Identifier
-
Mp00231:
Integer compositions
—bounce path⟶
Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
St000054: Permutations ⟶ ℤ
Values
[1] => [1,0] => [1] => [1] => 1
[1,1] => [1,0,1,0] => [1,2] => [1,2] => 1
[2] => [1,1,0,0] => [2,1] => [2,1] => 2
[1,1,1] => [1,0,1,0,1,0] => [1,2,3] => [1,3,2] => 1
[1,2] => [1,0,1,1,0,0] => [1,3,2] => [1,3,2] => 1
[2,1] => [1,1,0,0,1,0] => [2,1,3] => [2,1,3] => 2
[3] => [1,1,1,0,0,0] => [3,2,1] => [3,2,1] => 3
[1,1,1,1] => [1,0,1,0,1,0,1,0] => [1,2,3,4] => [1,4,3,2] => 1
[1,1,2] => [1,0,1,0,1,1,0,0] => [1,2,4,3] => [1,4,3,2] => 1
[1,2,1] => [1,0,1,1,0,0,1,0] => [1,3,2,4] => [1,4,3,2] => 1
[1,3] => [1,0,1,1,1,0,0,0] => [1,4,3,2] => [1,4,3,2] => 1
[2,1,1] => [1,1,0,0,1,0,1,0] => [2,1,3,4] => [2,1,4,3] => 2
[2,2] => [1,1,0,0,1,1,0,0] => [2,1,4,3] => [2,1,4,3] => 2
[3,1] => [1,1,1,0,0,0,1,0] => [3,2,1,4] => [3,2,1,4] => 3
[4] => [1,1,1,1,0,0,0,0] => [4,3,2,1] => [4,3,2,1] => 4
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => [1,5,4,3,2] => 1
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0] => [1,2,3,5,4] => [1,5,4,3,2] => 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0] => [1,2,4,3,5] => [1,5,4,3,2] => 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0] => [1,2,5,4,3] => [1,5,4,3,2] => 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0] => [1,3,2,4,5] => [1,5,4,3,2] => 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0] => [1,3,2,5,4] => [1,5,4,3,2] => 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0] => [1,4,3,2,5] => [1,5,4,3,2] => 1
[1,4] => [1,0,1,1,1,1,0,0,0,0] => [1,5,4,3,2] => [1,5,4,3,2] => 1
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => [2,1,3,4,5] => [2,1,5,4,3] => 2
[2,1,2] => [1,1,0,0,1,0,1,1,0,0] => [2,1,3,5,4] => [2,1,5,4,3] => 2
[2,2,1] => [1,1,0,0,1,1,0,0,1,0] => [2,1,4,3,5] => [2,1,5,4,3] => 2
[2,3] => [1,1,0,0,1,1,1,0,0,0] => [2,1,5,4,3] => [2,1,5,4,3] => 2
[3,1,1] => [1,1,1,0,0,0,1,0,1,0] => [3,2,1,4,5] => [3,2,1,5,4] => 3
[3,2] => [1,1,1,0,0,0,1,1,0,0] => [3,2,1,5,4] => [3,2,1,5,4] => 3
[4,1] => [1,1,1,1,0,0,0,0,1,0] => [4,3,2,1,5] => [4,3,2,1,5] => 4
[5] => [1,1,1,1,1,0,0,0,0,0] => [5,4,3,2,1] => [5,4,3,2,1] => 5
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => [1,6,5,4,3,2] => 1
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,2,3,4,6,5] => [1,6,5,4,3,2] => 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,2,3,5,4,6] => [1,6,5,4,3,2] => 1
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,2,3,6,5,4] => [1,6,5,4,3,2] => 1
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,2,4,3,5,6] => [1,6,5,4,3,2] => 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0] => [1,2,4,3,6,5] => [1,6,5,4,3,2] => 1
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,2,5,4,3,6] => [1,6,5,4,3,2] => 1
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,2,6,5,4,3] => [1,6,5,4,3,2] => 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,3,2,4,5,6] => [1,6,5,4,3,2] => 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0] => [1,3,2,4,6,5] => [1,6,5,4,3,2] => 1
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,3,2,5,4,6] => [1,6,5,4,3,2] => 1
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0] => [1,3,2,6,5,4] => [1,6,5,4,3,2] => 1
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,4,3,2,5,6] => [1,6,5,4,3,2] => 1
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0] => [1,4,3,2,6,5] => [1,6,5,4,3,2] => 1
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,5,4,3,2,6] => [1,6,5,4,3,2] => 1
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,6,5,4,3,2] => [1,6,5,4,3,2] => 1
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0] => [2,1,3,4,5,6] => [2,1,6,5,4,3] => 2
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0] => [2,1,3,4,6,5] => [2,1,6,5,4,3] => 2
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0] => [2,1,3,5,4,6] => [2,1,6,5,4,3] => 2
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0] => [2,1,3,6,5,4] => [2,1,6,5,4,3] => 2
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => [2,1,4,3,5,6] => [2,1,6,5,4,3] => 2
[2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => [2,1,4,3,6,5] => [2,1,6,5,4,3] => 2
[2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0] => [2,1,5,4,3,6] => [2,1,6,5,4,3] => 2
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0] => [2,1,6,5,4,3] => [2,1,6,5,4,3] => 2
[3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0] => [3,2,1,4,5,6] => [3,2,1,6,5,4] => 3
[3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0] => [3,2,1,4,6,5] => [3,2,1,6,5,4] => 3
[3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => [3,2,1,5,4,6] => [3,2,1,6,5,4] => 3
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => [3,2,1,6,5,4] => [3,2,1,6,5,4] => 3
[4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => [4,3,2,1,5,6] => [4,3,2,1,6,5] => 4
[4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => [4,3,2,1,6,5] => [4,3,2,1,6,5] => 4
[5,1] => [1,1,1,1,1,0,0,0,0,0,1,0] => [5,4,3,2,1,6] => [5,4,3,2,1,6] => 5
[6] => [1,1,1,1,1,1,0,0,0,0,0,0] => [6,5,4,3,2,1] => [6,5,4,3,2,1] => 6
[1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6,7] => [1,7,6,5,4,3,2] => 1
[1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,2,3,4,5,7,6] => [1,7,6,5,4,3,2] => 1
[1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,2,3,4,6,5,7] => [1,7,6,5,4,3,2] => 1
[1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,2,3,4,7,6,5] => [1,7,6,5,4,3,2] => 1
[1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,2,3,5,4,6,7] => [1,7,6,5,4,3,2] => 1
[1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [1,2,3,5,4,7,6] => [1,7,6,5,4,3,2] => 1
[1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0] => [1,2,3,6,5,4,7] => [1,7,6,5,4,3,2] => 1
[1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [1,2,3,7,6,5,4] => [1,7,6,5,4,3,2] => 1
[1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,2,4,3,5,6,7] => [1,7,6,5,4,3,2] => 1
[1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0] => [1,2,4,3,5,7,6] => [1,7,6,5,4,3,2] => 1
[1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [1,2,4,3,6,5,7] => [1,7,6,5,4,3,2] => 1
[1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0] => [1,2,4,3,7,6,5] => [1,7,6,5,4,3,2] => 1
[1,1,3,1,1] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0] => [1,2,5,4,3,6,7] => [1,7,6,5,4,3,2] => 1
[1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0] => [1,2,5,4,3,7,6] => [1,7,6,5,4,3,2] => 1
[1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0] => [1,2,6,5,4,3,7] => [1,7,6,5,4,3,2] => 1
[1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [1,2,7,6,5,4,3] => [1,7,6,5,4,3,2] => 1
[1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [1,3,2,4,5,6,7] => [1,7,6,5,4,3,2] => 1
[1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0] => [1,3,2,4,5,7,6] => [1,7,6,5,4,3,2] => 1
[1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => [1,3,2,4,6,5,7] => [1,7,6,5,4,3,2] => 1
[1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0] => [1,3,2,4,7,6,5] => [1,7,6,5,4,3,2] => 1
[1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0] => [1,3,2,5,4,6,7] => [1,7,6,5,4,3,2] => 1
[1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [1,3,2,5,4,7,6] => [1,7,6,5,4,3,2] => 1
[1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0] => [1,3,2,6,5,4,7] => [1,7,6,5,4,3,2] => 1
[1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,3,2,7,6,5,4] => [1,7,6,5,4,3,2] => 1
[1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0] => [1,4,3,2,5,6,7] => [1,7,6,5,4,3,2] => 1
[1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0] => [1,4,3,2,5,7,6] => [1,7,6,5,4,3,2] => 1
[1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0] => [1,4,3,2,6,5,7] => [1,7,6,5,4,3,2] => 1
[1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0] => [1,4,3,2,7,6,5] => [1,7,6,5,4,3,2] => 1
[1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0] => [1,5,4,3,2,6,7] => [1,7,6,5,4,3,2] => 1
[1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0] => [1,5,4,3,2,7,6] => [1,7,6,5,4,3,2] => 1
[1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0] => [1,6,5,4,3,2,7] => [1,7,6,5,4,3,2] => 1
[1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,7,6,5,4,3,2] => [1,7,6,5,4,3,2] => 1
[2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [2,1,3,4,5,6,7] => [2,1,7,6,5,4,3] => 2
[2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0] => [2,1,3,4,5,7,6] => [2,1,7,6,5,4,3] => 2
[2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0] => [2,1,3,4,6,5,7] => [2,1,7,6,5,4,3] => 2
[2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0] => [2,1,3,4,7,6,5] => [2,1,7,6,5,4,3] => 2
[2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0] => [2,1,3,5,4,6,7] => [2,1,7,6,5,4,3] => 2
[2,1,2,2] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0] => [2,1,3,5,4,7,6] => [2,1,7,6,5,4,3] => 2
>>> Load all 311 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The first entry of the permutation.
This can be described as 1 plus the number of occurrences of the vincular pattern ([2,1], {(0,0),(0,1),(0,2)}), i.e., the first column is shaded, see [1].
This statistic is related to the number of deficiencies St000703The number of deficiencies of a permutation. as follows: consider the arc diagram of a permutation $\pi$ of $n$, together with its rotations, obtained by conjugating with the long cycle $(1,\dots,n)$. Drawing the labels $1$ to $n$ in this order on a circle, and the arcs $(i, \pi(i))$ as straight lines, the rotation of $\pi$ is obtained by replacing each number $i$ by $(i\bmod n) +1$. Then, $\pi(1)-1$ is the number of rotations of $\pi$ where the arc $(1, \pi(1))$ is a deficiency. In particular, if $O(\pi)$ is the orbit of rotations of $\pi$, then the number of deficiencies of $\pi$ equals
$$ \frac{1}{|O(\pi)|}\sum_{\sigma\in O(\pi)} (\sigma(1)-1). $$
This can be described as 1 plus the number of occurrences of the vincular pattern ([2,1], {(0,0),(0,1),(0,2)}), i.e., the first column is shaded, see [1].
This statistic is related to the number of deficiencies St000703The number of deficiencies of a permutation. as follows: consider the arc diagram of a permutation $\pi$ of $n$, together with its rotations, obtained by conjugating with the long cycle $(1,\dots,n)$. Drawing the labels $1$ to $n$ in this order on a circle, and the arcs $(i, \pi(i))$ as straight lines, the rotation of $\pi$ is obtained by replacing each number $i$ by $(i\bmod n) +1$. Then, $\pi(1)-1$ is the number of rotations of $\pi$ where the arc $(1, \pi(1))$ is a deficiency. In particular, if $O(\pi)$ is the orbit of rotations of $\pi$, then the number of deficiencies of $\pi$ equals
$$ \frac{1}{|O(\pi)|}\sum_{\sigma\in O(\pi)} (\sigma(1)-1). $$
Map
Simion-Schmidt map
Description
The Simion-Schmidt map sends any permutation to a $123$-avoiding permutation.
Details can be found in [1].
In particular, this is a bijection between $132$-avoiding permutations and $123$-avoiding permutations, see [1, Proposition 19].
Details can be found in [1].
In particular, this is a bijection between $132$-avoiding permutations and $123$-avoiding permutations, see [1, Proposition 19].
Map
bounce path
Description
The bounce path determined by an integer composition.
Map
to non-crossing permutation
Description
Sends a Dyck path $D$ with valley at positions $\{(i_1,j_1),\ldots,(i_k,j_k)\}$ to the unique non-crossing permutation $\pi$ having descents $\{i_1,\ldots,i_k\}$ and whose inverse has descents $\{j_1,\ldots,j_k\}$.
It sends the area St000012The area of a Dyck path. to the number of inversions St000018The number of inversions of a permutation. and the major index St000027The major index of a Dyck path. to $n(n-1)$ minus the sum of the major index St000004The major index of a permutation. and the inverse major index St000305The inverse major index of a permutation..
It sends the area St000012The area of a Dyck path. to the number of inversions St000018The number of inversions of a permutation. and the major index St000027The major index of a Dyck path. to $n(n-1)$ minus the sum of the major index St000004The major index of a permutation. and the inverse major index St000305The inverse major index of a permutation..
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!