Identifier
-
Mp00129:
Dyck paths
—to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶
Permutations
St000029: Permutations ⟶ ℤ
Values
=>
Cc0005;cc-rep-0
[1,0]=>[1]=>0
[1,0,1,0]=>[2,1]=>1
[1,1,0,0]=>[1,2]=>0
[1,0,1,0,1,0]=>[2,3,1]=>2
[1,0,1,1,0,0]=>[2,1,3]=>1
[1,1,0,0,1,0]=>[1,3,2]=>1
[1,1,0,1,0,0]=>[3,1,2]=>2
[1,1,1,0,0,0]=>[1,2,3]=>0
[1,0,1,0,1,0,1,0]=>[2,3,4,1]=>3
[1,0,1,0,1,1,0,0]=>[2,3,1,4]=>2
[1,0,1,1,0,0,1,0]=>[2,1,4,3]=>2
[1,0,1,1,0,1,0,0]=>[2,4,1,3]=>3
[1,0,1,1,1,0,0,0]=>[2,1,3,4]=>1
[1,1,0,0,1,0,1,0]=>[1,3,4,2]=>2
[1,1,0,0,1,1,0,0]=>[1,3,2,4]=>1
[1,1,0,1,0,0,1,0]=>[3,1,4,2]=>3
[1,1,0,1,0,1,0,0]=>[3,4,1,2]=>4
[1,1,0,1,1,0,0,0]=>[3,1,2,4]=>2
[1,1,1,0,0,0,1,0]=>[1,2,4,3]=>1
[1,1,1,0,0,1,0,0]=>[1,4,2,3]=>2
[1,1,1,0,1,0,0,0]=>[4,1,2,3]=>3
[1,1,1,1,0,0,0,0]=>[1,2,3,4]=>0
[1,0,1,0,1,0,1,0,1,0]=>[2,3,4,5,1]=>4
[1,0,1,0,1,0,1,1,0,0]=>[2,3,4,1,5]=>3
[1,0,1,0,1,1,0,0,1,0]=>[2,3,1,5,4]=>3
[1,0,1,0,1,1,0,1,0,0]=>[2,3,5,1,4]=>4
[1,0,1,0,1,1,1,0,0,0]=>[2,3,1,4,5]=>2
[1,0,1,1,0,0,1,0,1,0]=>[2,1,4,5,3]=>3
[1,0,1,1,0,0,1,1,0,0]=>[2,1,4,3,5]=>2
[1,0,1,1,0,1,0,0,1,0]=>[2,4,1,5,3]=>4
[1,0,1,1,0,1,0,1,0,0]=>[2,4,5,1,3]=>5
[1,0,1,1,0,1,1,0,0,0]=>[2,4,1,3,5]=>3
[1,0,1,1,1,0,0,0,1,0]=>[2,1,3,5,4]=>2
[1,0,1,1,1,0,0,1,0,0]=>[2,1,5,3,4]=>3
[1,0,1,1,1,0,1,0,0,0]=>[2,5,1,3,4]=>4
[1,0,1,1,1,1,0,0,0,0]=>[2,1,3,4,5]=>1
[1,1,0,0,1,0,1,0,1,0]=>[1,3,4,5,2]=>3
[1,1,0,0,1,0,1,1,0,0]=>[1,3,4,2,5]=>2
[1,1,0,0,1,1,0,0,1,0]=>[1,3,2,5,4]=>2
[1,1,0,0,1,1,0,1,0,0]=>[1,3,5,2,4]=>3
[1,1,0,0,1,1,1,0,0,0]=>[1,3,2,4,5]=>1
[1,1,0,1,0,0,1,0,1,0]=>[3,1,4,5,2]=>4
[1,1,0,1,0,0,1,1,0,0]=>[3,1,4,2,5]=>3
[1,1,0,1,0,1,0,0,1,0]=>[3,4,1,5,2]=>5
[1,1,0,1,0,1,0,1,0,0]=>[3,4,5,1,2]=>6
[1,1,0,1,0,1,1,0,0,0]=>[3,4,1,2,5]=>4
[1,1,0,1,1,0,0,0,1,0]=>[3,1,2,5,4]=>3
[1,1,0,1,1,0,0,1,0,0]=>[3,1,5,2,4]=>4
[1,1,0,1,1,0,1,0,0,0]=>[3,5,1,2,4]=>5
[1,1,0,1,1,1,0,0,0,0]=>[3,1,2,4,5]=>2
[1,1,1,0,0,0,1,0,1,0]=>[1,2,4,5,3]=>2
[1,1,1,0,0,0,1,1,0,0]=>[1,2,4,3,5]=>1
[1,1,1,0,0,1,0,0,1,0]=>[1,4,2,5,3]=>3
[1,1,1,0,0,1,0,1,0,0]=>[1,4,5,2,3]=>4
[1,1,1,0,0,1,1,0,0,0]=>[1,4,2,3,5]=>2
[1,1,1,0,1,0,0,0,1,0]=>[4,1,2,5,3]=>4
[1,1,1,0,1,0,0,1,0,0]=>[4,1,5,2,3]=>5
[1,1,1,0,1,0,1,0,0,0]=>[4,5,1,2,3]=>6
[1,1,1,0,1,1,0,0,0,0]=>[4,1,2,3,5]=>3
[1,1,1,1,0,0,0,0,1,0]=>[1,2,3,5,4]=>1
[1,1,1,1,0,0,0,1,0,0]=>[1,2,5,3,4]=>2
[1,1,1,1,0,0,1,0,0,0]=>[1,5,2,3,4]=>3
[1,1,1,1,0,1,0,0,0,0]=>[5,1,2,3,4]=>4
[1,1,1,1,1,0,0,0,0,0]=>[1,2,3,4,5]=>0
[1,0,1,0,1,0,1,0,1,0,1,0]=>[2,3,4,5,6,1]=>5
[1,0,1,0,1,0,1,0,1,1,0,0]=>[2,3,4,5,1,6]=>4
[1,0,1,0,1,0,1,1,0,0,1,0]=>[2,3,4,1,6,5]=>4
[1,0,1,0,1,0,1,1,0,1,0,0]=>[2,3,4,6,1,5]=>5
[1,0,1,0,1,0,1,1,1,0,0,0]=>[2,3,4,1,5,6]=>3
[1,0,1,0,1,1,0,0,1,0,1,0]=>[2,3,1,5,6,4]=>4
[1,0,1,0,1,1,0,0,1,1,0,0]=>[2,3,1,5,4,6]=>3
[1,0,1,0,1,1,0,1,0,0,1,0]=>[2,3,5,1,6,4]=>5
[1,0,1,0,1,1,0,1,0,1,0,0]=>[2,3,5,6,1,4]=>6
[1,0,1,0,1,1,0,1,1,0,0,0]=>[2,3,5,1,4,6]=>4
[1,0,1,0,1,1,1,0,0,0,1,0]=>[2,3,1,4,6,5]=>3
[1,0,1,0,1,1,1,0,0,1,0,0]=>[2,3,1,6,4,5]=>4
[1,0,1,0,1,1,1,0,1,0,0,0]=>[2,3,6,1,4,5]=>5
[1,0,1,0,1,1,1,1,0,0,0,0]=>[2,3,1,4,5,6]=>2
[1,0,1,1,0,0,1,0,1,0,1,0]=>[2,1,4,5,6,3]=>4
[1,0,1,1,0,0,1,0,1,1,0,0]=>[2,1,4,5,3,6]=>3
[1,0,1,1,0,0,1,1,0,0,1,0]=>[2,1,4,3,6,5]=>3
[1,0,1,1,0,0,1,1,0,1,0,0]=>[2,1,4,6,3,5]=>4
[1,0,1,1,0,0,1,1,1,0,0,0]=>[2,1,4,3,5,6]=>2
[1,0,1,1,0,1,0,0,1,0,1,0]=>[2,4,1,5,6,3]=>5
[1,0,1,1,0,1,0,0,1,1,0,0]=>[2,4,1,5,3,6]=>4
[1,0,1,1,0,1,0,1,0,0,1,0]=>[2,4,5,1,6,3]=>6
[1,0,1,1,0,1,0,1,0,1,0,0]=>[2,4,5,6,1,3]=>7
[1,0,1,1,0,1,0,1,1,0,0,0]=>[2,4,5,1,3,6]=>5
[1,0,1,1,0,1,1,0,0,0,1,0]=>[2,4,1,3,6,5]=>4
[1,0,1,1,0,1,1,0,0,1,0,0]=>[2,4,1,6,3,5]=>5
[1,0,1,1,0,1,1,0,1,0,0,0]=>[2,4,6,1,3,5]=>6
[1,0,1,1,0,1,1,1,0,0,0,0]=>[2,4,1,3,5,6]=>3
[1,0,1,1,1,0,0,0,1,0,1,0]=>[2,1,3,5,6,4]=>3
[1,0,1,1,1,0,0,0,1,1,0,0]=>[2,1,3,5,4,6]=>2
[1,0,1,1,1,0,0,1,0,0,1,0]=>[2,1,5,3,6,4]=>4
[1,0,1,1,1,0,0,1,0,1,0,0]=>[2,1,5,6,3,4]=>5
[1,0,1,1,1,0,0,1,1,0,0,0]=>[2,1,5,3,4,6]=>3
[1,0,1,1,1,0,1,0,0,0,1,0]=>[2,5,1,3,6,4]=>5
[1,0,1,1,1,0,1,0,0,1,0,0]=>[2,5,1,6,3,4]=>6
[1,0,1,1,1,0,1,0,1,0,0,0]=>[2,5,6,1,3,4]=>7
[1,0,1,1,1,0,1,1,0,0,0,0]=>[2,5,1,3,4,6]=>4
[1,0,1,1,1,1,0,0,0,0,1,0]=>[2,1,3,4,6,5]=>2
[1,0,1,1,1,1,0,0,0,1,0,0]=>[2,1,3,6,4,5]=>3
[1,0,1,1,1,1,0,0,1,0,0,0]=>[2,1,6,3,4,5]=>4
[1,0,1,1,1,1,0,1,0,0,0,0]=>[2,6,1,3,4,5]=>5
[1,0,1,1,1,1,1,0,0,0,0,0]=>[2,1,3,4,5,6]=>1
[1,1,0,0,1,0,1,0,1,0,1,0]=>[1,3,4,5,6,2]=>4
[1,1,0,0,1,0,1,0,1,1,0,0]=>[1,3,4,5,2,6]=>3
[1,1,0,0,1,0,1,1,0,0,1,0]=>[1,3,4,2,6,5]=>3
[1,1,0,0,1,0,1,1,0,1,0,0]=>[1,3,4,6,2,5]=>4
[1,1,0,0,1,0,1,1,1,0,0,0]=>[1,3,4,2,5,6]=>2
[1,1,0,0,1,1,0,0,1,0,1,0]=>[1,3,2,5,6,4]=>3
[1,1,0,0,1,1,0,0,1,1,0,0]=>[1,3,2,5,4,6]=>2
[1,1,0,0,1,1,0,1,0,0,1,0]=>[1,3,5,2,6,4]=>4
[1,1,0,0,1,1,0,1,0,1,0,0]=>[1,3,5,6,2,4]=>5
[1,1,0,0,1,1,0,1,1,0,0,0]=>[1,3,5,2,4,6]=>3
[1,1,0,0,1,1,1,0,0,0,1,0]=>[1,3,2,4,6,5]=>2
[1,1,0,0,1,1,1,0,0,1,0,0]=>[1,3,2,6,4,5]=>3
[1,1,0,0,1,1,1,0,1,0,0,0]=>[1,3,6,2,4,5]=>4
[1,1,0,0,1,1,1,1,0,0,0,0]=>[1,3,2,4,5,6]=>1
[1,1,0,1,0,0,1,0,1,0,1,0]=>[3,1,4,5,6,2]=>5
[1,1,0,1,0,0,1,0,1,1,0,0]=>[3,1,4,5,2,6]=>4
[1,1,0,1,0,0,1,1,0,0,1,0]=>[3,1,4,2,6,5]=>4
[1,1,0,1,0,0,1,1,0,1,0,0]=>[3,1,4,6,2,5]=>5
[1,1,0,1,0,0,1,1,1,0,0,0]=>[3,1,4,2,5,6]=>3
[1,1,0,1,0,1,0,0,1,0,1,0]=>[3,4,1,5,6,2]=>6
[1,1,0,1,0,1,0,0,1,1,0,0]=>[3,4,1,5,2,6]=>5
[1,1,0,1,0,1,0,1,0,0,1,0]=>[3,4,5,1,6,2]=>7
[1,1,0,1,0,1,0,1,0,1,0,0]=>[3,4,5,6,1,2]=>8
[1,1,0,1,0,1,0,1,1,0,0,0]=>[3,4,5,1,2,6]=>6
[1,1,0,1,0,1,1,0,0,0,1,0]=>[3,4,1,2,6,5]=>5
[1,1,0,1,0,1,1,0,0,1,0,0]=>[3,4,1,6,2,5]=>6
[1,1,0,1,0,1,1,0,1,0,0,0]=>[3,4,6,1,2,5]=>7
[1,1,0,1,0,1,1,1,0,0,0,0]=>[3,4,1,2,5,6]=>4
[1,1,0,1,1,0,0,0,1,0,1,0]=>[3,1,2,5,6,4]=>4
[1,1,0,1,1,0,0,0,1,1,0,0]=>[3,1,2,5,4,6]=>3
[1,1,0,1,1,0,0,1,0,0,1,0]=>[3,1,5,2,6,4]=>5
[1,1,0,1,1,0,0,1,0,1,0,0]=>[3,1,5,6,2,4]=>6
[1,1,0,1,1,0,0,1,1,0,0,0]=>[3,1,5,2,4,6]=>4
[1,1,0,1,1,0,1,0,0,0,1,0]=>[3,5,1,2,6,4]=>6
[1,1,0,1,1,0,1,0,0,1,0,0]=>[3,5,1,6,2,4]=>7
[1,1,0,1,1,0,1,0,1,0,0,0]=>[3,5,6,1,2,4]=>8
[1,1,0,1,1,0,1,1,0,0,0,0]=>[3,5,1,2,4,6]=>5
[1,1,0,1,1,1,0,0,0,0,1,0]=>[3,1,2,4,6,5]=>3
[1,1,0,1,1,1,0,0,0,1,0,0]=>[3,1,2,6,4,5]=>4
[1,1,0,1,1,1,0,0,1,0,0,0]=>[3,1,6,2,4,5]=>5
[1,1,0,1,1,1,0,1,0,0,0,0]=>[3,6,1,2,4,5]=>6
[1,1,0,1,1,1,1,0,0,0,0,0]=>[3,1,2,4,5,6]=>2
[1,1,1,0,0,0,1,0,1,0,1,0]=>[1,2,4,5,6,3]=>3
[1,1,1,0,0,0,1,0,1,1,0,0]=>[1,2,4,5,3,6]=>2
[1,1,1,0,0,0,1,1,0,0,1,0]=>[1,2,4,3,6,5]=>2
[1,1,1,0,0,0,1,1,0,1,0,0]=>[1,2,4,6,3,5]=>3
[1,1,1,0,0,0,1,1,1,0,0,0]=>[1,2,4,3,5,6]=>1
[1,1,1,0,0,1,0,0,1,0,1,0]=>[1,4,2,5,6,3]=>4
[1,1,1,0,0,1,0,0,1,1,0,0]=>[1,4,2,5,3,6]=>3
[1,1,1,0,0,1,0,1,0,0,1,0]=>[1,4,5,2,6,3]=>5
[1,1,1,0,0,1,0,1,0,1,0,0]=>[1,4,5,6,2,3]=>6
[1,1,1,0,0,1,0,1,1,0,0,0]=>[1,4,5,2,3,6]=>4
[1,1,1,0,0,1,1,0,0,0,1,0]=>[1,4,2,3,6,5]=>3
[1,1,1,0,0,1,1,0,0,1,0,0]=>[1,4,2,6,3,5]=>4
[1,1,1,0,0,1,1,0,1,0,0,0]=>[1,4,6,2,3,5]=>5
[1,1,1,0,0,1,1,1,0,0,0,0]=>[1,4,2,3,5,6]=>2
[1,1,1,0,1,0,0,0,1,0,1,0]=>[4,1,2,5,6,3]=>5
[1,1,1,0,1,0,0,0,1,1,0,0]=>[4,1,2,5,3,6]=>4
[1,1,1,0,1,0,0,1,0,0,1,0]=>[4,1,5,2,6,3]=>6
[1,1,1,0,1,0,0,1,0,1,0,0]=>[4,1,5,6,2,3]=>7
[1,1,1,0,1,0,0,1,1,0,0,0]=>[4,1,5,2,3,6]=>5
[1,1,1,0,1,0,1,0,0,0,1,0]=>[4,5,1,2,6,3]=>7
[1,1,1,0,1,0,1,0,0,1,0,0]=>[4,5,1,6,2,3]=>8
[1,1,1,0,1,0,1,0,1,0,0,0]=>[4,5,6,1,2,3]=>9
[1,1,1,0,1,0,1,1,0,0,0,0]=>[4,5,1,2,3,6]=>6
[1,1,1,0,1,1,0,0,0,0,1,0]=>[4,1,2,3,6,5]=>4
[1,1,1,0,1,1,0,0,0,1,0,0]=>[4,1,2,6,3,5]=>5
[1,1,1,0,1,1,0,0,1,0,0,0]=>[4,1,6,2,3,5]=>6
[1,1,1,0,1,1,0,1,0,0,0,0]=>[4,6,1,2,3,5]=>7
[1,1,1,0,1,1,1,0,0,0,0,0]=>[4,1,2,3,5,6]=>3
[1,1,1,1,0,0,0,0,1,0,1,0]=>[1,2,3,5,6,4]=>2
[1,1,1,1,0,0,0,0,1,1,0,0]=>[1,2,3,5,4,6]=>1
[1,1,1,1,0,0,0,1,0,0,1,0]=>[1,2,5,3,6,4]=>3
[1,1,1,1,0,0,0,1,0,1,0,0]=>[1,2,5,6,3,4]=>4
[1,1,1,1,0,0,0,1,1,0,0,0]=>[1,2,5,3,4,6]=>2
[1,1,1,1,0,0,1,0,0,0,1,0]=>[1,5,2,3,6,4]=>4
[1,1,1,1,0,0,1,0,0,1,0,0]=>[1,5,2,6,3,4]=>5
[1,1,1,1,0,0,1,0,1,0,0,0]=>[1,5,6,2,3,4]=>6
[1,1,1,1,0,0,1,1,0,0,0,0]=>[1,5,2,3,4,6]=>3
[1,1,1,1,0,1,0,0,0,0,1,0]=>[5,1,2,3,6,4]=>5
[1,1,1,1,0,1,0,0,0,1,0,0]=>[5,1,2,6,3,4]=>6
[1,1,1,1,0,1,0,0,1,0,0,0]=>[5,1,6,2,3,4]=>7
[1,1,1,1,0,1,0,1,0,0,0,0]=>[5,6,1,2,3,4]=>8
[1,1,1,1,0,1,1,0,0,0,0,0]=>[5,1,2,3,4,6]=>4
[1,1,1,1,1,0,0,0,0,0,1,0]=>[1,2,3,4,6,5]=>1
[1,1,1,1,1,0,0,0,0,1,0,0]=>[1,2,3,6,4,5]=>2
[1,1,1,1,1,0,0,0,1,0,0,0]=>[1,2,6,3,4,5]=>3
[1,1,1,1,1,0,0,1,0,0,0,0]=>[1,6,2,3,4,5]=>4
[1,1,1,1,1,0,1,0,0,0,0,0]=>[6,1,2,3,4,5]=>5
[1,1,1,1,1,1,0,0,0,0,0,0]=>[1,2,3,4,5,6]=>0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The depth of a permutation.
This is given by
$$\operatorname{dp}(\sigma) = \sum_{\sigma_i>i} (\sigma_i-i) = |\{ i \leq j : \sigma_i > j\}|.$$
The depth is half of the total displacement [4], Problem 5.1.1.28, or Spearman’s disarray [3] $\sum_i |\sigma_i-i|$.
Permutations with depth at most $1$ are called almost-increasing in [5].
This is given by
$$\operatorname{dp}(\sigma) = \sum_{\sigma_i>i} (\sigma_i-i) = |\{ i \leq j : \sigma_i > j\}|.$$
The depth is half of the total displacement [4], Problem 5.1.1.28, or Spearman’s disarray [3] $\sum_i |\sigma_i-i|$.
Permutations with depth at most $1$ are called almost-increasing in [5].
Map
to 321-avoiding permutation (Billey-Jockusch-Stanley)
Description
The Billey-Jockusch-Stanley bijection to 321-avoiding permutations.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!