*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000049

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The number of set partitions whose sorted block sizes correspond to the partition.

-----------------------------------------------------------------------------
References: 

-----------------------------------------------------------------------------
Code:
def statistic(L):
    return len( [ S for S in SetPartitions(L.size()) if S.to_partition() == L ] )

-----------------------------------------------------------------------------
Statistic values:

[]                    => 1
[1]                   => 1
[2]                   => 1
[1,1]                 => 1
[3]                   => 1
[2,1]                 => 3
[1,1,1]               => 1
[4]                   => 1
[3,1]                 => 4
[2,2]                 => 3
[2,1,1]               => 6
[1,1,1,1]             => 1
[5]                   => 1
[4,1]                 => 5
[3,2]                 => 10
[3,1,1]               => 10
[2,2,1]               => 15
[2,1,1,1]             => 10
[1,1,1,1,1]           => 1
[6]                   => 1
[5,1]                 => 6
[4,2]                 => 15
[4,1,1]               => 15
[3,3]                 => 10
[3,2,1]               => 60
[3,1,1,1]             => 20
[2,2,2]               => 15
[2,2,1,1]             => 45
[2,1,1,1,1]           => 15
[1,1,1,1,1,1]         => 1
[7]                   => 1
[6,1]                 => 7
[5,2]                 => 21
[5,1,1]               => 21
[4,3]                 => 35
[4,2,1]               => 105
[4,1,1,1]             => 35
[3,3,1]               => 70
[3,2,2]               => 105
[3,2,1,1]             => 210
[3,1,1,1,1]           => 35
[2,2,2,1]             => 105
[2,2,1,1,1]           => 105
[2,1,1,1,1,1]         => 21
[1,1,1,1,1,1,1]       => 1
[8]                   => 1
[7,1]                 => 8
[6,2]                 => 28
[6,1,1]               => 28
[5,3]                 => 56
[5,2,1]               => 168
[5,1,1,1]             => 56
[4,4]                 => 35
[4,3,1]               => 280
[4,2,2]               => 210
[4,2,1,1]             => 420
[4,1,1,1,1]           => 70
[3,3,2]               => 280
[3,3,1,1]             => 280
[3,2,2,1]             => 840
[3,2,1,1,1]           => 560
[3,1,1,1,1,1]         => 56
[2,2,2,2]             => 105
[2,2,2,1,1]           => 420
[2,2,1,1,1,1]         => 210
[2,1,1,1,1,1,1]       => 28
[1,1,1,1,1,1,1,1]     => 1
[9]                   => 1
[8,1]                 => 9
[7,2]                 => 36
[7,1,1]               => 36
[6,3]                 => 84
[6,2,1]               => 252
[6,1,1,1]             => 84
[5,4]                 => 126
[5,3,1]               => 504
[5,2,2]               => 378
[5,2,1,1]             => 756
[5,1,1,1,1]           => 126
[4,4,1]               => 315
[4,3,2]               => 1260
[4,3,1,1]             => 1260
[4,2,2,1]             => 1890
[4,2,1,1,1]           => 1260
[4,1,1,1,1,1]         => 126
[3,3,3]               => 280
[3,3,2,1]             => 2520
[3,3,1,1,1]           => 840
[3,2,2,2]             => 1260
[3,2,2,1,1]           => 3780
[3,2,1,1,1,1]         => 1260
[3,1,1,1,1,1,1]       => 84
[2,2,2,2,1]           => 945
[2,2,2,1,1,1]         => 1260
[2,2,1,1,1,1,1]       => 378
[2,1,1,1,1,1,1,1]     => 36
[1,1,1,1,1,1,1,1,1]   => 1
[10]                  => 1
[9,1]                 => 10
[8,2]                 => 45
[8,1,1]               => 45
[7,3]                 => 120
[7,2,1]               => 360
[7,1,1,1]             => 120
[6,4]                 => 210
[6,3,1]               => 840
[6,2,2]               => 630
[6,2,1,1]             => 1260
[6,1,1,1,1]           => 210
[5,5]                 => 126
[5,4,1]               => 1260
[5,3,2]               => 2520
[5,3,1,1]             => 2520
[5,2,2,1]             => 3780
[5,2,1,1,1]           => 2520
[5,1,1,1,1,1]         => 252
[4,4,2]               => 1575
[4,4,1,1]             => 1575
[4,3,3]               => 2100
[4,3,2,1]             => 12600
[4,3,1,1,1]           => 4200
[4,2,2,2]             => 3150
[4,2,2,1,1]           => 9450
[4,2,1,1,1,1]         => 3150
[4,1,1,1,1,1,1]       => 210
[3,3,3,1]             => 2800
[3,3,2,2]             => 6300
[3,3,2,1,1]           => 12600
[3,3,1,1,1,1]         => 2100
[3,2,2,2,1]           => 12600
[3,2,2,1,1,1]         => 12600
[3,2,1,1,1,1,1]       => 2520
[3,1,1,1,1,1,1,1]     => 120
[2,2,2,2,2]           => 945
[2,2,2,2,1,1]         => 4725
[2,2,2,1,1,1,1]       => 3150
[2,2,1,1,1,1,1,1]     => 630
[2,1,1,1,1,1,1,1,1]   => 45
[1,1,1,1,1,1,1,1,1,1] => 1

-----------------------------------------------------------------------------
Created: Mar 25, 2013 at 10:03 by Christian Stump

-----------------------------------------------------------------------------
Last Updated: Oct 29, 2017 at 20:28 by Martin Rubey