*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000016

-----------------------------------------------------------------------------
Collection: Standard tableaux

-----------------------------------------------------------------------------
Description: The number of attacking pairs of a standard tableau.

Note that this is actually a statistic on the underlying partition.

A pair of cells $(c, d)$ of a Young diagram (in English notation) is said to be attacking if one of the following conditions holds:

   1. $c$ and $d$ lie in the same row with $c$ strictly to the west of $d$.

   2. $c$ is in the row immediately to the south of $d$, and $c$ lies strictly east of $d$.


-----------------------------------------------------------------------------
References: 

-----------------------------------------------------------------------------
Code:
def statistic(x):
    return len(x.shape().attacking_pairs())

-----------------------------------------------------------------------------
Statistic values:

[[1]]                             => 0
[[1,2]]                           => 1
[[1],[2]]                         => 0
[[1,2,3]]                         => 3
[[1,3],[2]]                       => 1
[[1,2],[3]]                       => 1
[[1],[2],[3]]                     => 0
[[1,2,3,4]]                       => 6
[[1,3,4],[2]]                     => 3
[[1,2,4],[3]]                     => 3
[[1,2,3],[4]]                     => 3
[[1,3],[2,4]]                     => 3
[[1,2],[3,4]]                     => 3
[[1,4],[2],[3]]                   => 1
[[1,3],[2],[4]]                   => 1
[[1,2],[3],[4]]                   => 1
[[1],[2],[3],[4]]                 => 0
[[1,2,3,4,5]]                     => 10
[[1,3,4,5],[2]]                   => 6
[[1,2,4,5],[3]]                   => 6
[[1,2,3,5],[4]]                   => 6
[[1,2,3,4],[5]]                   => 6
[[1,3,5],[2,4]]                   => 5
[[1,2,5],[3,4]]                   => 5
[[1,3,4],[2,5]]                   => 5
[[1,2,4],[3,5]]                   => 5
[[1,2,3],[4,5]]                   => 5
[[1,4,5],[2],[3]]                 => 3
[[1,3,5],[2],[4]]                 => 3
[[1,2,5],[3],[4]]                 => 3
[[1,3,4],[2],[5]]                 => 3
[[1,2,4],[3],[5]]                 => 3
[[1,2,3],[4],[5]]                 => 3
[[1,4],[2,5],[3]]                 => 3
[[1,3],[2,5],[4]]                 => 3
[[1,2],[3,5],[4]]                 => 3
[[1,3],[2,4],[5]]                 => 3
[[1,2],[3,4],[5]]                 => 3
[[1,5],[2],[3],[4]]               => 1
[[1,4],[2],[3],[5]]               => 1
[[1,3],[2],[4],[5]]               => 1
[[1,2],[3],[4],[5]]               => 1
[[1],[2],[3],[4],[5]]             => 0
[[1,2,3,4,5,6]]                   => 15
[[1,3,4,5,6],[2]]                 => 10
[[1,2,4,5,6],[3]]                 => 10
[[1,2,3,5,6],[4]]                 => 10
[[1,2,3,4,6],[5]]                 => 10
[[1,2,3,4,5],[6]]                 => 10
[[1,3,5,6],[2,4]]                 => 8
[[1,2,5,6],[3,4]]                 => 8
[[1,3,4,6],[2,5]]                 => 8
[[1,2,4,6],[3,5]]                 => 8
[[1,2,3,6],[4,5]]                 => 8
[[1,3,4,5],[2,6]]                 => 8
[[1,2,4,5],[3,6]]                 => 8
[[1,2,3,5],[4,6]]                 => 8
[[1,2,3,4],[5,6]]                 => 8
[[1,4,5,6],[2],[3]]               => 6
[[1,3,5,6],[2],[4]]               => 6
[[1,2,5,6],[3],[4]]               => 6
[[1,3,4,6],[2],[5]]               => 6
[[1,2,4,6],[3],[5]]               => 6
[[1,2,3,6],[4],[5]]               => 6
[[1,3,4,5],[2],[6]]               => 6
[[1,2,4,5],[3],[6]]               => 6
[[1,2,3,5],[4],[6]]               => 6
[[1,2,3,4],[5],[6]]               => 6
[[1,3,5],[2,4,6]]                 => 9
[[1,2,5],[3,4,6]]                 => 9
[[1,3,4],[2,5,6]]                 => 9
[[1,2,4],[3,5,6]]                 => 9
[[1,2,3],[4,5,6]]                 => 9
[[1,4,6],[2,5],[3]]               => 5
[[1,3,6],[2,5],[4]]               => 5
[[1,2,6],[3,5],[4]]               => 5
[[1,3,6],[2,4],[5]]               => 5
[[1,2,6],[3,4],[5]]               => 5
[[1,4,5],[2,6],[3]]               => 5
[[1,3,5],[2,6],[4]]               => 5
[[1,2,5],[3,6],[4]]               => 5
[[1,3,4],[2,6],[5]]               => 5
[[1,2,4],[3,6],[5]]               => 5
[[1,2,3],[4,6],[5]]               => 5
[[1,3,5],[2,4],[6]]               => 5
[[1,2,5],[3,4],[6]]               => 5
[[1,3,4],[2,5],[6]]               => 5
[[1,2,4],[3,5],[6]]               => 5
[[1,2,3],[4,5],[6]]               => 5
[[1,5,6],[2],[3],[4]]             => 3
[[1,4,6],[2],[3],[5]]             => 3
[[1,3,6],[2],[4],[5]]             => 3
[[1,2,6],[3],[4],[5]]             => 3
[[1,4,5],[2],[3],[6]]             => 3
[[1,3,5],[2],[4],[6]]             => 3
[[1,2,5],[3],[4],[6]]             => 3
[[1,3,4],[2],[5],[6]]             => 3
[[1,2,4],[3],[5],[6]]             => 3
[[1,2,3],[4],[5],[6]]             => 3
[[1,4],[2,5],[3,6]]               => 5
[[1,3],[2,5],[4,6]]               => 5
[[1,2],[3,5],[4,6]]               => 5
[[1,3],[2,4],[5,6]]               => 5
[[1,2],[3,4],[5,6]]               => 5
[[1,5],[2,6],[3],[4]]             => 3
[[1,4],[2,6],[3],[5]]             => 3
[[1,3],[2,6],[4],[5]]             => 3
[[1,2],[3,6],[4],[5]]             => 3
[[1,4],[2,5],[3],[6]]             => 3
[[1,3],[2,5],[4],[6]]             => 3
[[1,2],[3,5],[4],[6]]             => 3
[[1,3],[2,4],[5],[6]]             => 3
[[1,2],[3,4],[5],[6]]             => 3
[[1,6],[2],[3],[4],[5]]           => 1
[[1,5],[2],[3],[4],[6]]           => 1
[[1,4],[2],[3],[5],[6]]           => 1
[[1,3],[2],[4],[5],[6]]           => 1
[[1,2],[3],[4],[5],[6]]           => 1
[[1],[2],[3],[4],[5],[6]]         => 0
[[1,2,3,4,5,6,7]]                 => 21
[[1,3,4,5,6,7],[2]]               => 15
[[1,2,4,5,6,7],[3]]               => 15
[[1,2,3,5,6,7],[4]]               => 15
[[1,2,3,4,6,7],[5]]               => 15
[[1,2,3,4,5,7],[6]]               => 15
[[1,2,3,4,5,6],[7]]               => 15
[[1,3,5,6,7],[2,4]]               => 12
[[1,2,5,6,7],[3,4]]               => 12
[[1,3,4,6,7],[2,5]]               => 12
[[1,2,4,6,7],[3,5]]               => 12
[[1,2,3,6,7],[4,5]]               => 12
[[1,3,4,5,7],[2,6]]               => 12
[[1,2,4,5,7],[3,6]]               => 12
[[1,2,3,5,7],[4,6]]               => 12
[[1,2,3,4,7],[5,6]]               => 12
[[1,3,4,5,6],[2,7]]               => 12
[[1,2,4,5,6],[3,7]]               => 12
[[1,2,3,5,6],[4,7]]               => 12
[[1,2,3,4,6],[5,7]]               => 12
[[1,2,3,4,5],[6,7]]               => 12
[[1,4,5,6,7],[2],[3]]             => 10
[[1,3,5,6,7],[2],[4]]             => 10
[[1,2,5,6,7],[3],[4]]             => 10
[[1,3,4,6,7],[2],[5]]             => 10
[[1,2,4,6,7],[3],[5]]             => 10
[[1,2,3,6,7],[4],[5]]             => 10
[[1,3,4,5,7],[2],[6]]             => 10
[[1,2,4,5,7],[3],[6]]             => 10
[[1,2,3,5,7],[4],[6]]             => 10
[[1,2,3,4,7],[5],[6]]             => 10
[[1,3,4,5,6],[2],[7]]             => 10
[[1,2,4,5,6],[3],[7]]             => 10
[[1,2,3,5,6],[4],[7]]             => 10
[[1,2,3,4,6],[5],[7]]             => 10
[[1,2,3,4,5],[6],[7]]             => 10
[[1,3,5,7],[2,4,6]]               => 12
[[1,2,5,7],[3,4,6]]               => 12
[[1,3,4,7],[2,5,6]]               => 12
[[1,2,4,7],[3,5,6]]               => 12
[[1,2,3,7],[4,5,6]]               => 12
[[1,3,5,6],[2,4,7]]               => 12
[[1,2,5,6],[3,4,7]]               => 12
[[1,3,4,6],[2,5,7]]               => 12
[[1,2,4,6],[3,5,7]]               => 12
[[1,2,3,6],[4,5,7]]               => 12
[[1,3,4,5],[2,6,7]]               => 12
[[1,2,4,5],[3,6,7]]               => 12
[[1,2,3,5],[4,6,7]]               => 12
[[1,2,3,4],[5,6,7]]               => 12
[[1,4,6,7],[2,5],[3]]             => 8
[[1,3,6,7],[2,5],[4]]             => 8
[[1,2,6,7],[3,5],[4]]             => 8
[[1,3,6,7],[2,4],[5]]             => 8
[[1,2,6,7],[3,4],[5]]             => 8
[[1,4,5,7],[2,6],[3]]             => 8
[[1,3,5,7],[2,6],[4]]             => 8
[[1,2,5,7],[3,6],[4]]             => 8
[[1,3,4,7],[2,6],[5]]             => 8
[[1,2,4,7],[3,6],[5]]             => 8
[[1,2,3,7],[4,6],[5]]             => 8
[[1,3,5,7],[2,4],[6]]             => 8
[[1,2,5,7],[3,4],[6]]             => 8
[[1,3,4,7],[2,5],[6]]             => 8
[[1,2,4,7],[3,5],[6]]             => 8
[[1,2,3,7],[4,5],[6]]             => 8
[[1,4,5,6],[2,7],[3]]             => 8
[[1,3,5,6],[2,7],[4]]             => 8
[[1,2,5,6],[3,7],[4]]             => 8
[[1,3,4,6],[2,7],[5]]             => 8
[[1,2,4,6],[3,7],[5]]             => 8
[[1,2,3,6],[4,7],[5]]             => 8
[[1,3,4,5],[2,7],[6]]             => 8
[[1,2,4,5],[3,7],[6]]             => 8
[[1,2,3,5],[4,7],[6]]             => 8
[[1,2,3,4],[5,7],[6]]             => 8
[[1,3,5,6],[2,4],[7]]             => 8
[[1,2,5,6],[3,4],[7]]             => 8
[[1,3,4,6],[2,5],[7]]             => 8
[[1,2,4,6],[3,5],[7]]             => 8
[[1,2,3,6],[4,5],[7]]             => 8
[[1,3,4,5],[2,6],[7]]             => 8
[[1,2,4,5],[3,6],[7]]             => 8
[[1,2,3,5],[4,6],[7]]             => 8
[[1,2,3,4],[5,6],[7]]             => 8
[[1,5,6,7],[2],[3],[4]]           => 6
[[1,4,6,7],[2],[3],[5]]           => 6
[[1,3,6,7],[2],[4],[5]]           => 6
[[1,2,6,7],[3],[4],[5]]           => 6
[[1,4,5,7],[2],[3],[6]]           => 6
[[1,3,5,7],[2],[4],[6]]           => 6
[[1,2,5,7],[3],[4],[6]]           => 6
[[1,3,4,7],[2],[5],[6]]           => 6
[[1,2,4,7],[3],[5],[6]]           => 6
[[1,2,3,7],[4],[5],[6]]           => 6
[[1,4,5,6],[2],[3],[7]]           => 6
[[1,3,5,6],[2],[4],[7]]           => 6
[[1,2,5,6],[3],[4],[7]]           => 6
[[1,3,4,6],[2],[5],[7]]           => 6
[[1,2,4,6],[3],[5],[7]]           => 6
[[1,2,3,6],[4],[5],[7]]           => 6
[[1,3,4,5],[2],[6],[7]]           => 6
[[1,2,4,5],[3],[6],[7]]           => 6
[[1,2,3,5],[4],[6],[7]]           => 6
[[1,2,3,4],[5],[6],[7]]           => 6
[[1,4,6],[2,5,7],[3]]             => 9
[[1,3,6],[2,5,7],[4]]             => 9
[[1,2,6],[3,5,7],[4]]             => 9
[[1,3,6],[2,4,7],[5]]             => 9
[[1,2,6],[3,4,7],[5]]             => 9
[[1,4,5],[2,6,7],[3]]             => 9
[[1,3,5],[2,6,7],[4]]             => 9
[[1,2,5],[3,6,7],[4]]             => 9
[[1,3,4],[2,6,7],[5]]             => 9
[[1,2,4],[3,6,7],[5]]             => 9
[[1,2,3],[4,6,7],[5]]             => 9
[[1,3,5],[2,4,7],[6]]             => 9
[[1,2,5],[3,4,7],[6]]             => 9
[[1,3,4],[2,5,7],[6]]             => 9
[[1,2,4],[3,5,7],[6]]             => 9
[[1,2,3],[4,5,7],[6]]             => 9
[[1,3,5],[2,4,6],[7]]             => 9
[[1,2,5],[3,4,6],[7]]             => 9
[[1,3,4],[2,5,6],[7]]             => 9
[[1,2,4],[3,5,6],[7]]             => 9
[[1,2,3],[4,5,6],[7]]             => 9
[[1,4,7],[2,5],[3,6]]             => 7
[[1,3,7],[2,5],[4,6]]             => 7
[[1,2,7],[3,5],[4,6]]             => 7
[[1,3,7],[2,4],[5,6]]             => 7
[[1,2,7],[3,4],[5,6]]             => 7
[[1,4,6],[2,5],[3,7]]             => 7
[[1,3,6],[2,5],[4,7]]             => 7
[[1,2,6],[3,5],[4,7]]             => 7
[[1,3,6],[2,4],[5,7]]             => 7
[[1,2,6],[3,4],[5,7]]             => 7
[[1,4,5],[2,6],[3,7]]             => 7
[[1,3,5],[2,6],[4,7]]             => 7
[[1,2,5],[3,6],[4,7]]             => 7
[[1,3,4],[2,6],[5,7]]             => 7
[[1,2,4],[3,6],[5,7]]             => 7
[[1,2,3],[4,6],[5,7]]             => 7
[[1,3,5],[2,4],[6,7]]             => 7
[[1,2,5],[3,4],[6,7]]             => 7
[[1,3,4],[2,5],[6,7]]             => 7
[[1,2,4],[3,5],[6,7]]             => 7
[[1,2,3],[4,5],[6,7]]             => 7
[[1,5,7],[2,6],[3],[4]]           => 5
[[1,4,7],[2,6],[3],[5]]           => 5
[[1,3,7],[2,6],[4],[5]]           => 5
[[1,2,7],[3,6],[4],[5]]           => 5
[[1,4,7],[2,5],[3],[6]]           => 5
[[1,3,7],[2,5],[4],[6]]           => 5
[[1,2,7],[3,5],[4],[6]]           => 5
[[1,3,7],[2,4],[5],[6]]           => 5
[[1,2,7],[3,4],[5],[6]]           => 5
[[1,5,6],[2,7],[3],[4]]           => 5
[[1,4,6],[2,7],[3],[5]]           => 5
[[1,3,6],[2,7],[4],[5]]           => 5
[[1,2,6],[3,7],[4],[5]]           => 5
[[1,4,5],[2,7],[3],[6]]           => 5
[[1,3,5],[2,7],[4],[6]]           => 5
[[1,2,5],[3,7],[4],[6]]           => 5
[[1,3,4],[2,7],[5],[6]]           => 5
[[1,2,4],[3,7],[5],[6]]           => 5
[[1,2,3],[4,7],[5],[6]]           => 5
[[1,4,6],[2,5],[3],[7]]           => 5
[[1,3,6],[2,5],[4],[7]]           => 5
[[1,2,6],[3,5],[4],[7]]           => 5
[[1,3,6],[2,4],[5],[7]]           => 5
[[1,2,6],[3,4],[5],[7]]           => 5
[[1,4,5],[2,6],[3],[7]]           => 5
[[1,3,5],[2,6],[4],[7]]           => 5
[[1,2,5],[3,6],[4],[7]]           => 5
[[1,3,4],[2,6],[5],[7]]           => 5
[[1,2,4],[3,6],[5],[7]]           => 5
[[1,2,3],[4,6],[5],[7]]           => 5
[[1,3,5],[2,4],[6],[7]]           => 5
[[1,2,5],[3,4],[6],[7]]           => 5
[[1,3,4],[2,5],[6],[7]]           => 5
[[1,2,4],[3,5],[6],[7]]           => 5
[[1,2,3],[4,5],[6],[7]]           => 5
[[1,6,7],[2],[3],[4],[5]]         => 3
[[1,5,7],[2],[3],[4],[6]]         => 3
[[1,4,7],[2],[3],[5],[6]]         => 3
[[1,3,7],[2],[4],[5],[6]]         => 3
[[1,2,7],[3],[4],[5],[6]]         => 3
[[1,5,6],[2],[3],[4],[7]]         => 3
[[1,4,6],[2],[3],[5],[7]]         => 3
[[1,3,6],[2],[4],[5],[7]]         => 3
[[1,2,6],[3],[4],[5],[7]]         => 3
[[1,4,5],[2],[3],[6],[7]]         => 3
[[1,3,5],[2],[4],[6],[7]]         => 3
[[1,2,5],[3],[4],[6],[7]]         => 3
[[1,3,4],[2],[5],[6],[7]]         => 3
[[1,2,4],[3],[5],[6],[7]]         => 3
[[1,2,3],[4],[5],[6],[7]]         => 3
[[1,5],[2,6],[3,7],[4]]           => 5
[[1,4],[2,6],[3,7],[5]]           => 5
[[1,3],[2,6],[4,7],[5]]           => 5
[[1,2],[3,6],[4,7],[5]]           => 5
[[1,4],[2,5],[3,7],[6]]           => 5
[[1,3],[2,5],[4,7],[6]]           => 5
[[1,2],[3,5],[4,7],[6]]           => 5
[[1,3],[2,4],[5,7],[6]]           => 5
[[1,2],[3,4],[5,7],[6]]           => 5
[[1,4],[2,5],[3,6],[7]]           => 5
[[1,3],[2,5],[4,6],[7]]           => 5
[[1,2],[3,5],[4,6],[7]]           => 5
[[1,3],[2,4],[5,6],[7]]           => 5
[[1,2],[3,4],[5,6],[7]]           => 5
[[1,6],[2,7],[3],[4],[5]]         => 3
[[1,5],[2,7],[3],[4],[6]]         => 3
[[1,4],[2,7],[3],[5],[6]]         => 3
[[1,3],[2,7],[4],[5],[6]]         => 3
[[1,2],[3,7],[4],[5],[6]]         => 3
[[1,5],[2,6],[3],[4],[7]]         => 3
[[1,4],[2,6],[3],[5],[7]]         => 3
[[1,3],[2,6],[4],[5],[7]]         => 3
[[1,2],[3,6],[4],[5],[7]]         => 3
[[1,4],[2,5],[3],[6],[7]]         => 3
[[1,3],[2,5],[4],[6],[7]]         => 3
[[1,2],[3,5],[4],[6],[7]]         => 3
[[1,3],[2,4],[5],[6],[7]]         => 3
[[1,2],[3,4],[5],[6],[7]]         => 3
[[1,7],[2],[3],[4],[5],[6]]       => 1
[[1,6],[2],[3],[4],[5],[7]]       => 1
[[1,5],[2],[3],[4],[6],[7]]       => 1
[[1,4],[2],[3],[5],[6],[7]]       => 1
[[1,3],[2],[4],[5],[6],[7]]       => 1
[[1,2],[3],[4],[5],[6],[7]]       => 1
[[1],[2],[3],[4],[5],[6],[7]]     => 0
[[1,2,3,4,5,6,7,8]]               => 28
[[1,3,4,5,6,7,8],[2]]             => 21
[[1,2,4,5,6,7,8],[3]]             => 21
[[1,2,3,5,6,7,8],[4]]             => 21
[[1,2,3,4,6,7,8],[5]]             => 21
[[1,2,3,4,5,7,8],[6]]             => 21
[[1,2,3,4,5,6,8],[7]]             => 21
[[1,2,3,4,5,6,7],[8]]             => 21
[[1,3,5,6,7,8],[2,4]]             => 17
[[1,2,5,6,7,8],[3,4]]             => 17
[[1,3,4,6,7,8],[2,5]]             => 17
[[1,2,4,6,7,8],[3,5]]             => 17
[[1,2,3,6,7,8],[4,5]]             => 17
[[1,3,4,5,7,8],[2,6]]             => 17
[[1,2,4,5,7,8],[3,6]]             => 17
[[1,2,3,5,7,8],[4,6]]             => 17
[[1,2,3,4,7,8],[5,6]]             => 17
[[1,3,4,5,6,8],[2,7]]             => 17
[[1,2,4,5,6,8],[3,7]]             => 17
[[1,2,3,5,6,8],[4,7]]             => 17
[[1,2,3,4,6,8],[5,7]]             => 17
[[1,2,3,4,5,8],[6,7]]             => 17
[[1,3,4,5,6,7],[2,8]]             => 17
[[1,2,4,5,6,7],[3,8]]             => 17
[[1,2,3,5,6,7],[4,8]]             => 17
[[1,2,3,4,6,7],[5,8]]             => 17
[[1,2,3,4,5,7],[6,8]]             => 17
[[1,2,3,4,5,6],[7,8]]             => 17
[[1,4,5,6,7,8],[2],[3]]           => 15
[[1,3,5,6,7,8],[2],[4]]           => 15
[[1,2,5,6,7,8],[3],[4]]           => 15
[[1,3,4,6,7,8],[2],[5]]           => 15
[[1,2,4,6,7,8],[3],[5]]           => 15
[[1,2,3,6,7,8],[4],[5]]           => 15
[[1,3,4,5,7,8],[2],[6]]           => 15
[[1,2,4,5,7,8],[3],[6]]           => 15
[[1,2,3,5,7,8],[4],[6]]           => 15
[[1,2,3,4,7,8],[5],[6]]           => 15
[[1,3,4,5,6,8],[2],[7]]           => 15
[[1,2,4,5,6,8],[3],[7]]           => 15
[[1,2,3,5,6,8],[4],[7]]           => 15
[[1,2,3,4,6,8],[5],[7]]           => 15
[[1,2,3,4,5,8],[6],[7]]           => 15
[[1,3,4,5,6,7],[2],[8]]           => 15
[[1,2,4,5,6,7],[3],[8]]           => 15
[[1,2,3,5,6,7],[4],[8]]           => 15
[[1,2,3,4,6,7],[5],[8]]           => 15
[[1,2,3,4,5,7],[6],[8]]           => 15
[[1,2,3,4,5,6],[7],[8]]           => 15
[[1,3,5,7,8],[2,4,6]]             => 16
[[1,2,5,7,8],[3,4,6]]             => 16
[[1,3,4,7,8],[2,5,6]]             => 16
[[1,2,4,7,8],[3,5,6]]             => 16
[[1,2,3,7,8],[4,5,6]]             => 16
[[1,3,5,6,8],[2,4,7]]             => 16
[[1,2,5,6,8],[3,4,7]]             => 16
[[1,3,4,6,8],[2,5,7]]             => 16
[[1,2,4,6,8],[3,5,7]]             => 16
[[1,2,3,6,8],[4,5,7]]             => 16
[[1,3,4,5,8],[2,6,7]]             => 16
[[1,2,4,5,8],[3,6,7]]             => 16
[[1,2,3,5,8],[4,6,7]]             => 16
[[1,2,3,4,8],[5,6,7]]             => 16
[[1,3,5,6,7],[2,4,8]]             => 16
[[1,2,5,6,7],[3,4,8]]             => 16
[[1,3,4,6,7],[2,5,8]]             => 16
[[1,2,4,6,7],[3,5,8]]             => 16
[[1,2,3,6,7],[4,5,8]]             => 16
[[1,3,4,5,7],[2,6,8]]             => 16
[[1,2,4,5,7],[3,6,8]]             => 16
[[1,2,3,5,7],[4,6,8]]             => 16
[[1,2,3,4,7],[5,6,8]]             => 16
[[1,3,4,5,6],[2,7,8]]             => 16
[[1,2,4,5,6],[3,7,8]]             => 16
[[1,2,3,5,6],[4,7,8]]             => 16
[[1,2,3,4,6],[5,7,8]]             => 16
[[1,2,3,4,5],[6,7,8]]             => 16
[[1,4,6,7,8],[2,5],[3]]           => 12
[[1,3,6,7,8],[2,5],[4]]           => 12
[[1,2,6,7,8],[3,5],[4]]           => 12
[[1,3,6,7,8],[2,4],[5]]           => 12
[[1,2,6,7,8],[3,4],[5]]           => 12
[[1,4,5,7,8],[2,6],[3]]           => 12
[[1,3,5,7,8],[2,6],[4]]           => 12
[[1,2,5,7,8],[3,6],[4]]           => 12
[[1,3,4,7,8],[2,6],[5]]           => 12
[[1,2,4,7,8],[3,6],[5]]           => 12
[[1,2,3,7,8],[4,6],[5]]           => 12
[[1,3,5,7,8],[2,4],[6]]           => 12
[[1,2,5,7,8],[3,4],[6]]           => 12
[[1,3,4,7,8],[2,5],[6]]           => 12
[[1,2,4,7,8],[3,5],[6]]           => 12
[[1,2,3,7,8],[4,5],[6]]           => 12
[[1,4,5,6,8],[2,7],[3]]           => 12
[[1,3,5,6,8],[2,7],[4]]           => 12
[[1,2,5,6,8],[3,7],[4]]           => 12
[[1,3,4,6,8],[2,7],[5]]           => 12
[[1,2,4,6,8],[3,7],[5]]           => 12
[[1,2,3,6,8],[4,7],[5]]           => 12
[[1,3,4,5,8],[2,7],[6]]           => 12
[[1,2,4,5,8],[3,7],[6]]           => 12
[[1,2,3,5,8],[4,7],[6]]           => 12
[[1,2,3,4,8],[5,7],[6]]           => 12
[[1,3,5,6,8],[2,4],[7]]           => 12
[[1,2,5,6,8],[3,4],[7]]           => 12
[[1,3,4,6,8],[2,5],[7]]           => 12
[[1,2,4,6,8],[3,5],[7]]           => 12
[[1,2,3,6,8],[4,5],[7]]           => 12
[[1,3,4,5,8],[2,6],[7]]           => 12
[[1,2,4,5,8],[3,6],[7]]           => 12
[[1,2,3,5,8],[4,6],[7]]           => 12
[[1,2,3,4,8],[5,6],[7]]           => 12
[[1,4,5,6,7],[2,8],[3]]           => 12
[[1,3,5,6,7],[2,8],[4]]           => 12
[[1,2,5,6,7],[3,8],[4]]           => 12
[[1,3,4,6,7],[2,8],[5]]           => 12
[[1,2,4,6,7],[3,8],[5]]           => 12
[[1,2,3,6,7],[4,8],[5]]           => 12
[[1,3,4,5,7],[2,8],[6]]           => 12
[[1,2,4,5,7],[3,8],[6]]           => 12
[[1,2,3,5,7],[4,8],[6]]           => 12
[[1,2,3,4,7],[5,8],[6]]           => 12
[[1,3,4,5,6],[2,8],[7]]           => 12
[[1,2,4,5,6],[3,8],[7]]           => 12
[[1,2,3,5,6],[4,8],[7]]           => 12
[[1,2,3,4,6],[5,8],[7]]           => 12
[[1,2,3,4,5],[6,8],[7]]           => 12
[[1,3,5,6,7],[2,4],[8]]           => 12
[[1,2,5,6,7],[3,4],[8]]           => 12
[[1,3,4,6,7],[2,5],[8]]           => 12
[[1,2,4,6,7],[3,5],[8]]           => 12
[[1,2,3,6,7],[4,5],[8]]           => 12
[[1,3,4,5,7],[2,6],[8]]           => 12
[[1,2,4,5,7],[3,6],[8]]           => 12
[[1,2,3,5,7],[4,6],[8]]           => 12
[[1,2,3,4,7],[5,6],[8]]           => 12
[[1,3,4,5,6],[2,7],[8]]           => 12
[[1,2,4,5,6],[3,7],[8]]           => 12
[[1,2,3,5,6],[4,7],[8]]           => 12
[[1,2,3,4,6],[5,7],[8]]           => 12
[[1,2,3,4,5],[6,7],[8]]           => 12
[[1,5,6,7,8],[2],[3],[4]]         => 10
[[1,4,6,7,8],[2],[3],[5]]         => 10
[[1,3,6,7,8],[2],[4],[5]]         => 10
[[1,2,6,7,8],[3],[4],[5]]         => 10
[[1,4,5,7,8],[2],[3],[6]]         => 10
[[1,3,5,7,8],[2],[4],[6]]         => 10
[[1,2,5,7,8],[3],[4],[6]]         => 10
[[1,3,4,7,8],[2],[5],[6]]         => 10
[[1,2,4,7,8],[3],[5],[6]]         => 10
[[1,2,3,7,8],[4],[5],[6]]         => 10
[[1,4,5,6,8],[2],[3],[7]]         => 10
[[1,3,5,6,8],[2],[4],[7]]         => 10
[[1,2,5,6,8],[3],[4],[7]]         => 10
[[1,3,4,6,8],[2],[5],[7]]         => 10
[[1,2,4,6,8],[3],[5],[7]]         => 10
[[1,2,3,6,8],[4],[5],[7]]         => 10
[[1,3,4,5,8],[2],[6],[7]]         => 10
[[1,2,4,5,8],[3],[6],[7]]         => 10
[[1,2,3,5,8],[4],[6],[7]]         => 10
[[1,2,3,4,8],[5],[6],[7]]         => 10
[[1,4,5,6,7],[2],[3],[8]]         => 10
[[1,3,5,6,7],[2],[4],[8]]         => 10
[[1,2,5,6,7],[3],[4],[8]]         => 10
[[1,3,4,6,7],[2],[5],[8]]         => 10
[[1,2,4,6,7],[3],[5],[8]]         => 10
[[1,2,3,6,7],[4],[5],[8]]         => 10
[[1,3,4,5,7],[2],[6],[8]]         => 10
[[1,2,4,5,7],[3],[6],[8]]         => 10
[[1,2,3,5,7],[4],[6],[8]]         => 10
[[1,2,3,4,7],[5],[6],[8]]         => 10
[[1,3,4,5,6],[2],[7],[8]]         => 10
[[1,2,4,5,6],[3],[7],[8]]         => 10
[[1,2,3,5,6],[4],[7],[8]]         => 10
[[1,2,3,4,6],[5],[7],[8]]         => 10
[[1,2,3,4,5],[6],[7],[8]]         => 10
[[1,3,5,7],[2,4,6,8]]             => 18
[[1,2,5,7],[3,4,6,8]]             => 18
[[1,3,4,7],[2,5,6,8]]             => 18
[[1,2,4,7],[3,5,6,8]]             => 18
[[1,2,3,7],[4,5,6,8]]             => 18
[[1,3,5,6],[2,4,7,8]]             => 18
[[1,2,5,6],[3,4,7,8]]             => 18
[[1,3,4,6],[2,5,7,8]]             => 18
[[1,2,4,6],[3,5,7,8]]             => 18
[[1,2,3,6],[4,5,7,8]]             => 18
[[1,3,4,5],[2,6,7,8]]             => 18
[[1,2,4,5],[3,6,7,8]]             => 18
[[1,2,3,5],[4,6,7,8]]             => 18
[[1,2,3,4],[5,6,7,8]]             => 18
[[1,4,6,8],[2,5,7],[3]]           => 12
[[1,3,6,8],[2,5,7],[4]]           => 12
[[1,2,6,8],[3,5,7],[4]]           => 12
[[1,3,6,8],[2,4,7],[5]]           => 12
[[1,2,6,8],[3,4,7],[5]]           => 12
[[1,4,5,8],[2,6,7],[3]]           => 12
[[1,3,5,8],[2,6,7],[4]]           => 12
[[1,2,5,8],[3,6,7],[4]]           => 12
[[1,3,4,8],[2,6,7],[5]]           => 12
[[1,2,4,8],[3,6,7],[5]]           => 12
[[1,2,3,8],[4,6,7],[5]]           => 12
[[1,3,5,8],[2,4,7],[6]]           => 12
[[1,2,5,8],[3,4,7],[6]]           => 12
[[1,3,4,8],[2,5,7],[6]]           => 12
[[1,2,4,8],[3,5,7],[6]]           => 12
[[1,2,3,8],[4,5,7],[6]]           => 12
[[1,3,5,8],[2,4,6],[7]]           => 12
[[1,2,5,8],[3,4,6],[7]]           => 12
[[1,3,4,8],[2,5,6],[7]]           => 12
[[1,2,4,8],[3,5,6],[7]]           => 12
[[1,2,3,8],[4,5,6],[7]]           => 12
[[1,4,6,7],[2,5,8],[3]]           => 12
[[1,3,6,7],[2,5,8],[4]]           => 12
[[1,2,6,7],[3,5,8],[4]]           => 12
[[1,3,6,7],[2,4,8],[5]]           => 12
[[1,2,6,7],[3,4,8],[5]]           => 12
[[1,4,5,7],[2,6,8],[3]]           => 12
[[1,3,5,7],[2,6,8],[4]]           => 12
[[1,2,5,7],[3,6,8],[4]]           => 12
[[1,3,4,7],[2,6,8],[5]]           => 12
[[1,2,4,7],[3,6,8],[5]]           => 12
[[1,2,3,7],[4,6,8],[5]]           => 12
[[1,3,5,7],[2,4,8],[6]]           => 12
[[1,2,5,7],[3,4,8],[6]]           => 12
[[1,3,4,7],[2,5,8],[6]]           => 12
[[1,2,4,7],[3,5,8],[6]]           => 12
[[1,2,3,7],[4,5,8],[6]]           => 12
[[1,4,5,6],[2,7,8],[3]]           => 12
[[1,3,5,6],[2,7,8],[4]]           => 12
[[1,2,5,6],[3,7,8],[4]]           => 12
[[1,3,4,6],[2,7,8],[5]]           => 12
[[1,2,4,6],[3,7,8],[5]]           => 12
[[1,2,3,6],[4,7,8],[5]]           => 12
[[1,3,4,5],[2,7,8],[6]]           => 12
[[1,2,4,5],[3,7,8],[6]]           => 12
[[1,2,3,5],[4,7,8],[6]]           => 12
[[1,2,3,4],[5,7,8],[6]]           => 12
[[1,3,5,6],[2,4,8],[7]]           => 12
[[1,2,5,6],[3,4,8],[7]]           => 12
[[1,3,4,6],[2,5,8],[7]]           => 12
[[1,2,4,6],[3,5,8],[7]]           => 12
[[1,2,3,6],[4,5,8],[7]]           => 12
[[1,3,4,5],[2,6,8],[7]]           => 12
[[1,2,4,5],[3,6,8],[7]]           => 12
[[1,2,3,5],[4,6,8],[7]]           => 12
[[1,2,3,4],[5,6,8],[7]]           => 12
[[1,3,5,7],[2,4,6],[8]]           => 12
[[1,2,5,7],[3,4,6],[8]]           => 12
[[1,3,4,7],[2,5,6],[8]]           => 12
[[1,2,4,7],[3,5,6],[8]]           => 12
[[1,2,3,7],[4,5,6],[8]]           => 12
[[1,3,5,6],[2,4,7],[8]]           => 12
[[1,2,5,6],[3,4,7],[8]]           => 12
[[1,3,4,6],[2,5,7],[8]]           => 12
[[1,2,4,6],[3,5,7],[8]]           => 12
[[1,2,3,6],[4,5,7],[8]]           => 12
[[1,3,4,5],[2,6,7],[8]]           => 12
[[1,2,4,5],[3,6,7],[8]]           => 12
[[1,2,3,5],[4,6,7],[8]]           => 12
[[1,2,3,4],[5,6,7],[8]]           => 12
[[1,4,7,8],[2,5],[3,6]]           => 10
[[1,3,7,8],[2,5],[4,6]]           => 10
[[1,2,7,8],[3,5],[4,6]]           => 10
[[1,3,7,8],[2,4],[5,6]]           => 10
[[1,2,7,8],[3,4],[5,6]]           => 10
[[1,4,6,8],[2,5],[3,7]]           => 10
[[1,3,6,8],[2,5],[4,7]]           => 10
[[1,2,6,8],[3,5],[4,7]]           => 10
[[1,3,6,8],[2,4],[5,7]]           => 10
[[1,2,6,8],[3,4],[5,7]]           => 10
[[1,4,5,8],[2,6],[3,7]]           => 10
[[1,3,5,8],[2,6],[4,7]]           => 10
[[1,2,5,8],[3,6],[4,7]]           => 10
[[1,3,4,8],[2,6],[5,7]]           => 10
[[1,2,4,8],[3,6],[5,7]]           => 10
[[1,2,3,8],[4,6],[5,7]]           => 10
[[1,3,5,8],[2,4],[6,7]]           => 10
[[1,2,5,8],[3,4],[6,7]]           => 10
[[1,3,4,8],[2,5],[6,7]]           => 10
[[1,2,4,8],[3,5],[6,7]]           => 10
[[1,2,3,8],[4,5],[6,7]]           => 10
[[1,4,6,7],[2,5],[3,8]]           => 10
[[1,3,6,7],[2,5],[4,8]]           => 10
[[1,2,6,7],[3,5],[4,8]]           => 10
[[1,3,6,7],[2,4],[5,8]]           => 10
[[1,2,6,7],[3,4],[5,8]]           => 10
[[1,4,5,7],[2,6],[3,8]]           => 10
[[1,3,5,7],[2,6],[4,8]]           => 10
[[1,2,5,7],[3,6],[4,8]]           => 10
[[1,3,4,7],[2,6],[5,8]]           => 10
[[1,2,4,7],[3,6],[5,8]]           => 10
[[1,2,3,7],[4,6],[5,8]]           => 10
[[1,3,5,7],[2,4],[6,8]]           => 10
[[1,2,5,7],[3,4],[6,8]]           => 10
[[1,3,4,7],[2,5],[6,8]]           => 10
[[1,2,4,7],[3,5],[6,8]]           => 10
[[1,2,3,7],[4,5],[6,8]]           => 10
[[1,4,5,6],[2,7],[3,8]]           => 10
[[1,3,5,6],[2,7],[4,8]]           => 10
[[1,2,5,6],[3,7],[4,8]]           => 10
[[1,3,4,6],[2,7],[5,8]]           => 10
[[1,2,4,6],[3,7],[5,8]]           => 10
[[1,2,3,6],[4,7],[5,8]]           => 10
[[1,3,4,5],[2,7],[6,8]]           => 10
[[1,2,4,5],[3,7],[6,8]]           => 10
[[1,2,3,5],[4,7],[6,8]]           => 10
[[1,2,3,4],[5,7],[6,8]]           => 10
[[1,3,5,6],[2,4],[7,8]]           => 10
[[1,2,5,6],[3,4],[7,8]]           => 10
[[1,3,4,6],[2,5],[7,8]]           => 10
[[1,2,4,6],[3,5],[7,8]]           => 10
[[1,2,3,6],[4,5],[7,8]]           => 10
[[1,3,4,5],[2,6],[7,8]]           => 10
[[1,2,4,5],[3,6],[7,8]]           => 10
[[1,2,3,5],[4,6],[7,8]]           => 10
[[1,2,3,4],[5,6],[7,8]]           => 10
[[1,5,7,8],[2,6],[3],[4]]         => 8
[[1,4,7,8],[2,6],[3],[5]]         => 8
[[1,3,7,8],[2,6],[4],[5]]         => 8
[[1,2,7,8],[3,6],[4],[5]]         => 8
[[1,4,7,8],[2,5],[3],[6]]         => 8
[[1,3,7,8],[2,5],[4],[6]]         => 8
[[1,2,7,8],[3,5],[4],[6]]         => 8
[[1,3,7,8],[2,4],[5],[6]]         => 8
[[1,2,7,8],[3,4],[5],[6]]         => 8
[[1,5,6,8],[2,7],[3],[4]]         => 8
[[1,4,6,8],[2,7],[3],[5]]         => 8
[[1,3,6,8],[2,7],[4],[5]]         => 8
[[1,2,6,8],[3,7],[4],[5]]         => 8
[[1,4,5,8],[2,7],[3],[6]]         => 8
[[1,3,5,8],[2,7],[4],[6]]         => 8
[[1,2,5,8],[3,7],[4],[6]]         => 8
[[1,3,4,8],[2,7],[5],[6]]         => 8
[[1,2,4,8],[3,7],[5],[6]]         => 8
[[1,2,3,8],[4,7],[5],[6]]         => 8
[[1,4,6,8],[2,5],[3],[7]]         => 8
[[1,3,6,8],[2,5],[4],[7]]         => 8
[[1,2,6,8],[3,5],[4],[7]]         => 8
[[1,3,6,8],[2,4],[5],[7]]         => 8
[[1,2,6,8],[3,4],[5],[7]]         => 8
[[1,4,5,8],[2,6],[3],[7]]         => 8
[[1,3,5,8],[2,6],[4],[7]]         => 8
[[1,2,5,8],[3,6],[4],[7]]         => 8
[[1,3,4,8],[2,6],[5],[7]]         => 8
[[1,2,4,8],[3,6],[5],[7]]         => 8
[[1,2,3,8],[4,6],[5],[7]]         => 8
[[1,3,5,8],[2,4],[6],[7]]         => 8
[[1,2,5,8],[3,4],[6],[7]]         => 8
[[1,3,4,8],[2,5],[6],[7]]         => 8
[[1,2,4,8],[3,5],[6],[7]]         => 8
[[1,2,3,8],[4,5],[6],[7]]         => 8
[[1,5,6,7],[2,8],[3],[4]]         => 8
[[1,4,6,7],[2,8],[3],[5]]         => 8
[[1,3,6,7],[2,8],[4],[5]]         => 8
[[1,2,6,7],[3,8],[4],[5]]         => 8
[[1,4,5,7],[2,8],[3],[6]]         => 8
[[1,3,5,7],[2,8],[4],[6]]         => 8
[[1,2,5,7],[3,8],[4],[6]]         => 8
[[1,3,4,7],[2,8],[5],[6]]         => 8
[[1,2,4,7],[3,8],[5],[6]]         => 8
[[1,2,3,7],[4,8],[5],[6]]         => 8
[[1,4,5,6],[2,8],[3],[7]]         => 8
[[1,3,5,6],[2,8],[4],[7]]         => 8
[[1,2,5,6],[3,8],[4],[7]]         => 8
[[1,3,4,6],[2,8],[5],[7]]         => 8
[[1,2,4,6],[3,8],[5],[7]]         => 8
[[1,2,3,6],[4,8],[5],[7]]         => 8
[[1,3,4,5],[2,8],[6],[7]]         => 8
[[1,2,4,5],[3,8],[6],[7]]         => 8
[[1,2,3,5],[4,8],[6],[7]]         => 8
[[1,2,3,4],[5,8],[6],[7]]         => 8
[[1,4,6,7],[2,5],[3],[8]]         => 8
[[1,3,6,7],[2,5],[4],[8]]         => 8
[[1,2,6,7],[3,5],[4],[8]]         => 8
[[1,3,6,7],[2,4],[5],[8]]         => 8
[[1,2,6,7],[3,4],[5],[8]]         => 8
[[1,4,5,7],[2,6],[3],[8]]         => 8
[[1,3,5,7],[2,6],[4],[8]]         => 8
[[1,2,5,7],[3,6],[4],[8]]         => 8
[[1,3,4,7],[2,6],[5],[8]]         => 8
[[1,2,4,7],[3,6],[5],[8]]         => 8
[[1,2,3,7],[4,6],[5],[8]]         => 8
[[1,3,5,7],[2,4],[6],[8]]         => 8
[[1,2,5,7],[3,4],[6],[8]]         => 8
[[1,3,4,7],[2,5],[6],[8]]         => 8
[[1,2,4,7],[3,5],[6],[8]]         => 8
[[1,2,3,7],[4,5],[6],[8]]         => 8
[[1,4,5,6],[2,7],[3],[8]]         => 8
[[1,3,5,6],[2,7],[4],[8]]         => 8
[[1,2,5,6],[3,7],[4],[8]]         => 8
[[1,3,4,6],[2,7],[5],[8]]         => 8
[[1,2,4,6],[3,7],[5],[8]]         => 8
[[1,2,3,6],[4,7],[5],[8]]         => 8
[[1,3,4,5],[2,7],[6],[8]]         => 8
[[1,2,4,5],[3,7],[6],[8]]         => 8
[[1,2,3,5],[4,7],[6],[8]]         => 8
[[1,2,3,4],[5,7],[6],[8]]         => 8
[[1,3,5,6],[2,4],[7],[8]]         => 8
[[1,2,5,6],[3,4],[7],[8]]         => 8
[[1,3,4,6],[2,5],[7],[8]]         => 8
[[1,2,4,6],[3,5],[7],[8]]         => 8
[[1,2,3,6],[4,5],[7],[8]]         => 8
[[1,3,4,5],[2,6],[7],[8]]         => 8
[[1,2,4,5],[3,6],[7],[8]]         => 8
[[1,2,3,5],[4,6],[7],[8]]         => 8
[[1,2,3,4],[5,6],[7],[8]]         => 8
[[1,6,7,8],[2],[3],[4],[5]]       => 6
[[1,5,7,8],[2],[3],[4],[6]]       => 6
[[1,4,7,8],[2],[3],[5],[6]]       => 6
[[1,3,7,8],[2],[4],[5],[6]]       => 6
[[1,2,7,8],[3],[4],[5],[6]]       => 6
[[1,5,6,8],[2],[3],[4],[7]]       => 6
[[1,4,6,8],[2],[3],[5],[7]]       => 6
[[1,3,6,8],[2],[4],[5],[7]]       => 6
[[1,2,6,8],[3],[4],[5],[7]]       => 6
[[1,4,5,8],[2],[3],[6],[7]]       => 6
[[1,3,5,8],[2],[4],[6],[7]]       => 6
[[1,2,5,8],[3],[4],[6],[7]]       => 6
[[1,3,4,8],[2],[5],[6],[7]]       => 6
[[1,2,4,8],[3],[5],[6],[7]]       => 6
[[1,2,3,8],[4],[5],[6],[7]]       => 6
[[1,5,6,7],[2],[3],[4],[8]]       => 6
[[1,4,6,7],[2],[3],[5],[8]]       => 6
[[1,3,6,7],[2],[4],[5],[8]]       => 6
[[1,2,6,7],[3],[4],[5],[8]]       => 6
[[1,4,5,7],[2],[3],[6],[8]]       => 6
[[1,3,5,7],[2],[4],[6],[8]]       => 6
[[1,2,5,7],[3],[4],[6],[8]]       => 6
[[1,3,4,7],[2],[5],[6],[8]]       => 6
[[1,2,4,7],[3],[5],[6],[8]]       => 6
[[1,2,3,7],[4],[5],[6],[8]]       => 6
[[1,4,5,6],[2],[3],[7],[8]]       => 6
[[1,3,5,6],[2],[4],[7],[8]]       => 6
[[1,2,5,6],[3],[4],[7],[8]]       => 6
[[1,3,4,6],[2],[5],[7],[8]]       => 6
[[1,2,4,6],[3],[5],[7],[8]]       => 6
[[1,2,3,6],[4],[5],[7],[8]]       => 6
[[1,3,4,5],[2],[6],[7],[8]]       => 6
[[1,2,4,5],[3],[6],[7],[8]]       => 6
[[1,2,3,5],[4],[6],[7],[8]]       => 6
[[1,2,3,4],[5],[6],[7],[8]]       => 6
[[1,4,7],[2,5,8],[3,6]]           => 11
[[1,3,7],[2,5,8],[4,6]]           => 11
[[1,2,7],[3,5,8],[4,6]]           => 11
[[1,3,7],[2,4,8],[5,6]]           => 11
[[1,2,7],[3,4,8],[5,6]]           => 11
[[1,4,6],[2,5,8],[3,7]]           => 11
[[1,3,6],[2,5,8],[4,7]]           => 11
[[1,2,6],[3,5,8],[4,7]]           => 11
[[1,3,6],[2,4,8],[5,7]]           => 11
[[1,2,6],[3,4,8],[5,7]]           => 11
[[1,4,5],[2,6,8],[3,7]]           => 11
[[1,3,5],[2,6,8],[4,7]]           => 11
[[1,2,5],[3,6,8],[4,7]]           => 11
[[1,3,4],[2,6,8],[5,7]]           => 11
[[1,2,4],[3,6,8],[5,7]]           => 11
[[1,2,3],[4,6,8],[5,7]]           => 11
[[1,3,5],[2,4,8],[6,7]]           => 11
[[1,2,5],[3,4,8],[6,7]]           => 11
[[1,3,4],[2,5,8],[6,7]]           => 11
[[1,2,4],[3,5,8],[6,7]]           => 11
[[1,2,3],[4,5,8],[6,7]]           => 11
[[1,4,6],[2,5,7],[3,8]]           => 11
[[1,3,6],[2,5,7],[4,8]]           => 11
[[1,2,6],[3,5,7],[4,8]]           => 11
[[1,3,6],[2,4,7],[5,8]]           => 11
[[1,2,6],[3,4,7],[5,8]]           => 11
[[1,4,5],[2,6,7],[3,8]]           => 11
[[1,3,5],[2,6,7],[4,8]]           => 11
[[1,2,5],[3,6,7],[4,8]]           => 11
[[1,3,4],[2,6,7],[5,8]]           => 11
[[1,2,4],[3,6,7],[5,8]]           => 11
[[1,2,3],[4,6,7],[5,8]]           => 11
[[1,3,5],[2,4,7],[6,8]]           => 11
[[1,2,5],[3,4,7],[6,8]]           => 11
[[1,3,4],[2,5,7],[6,8]]           => 11
[[1,2,4],[3,5,7],[6,8]]           => 11
[[1,2,3],[4,5,7],[6,8]]           => 11
[[1,3,5],[2,4,6],[7,8]]           => 11
[[1,2,5],[3,4,6],[7,8]]           => 11
[[1,3,4],[2,5,6],[7,8]]           => 11
[[1,2,4],[3,5,6],[7,8]]           => 11
[[1,2,3],[4,5,6],[7,8]]           => 11
[[1,5,7],[2,6,8],[3],[4]]         => 9
[[1,4,7],[2,6,8],[3],[5]]         => 9
[[1,3,7],[2,6,8],[4],[5]]         => 9
[[1,2,7],[3,6,8],[4],[5]]         => 9
[[1,4,7],[2,5,8],[3],[6]]         => 9
[[1,3,7],[2,5,8],[4],[6]]         => 9
[[1,2,7],[3,5,8],[4],[6]]         => 9
[[1,3,7],[2,4,8],[5],[6]]         => 9
[[1,2,7],[3,4,8],[5],[6]]         => 9
[[1,5,6],[2,7,8],[3],[4]]         => 9
[[1,4,6],[2,7,8],[3],[5]]         => 9
[[1,3,6],[2,7,8],[4],[5]]         => 9
[[1,2,6],[3,7,8],[4],[5]]         => 9
[[1,4,5],[2,7,8],[3],[6]]         => 9
[[1,3,5],[2,7,8],[4],[6]]         => 9
[[1,2,5],[3,7,8],[4],[6]]         => 9
[[1,3,4],[2,7,8],[5],[6]]         => 9
[[1,2,4],[3,7,8],[5],[6]]         => 9
[[1,2,3],[4,7,8],[5],[6]]         => 9
[[1,4,6],[2,5,8],[3],[7]]         => 9
[[1,3,6],[2,5,8],[4],[7]]         => 9
[[1,2,6],[3,5,8],[4],[7]]         => 9
[[1,3,6],[2,4,8],[5],[7]]         => 9
[[1,2,6],[3,4,8],[5],[7]]         => 9
[[1,4,5],[2,6,8],[3],[7]]         => 9
[[1,3,5],[2,6,8],[4],[7]]         => 9
[[1,2,5],[3,6,8],[4],[7]]         => 9
[[1,3,4],[2,6,8],[5],[7]]         => 9
[[1,2,4],[3,6,8],[5],[7]]         => 9
[[1,2,3],[4,6,8],[5],[7]]         => 9
[[1,3,5],[2,4,8],[6],[7]]         => 9
[[1,2,5],[3,4,8],[6],[7]]         => 9
[[1,3,4],[2,5,8],[6],[7]]         => 9
[[1,2,4],[3,5,8],[6],[7]]         => 9
[[1,2,3],[4,5,8],[6],[7]]         => 9
[[1,4,6],[2,5,7],[3],[8]]         => 9
[[1,3,6],[2,5,7],[4],[8]]         => 9
[[1,2,6],[3,5,7],[4],[8]]         => 9
[[1,3,6],[2,4,7],[5],[8]]         => 9
[[1,2,6],[3,4,7],[5],[8]]         => 9
[[1,4,5],[2,6,7],[3],[8]]         => 9
[[1,3,5],[2,6,7],[4],[8]]         => 9
[[1,2,5],[3,6,7],[4],[8]]         => 9
[[1,3,4],[2,6,7],[5],[8]]         => 9
[[1,2,4],[3,6,7],[5],[8]]         => 9
[[1,2,3],[4,6,7],[5],[8]]         => 9
[[1,3,5],[2,4,7],[6],[8]]         => 9
[[1,2,5],[3,4,7],[6],[8]]         => 9
[[1,3,4],[2,5,7],[6],[8]]         => 9
[[1,2,4],[3,5,7],[6],[8]]         => 9
[[1,2,3],[4,5,7],[6],[8]]         => 9
[[1,3,5],[2,4,6],[7],[8]]         => 9
[[1,2,5],[3,4,6],[7],[8]]         => 9
[[1,3,4],[2,5,6],[7],[8]]         => 9
[[1,2,4],[3,5,6],[7],[8]]         => 9
[[1,2,3],[4,5,6],[7],[8]]         => 9
[[1,5,8],[2,6],[3,7],[4]]         => 7
[[1,4,8],[2,6],[3,7],[5]]         => 7
[[1,3,8],[2,6],[4,7],[5]]         => 7
[[1,2,8],[3,6],[4,7],[5]]         => 7
[[1,4,8],[2,5],[3,7],[6]]         => 7
[[1,3,8],[2,5],[4,7],[6]]         => 7
[[1,2,8],[3,5],[4,7],[6]]         => 7
[[1,3,8],[2,4],[5,7],[6]]         => 7
[[1,2,8],[3,4],[5,7],[6]]         => 7
[[1,4,8],[2,5],[3,6],[7]]         => 7
[[1,3,8],[2,5],[4,6],[7]]         => 7
[[1,2,8],[3,5],[4,6],[7]]         => 7
[[1,3,8],[2,4],[5,6],[7]]         => 7
[[1,2,8],[3,4],[5,6],[7]]         => 7
[[1,5,7],[2,6],[3,8],[4]]         => 7
[[1,4,7],[2,6],[3,8],[5]]         => 7
[[1,3,7],[2,6],[4,8],[5]]         => 7
[[1,2,7],[3,6],[4,8],[5]]         => 7
[[1,4,7],[2,5],[3,8],[6]]         => 7
[[1,3,7],[2,5],[4,8],[6]]         => 7
[[1,2,7],[3,5],[4,8],[6]]         => 7
[[1,3,7],[2,4],[5,8],[6]]         => 7
[[1,2,7],[3,4],[5,8],[6]]         => 7
[[1,5,6],[2,7],[3,8],[4]]         => 7
[[1,4,6],[2,7],[3,8],[5]]         => 7
[[1,3,6],[2,7],[4,8],[5]]         => 7
[[1,2,6],[3,7],[4,8],[5]]         => 7
[[1,4,5],[2,7],[3,8],[6]]         => 7
[[1,3,5],[2,7],[4,8],[6]]         => 7
[[1,2,5],[3,7],[4,8],[6]]         => 7
[[1,3,4],[2,7],[5,8],[6]]         => 7
[[1,2,4],[3,7],[5,8],[6]]         => 7
[[1,2,3],[4,7],[5,8],[6]]         => 7
[[1,4,6],[2,5],[3,8],[7]]         => 7
[[1,3,6],[2,5],[4,8],[7]]         => 7
[[1,2,6],[3,5],[4,8],[7]]         => 7
[[1,3,6],[2,4],[5,8],[7]]         => 7
[[1,2,6],[3,4],[5,8],[7]]         => 7
[[1,4,5],[2,6],[3,8],[7]]         => 7
[[1,3,5],[2,6],[4,8],[7]]         => 7
[[1,2,5],[3,6],[4,8],[7]]         => 7
[[1,3,4],[2,6],[5,8],[7]]         => 7
[[1,2,4],[3,6],[5,8],[7]]         => 7
[[1,2,3],[4,6],[5,8],[7]]         => 7
[[1,3,5],[2,4],[6,8],[7]]         => 7
[[1,2,5],[3,4],[6,8],[7]]         => 7
[[1,3,4],[2,5],[6,8],[7]]         => 7
[[1,2,4],[3,5],[6,8],[7]]         => 7
[[1,2,3],[4,5],[6,8],[7]]         => 7
[[1,4,7],[2,5],[3,6],[8]]         => 7
[[1,3,7],[2,5],[4,6],[8]]         => 7
[[1,2,7],[3,5],[4,6],[8]]         => 7
[[1,3,7],[2,4],[5,6],[8]]         => 7
[[1,2,7],[3,4],[5,6],[8]]         => 7
[[1,4,6],[2,5],[3,7],[8]]         => 7
[[1,3,6],[2,5],[4,7],[8]]         => 7
[[1,2,6],[3,5],[4,7],[8]]         => 7
[[1,3,6],[2,4],[5,7],[8]]         => 7
[[1,2,6],[3,4],[5,7],[8]]         => 7
[[1,4,5],[2,6],[3,7],[8]]         => 7
[[1,3,5],[2,6],[4,7],[8]]         => 7
[[1,2,5],[3,6],[4,7],[8]]         => 7
[[1,3,4],[2,6],[5,7],[8]]         => 7
[[1,2,4],[3,6],[5,7],[8]]         => 7
[[1,2,3],[4,6],[5,7],[8]]         => 7
[[1,3,5],[2,4],[6,7],[8]]         => 7
[[1,2,5],[3,4],[6,7],[8]]         => 7
[[1,3,4],[2,5],[6,7],[8]]         => 7
[[1,2,4],[3,5],[6,7],[8]]         => 7
[[1,2,3],[4,5],[6,7],[8]]         => 7
[[1,6,8],[2,7],[3],[4],[5]]       => 5
[[1,5,8],[2,7],[3],[4],[6]]       => 5
[[1,4,8],[2,7],[3],[5],[6]]       => 5
[[1,3,8],[2,7],[4],[5],[6]]       => 5
[[1,2,8],[3,7],[4],[5],[6]]       => 5
[[1,5,8],[2,6],[3],[4],[7]]       => 5
[[1,4,8],[2,6],[3],[5],[7]]       => 5
[[1,3,8],[2,6],[4],[5],[7]]       => 5
[[1,2,8],[3,6],[4],[5],[7]]       => 5
[[1,4,8],[2,5],[3],[6],[7]]       => 5
[[1,3,8],[2,5],[4],[6],[7]]       => 5
[[1,2,8],[3,5],[4],[6],[7]]       => 5
[[1,3,8],[2,4],[5],[6],[7]]       => 5
[[1,2,8],[3,4],[5],[6],[7]]       => 5
[[1,6,7],[2,8],[3],[4],[5]]       => 5
[[1,5,7],[2,8],[3],[4],[6]]       => 5
[[1,4,7],[2,8],[3],[5],[6]]       => 5
[[1,3,7],[2,8],[4],[5],[6]]       => 5
[[1,2,7],[3,8],[4],[5],[6]]       => 5
[[1,5,6],[2,8],[3],[4],[7]]       => 5
[[1,4,6],[2,8],[3],[5],[7]]       => 5
[[1,3,6],[2,8],[4],[5],[7]]       => 5
[[1,2,6],[3,8],[4],[5],[7]]       => 5
[[1,4,5],[2,8],[3],[6],[7]]       => 5
[[1,3,5],[2,8],[4],[6],[7]]       => 5
[[1,2,5],[3,8],[4],[6],[7]]       => 5
[[1,3,4],[2,8],[5],[6],[7]]       => 5
[[1,2,4],[3,8],[5],[6],[7]]       => 5
[[1,2,3],[4,8],[5],[6],[7]]       => 5
[[1,5,7],[2,6],[3],[4],[8]]       => 5
[[1,4,7],[2,6],[3],[5],[8]]       => 5
[[1,3,7],[2,6],[4],[5],[8]]       => 5
[[1,2,7],[3,6],[4],[5],[8]]       => 5
[[1,4,7],[2,5],[3],[6],[8]]       => 5
[[1,3,7],[2,5],[4],[6],[8]]       => 5
[[1,2,7],[3,5],[4],[6],[8]]       => 5
[[1,3,7],[2,4],[5],[6],[8]]       => 5
[[1,2,7],[3,4],[5],[6],[8]]       => 5
[[1,5,6],[2,7],[3],[4],[8]]       => 5
[[1,4,6],[2,7],[3],[5],[8]]       => 5
[[1,3,6],[2,7],[4],[5],[8]]       => 5
[[1,2,6],[3,7],[4],[5],[8]]       => 5
[[1,4,5],[2,7],[3],[6],[8]]       => 5
[[1,3,5],[2,7],[4],[6],[8]]       => 5
[[1,2,5],[3,7],[4],[6],[8]]       => 5
[[1,3,4],[2,7],[5],[6],[8]]       => 5
[[1,2,4],[3,7],[5],[6],[8]]       => 5
[[1,2,3],[4,7],[5],[6],[8]]       => 5
[[1,4,6],[2,5],[3],[7],[8]]       => 5
[[1,3,6],[2,5],[4],[7],[8]]       => 5
[[1,2,6],[3,5],[4],[7],[8]]       => 5
[[1,3,6],[2,4],[5],[7],[8]]       => 5
[[1,2,6],[3,4],[5],[7],[8]]       => 5
[[1,4,5],[2,6],[3],[7],[8]]       => 5
[[1,3,5],[2,6],[4],[7],[8]]       => 5
[[1,2,5],[3,6],[4],[7],[8]]       => 5
[[1,3,4],[2,6],[5],[7],[8]]       => 5
[[1,2,4],[3,6],[5],[7],[8]]       => 5
[[1,2,3],[4,6],[5],[7],[8]]       => 5
[[1,3,5],[2,4],[6],[7],[8]]       => 5
[[1,2,5],[3,4],[6],[7],[8]]       => 5
[[1,3,4],[2,5],[6],[7],[8]]       => 5
[[1,2,4],[3,5],[6],[7],[8]]       => 5
[[1,2,3],[4,5],[6],[7],[8]]       => 5
[[1,7,8],[2],[3],[4],[5],[6]]     => 3
[[1,6,8],[2],[3],[4],[5],[7]]     => 3
[[1,5,8],[2],[3],[4],[6],[7]]     => 3
[[1,4,8],[2],[3],[5],[6],[7]]     => 3
[[1,3,8],[2],[4],[5],[6],[7]]     => 3
[[1,2,8],[3],[4],[5],[6],[7]]     => 3
[[1,6,7],[2],[3],[4],[5],[8]]     => 3
[[1,5,7],[2],[3],[4],[6],[8]]     => 3
[[1,4,7],[2],[3],[5],[6],[8]]     => 3
[[1,3,7],[2],[4],[5],[6],[8]]     => 3
[[1,2,7],[3],[4],[5],[6],[8]]     => 3
[[1,5,6],[2],[3],[4],[7],[8]]     => 3
[[1,4,6],[2],[3],[5],[7],[8]]     => 3
[[1,3,6],[2],[4],[5],[7],[8]]     => 3
[[1,2,6],[3],[4],[5],[7],[8]]     => 3
[[1,4,5],[2],[3],[6],[7],[8]]     => 3
[[1,3,5],[2],[4],[6],[7],[8]]     => 3
[[1,2,5],[3],[4],[6],[7],[8]]     => 3
[[1,3,4],[2],[5],[6],[7],[8]]     => 3
[[1,2,4],[3],[5],[6],[7],[8]]     => 3
[[1,2,3],[4],[5],[6],[7],[8]]     => 3
[[1,5],[2,6],[3,7],[4,8]]         => 7
[[1,4],[2,6],[3,7],[5,8]]         => 7
[[1,3],[2,6],[4,7],[5,8]]         => 7
[[1,2],[3,6],[4,7],[5,8]]         => 7
[[1,4],[2,5],[3,7],[6,8]]         => 7
[[1,3],[2,5],[4,7],[6,8]]         => 7
[[1,2],[3,5],[4,7],[6,8]]         => 7
[[1,3],[2,4],[5,7],[6,8]]         => 7
[[1,2],[3,4],[5,7],[6,8]]         => 7
[[1,4],[2,5],[3,6],[7,8]]         => 7
[[1,3],[2,5],[4,6],[7,8]]         => 7
[[1,2],[3,5],[4,6],[7,8]]         => 7
[[1,3],[2,4],[5,6],[7,8]]         => 7
[[1,2],[3,4],[5,6],[7,8]]         => 7
[[1,6],[2,7],[3,8],[4],[5]]       => 5
[[1,5],[2,7],[3,8],[4],[6]]       => 5
[[1,4],[2,7],[3,8],[5],[6]]       => 5
[[1,3],[2,7],[4,8],[5],[6]]       => 5
[[1,2],[3,7],[4,8],[5],[6]]       => 5
[[1,5],[2,6],[3,8],[4],[7]]       => 5
[[1,4],[2,6],[3,8],[5],[7]]       => 5
[[1,3],[2,6],[4,8],[5],[7]]       => 5
[[1,2],[3,6],[4,8],[5],[7]]       => 5
[[1,4],[2,5],[3,8],[6],[7]]       => 5
[[1,3],[2,5],[4,8],[6],[7]]       => 5
[[1,2],[3,5],[4,8],[6],[7]]       => 5
[[1,3],[2,4],[5,8],[6],[7]]       => 5
[[1,2],[3,4],[5,8],[6],[7]]       => 5
[[1,5],[2,6],[3,7],[4],[8]]       => 5
[[1,4],[2,6],[3,7],[5],[8]]       => 5
[[1,3],[2,6],[4,7],[5],[8]]       => 5
[[1,2],[3,6],[4,7],[5],[8]]       => 5
[[1,4],[2,5],[3,7],[6],[8]]       => 5
[[1,3],[2,5],[4,7],[6],[8]]       => 5
[[1,2],[3,5],[4,7],[6],[8]]       => 5
[[1,3],[2,4],[5,7],[6],[8]]       => 5
[[1,2],[3,4],[5,7],[6],[8]]       => 5
[[1,4],[2,5],[3,6],[7],[8]]       => 5
[[1,3],[2,5],[4,6],[7],[8]]       => 5
[[1,2],[3,5],[4,6],[7],[8]]       => 5
[[1,3],[2,4],[5,6],[7],[8]]       => 5
[[1,2],[3,4],[5,6],[7],[8]]       => 5
[[1,7],[2,8],[3],[4],[5],[6]]     => 3
[[1,6],[2,8],[3],[4],[5],[7]]     => 3
[[1,5],[2,8],[3],[4],[6],[7]]     => 3
[[1,4],[2,8],[3],[5],[6],[7]]     => 3
[[1,3],[2,8],[4],[5],[6],[7]]     => 3
[[1,2],[3,8],[4],[5],[6],[7]]     => 3
[[1,6],[2,7],[3],[4],[5],[8]]     => 3
[[1,5],[2,7],[3],[4],[6],[8]]     => 3
[[1,4],[2,7],[3],[5],[6],[8]]     => 3
[[1,3],[2,7],[4],[5],[6],[8]]     => 3
[[1,2],[3,7],[4],[5],[6],[8]]     => 3
[[1,5],[2,6],[3],[4],[7],[8]]     => 3
[[1,4],[2,6],[3],[5],[7],[8]]     => 3
[[1,3],[2,6],[4],[5],[7],[8]]     => 3
[[1,2],[3,6],[4],[5],[7],[8]]     => 3
[[1,4],[2,5],[3],[6],[7],[8]]     => 3
[[1,3],[2,5],[4],[6],[7],[8]]     => 3
[[1,2],[3,5],[4],[6],[7],[8]]     => 3
[[1,3],[2,4],[5],[6],[7],[8]]     => 3
[[1,2],[3,4],[5],[6],[7],[8]]     => 3
[[1,8],[2],[3],[4],[5],[6],[7]]   => 1
[[1,7],[2],[3],[4],[5],[6],[8]]   => 1
[[1,6],[2],[3],[4],[5],[7],[8]]   => 1
[[1,5],[2],[3],[4],[6],[7],[8]]   => 1
[[1,4],[2],[3],[5],[6],[7],[8]]   => 1
[[1,3],[2],[4],[5],[6],[7],[8]]   => 1
[[1,2],[3],[4],[5],[6],[7],[8]]   => 1
[[1],[2],[3],[4],[5],[6],[7],[8]] => 0

-----------------------------------------------------------------------------
Created: Sep 27, 2011 at 20:00 by Chris Berg

-----------------------------------------------------------------------------
Last Updated: Oct 16, 2015 at 11:08 by Christian Stump