180
[5,4,2,1,1]               => 240
[5,3,3,2]                 => 180
[5,3,3,1,1]               => 180
[5,3,2,2,1]               => 240
[4,4,3,2]                 => 180
[4,4,3,1,1]               => 180
[4,4,2,2,1]               => 180
[4,3,3,2,1]               => 240
[5,4,3,2]                 => 360
[5,4,3,1,1]               => 360
[5,4,2,2,1]               => 360
[5,3,3,2,1]               => 360
[4,4,3,2,1]               => 360
[5,4,3,2,1]               => 720

-----------------------------------------------------------------------------
Created: May 31, 2013 at 11:49 by Christian Stump

-----------------------------------------------------------------------------
Last Updated: Mar 19, 2019 at 23:37 by Martin Rubey