Values
[1] => [1] => 0
[1,1] => [2] => 0
[2] => [1,1] => 1
[1,1,1] => [3] => 0
[1,2] => [2,1] => 2
[2,1] => [1,2] => 1
[3] => [1,1,1] => 3
[1,1,1,1] => [4] => 0
[1,1,2] => [3,1] => 3
[1,2,1] => [2,2] => 2
[1,3] => [2,1,1] => 5
[2,1,1] => [1,3] => 1
[2,2] => [1,2,1] => 4
[3,1] => [1,1,2] => 3
[4] => [1,1,1,1] => 6
[1,1,1,1,1] => [5] => 0
[1,1,1,2] => [4,1] => 4
[1,1,2,1] => [3,2] => 3
[1,1,3] => [3,1,1] => 7
[1,2,1,1] => [2,3] => 2
[1,2,2] => [2,2,1] => 6
[1,3,1] => [2,1,2] => 5
[1,4] => [2,1,1,1] => 9
[2,1,1,1] => [1,4] => 1
[2,1,2] => [1,3,1] => 5
[2,2,1] => [1,2,2] => 4
[2,3] => [1,2,1,1] => 8
[3,1,1] => [1,1,3] => 3
[3,2] => [1,1,2,1] => 7
[4,1] => [1,1,1,2] => 6
[5] => [1,1,1,1,1] => 10
[1,1,1,1,1,1] => [6] => 0
[1,1,1,1,2] => [5,1] => 5
[1,1,1,2,1] => [4,2] => 4
[1,1,1,3] => [4,1,1] => 9
[1,1,2,1,1] => [3,3] => 3
[1,1,2,2] => [3,2,1] => 8
[1,1,3,1] => [3,1,2] => 7
[1,1,4] => [3,1,1,1] => 12
[1,2,1,1,1] => [2,4] => 2
[1,2,1,2] => [2,3,1] => 7
[1,2,2,1] => [2,2,2] => 6
[1,2,3] => [2,2,1,1] => 11
[1,3,1,1] => [2,1,3] => 5
[1,3,2] => [2,1,2,1] => 10
[1,4,1] => [2,1,1,2] => 9
[1,5] => [2,1,1,1,1] => 14
[2,1,1,1,1] => [1,5] => 1
[2,1,1,2] => [1,4,1] => 6
[2,1,2,1] => [1,3,2] => 5
[2,1,3] => [1,3,1,1] => 10
[2,2,1,1] => [1,2,3] => 4
[2,2,2] => [1,2,2,1] => 9
[2,3,1] => [1,2,1,2] => 8
[2,4] => [1,2,1,1,1] => 13
[3,1,1,1] => [1,1,4] => 3
[3,1,2] => [1,1,3,1] => 8
[3,2,1] => [1,1,2,2] => 7
[3,3] => [1,1,2,1,1] => 12
[4,1,1] => [1,1,1,3] => 6
[4,2] => [1,1,1,2,1] => 11
[5,1] => [1,1,1,1,2] => 10
[6] => [1,1,1,1,1,1] => 15
[1,1,1,1,1,1,1] => [7] => 0
[1,1,1,1,1,2] => [6,1] => 6
[1,1,1,1,2,1] => [5,2] => 5
[1,1,1,1,3] => [5,1,1] => 11
[1,1,1,2,1,1] => [4,3] => 4
[1,1,1,2,2] => [4,2,1] => 10
[1,1,1,3,1] => [4,1,2] => 9
[1,1,1,4] => [4,1,1,1] => 15
[1,1,2,1,1,1] => [3,4] => 3
[1,1,2,1,2] => [3,3,1] => 9
[1,1,2,2,1] => [3,2,2] => 8
[1,1,2,3] => [3,2,1,1] => 14
[1,1,3,1,1] => [3,1,3] => 7
[1,1,3,2] => [3,1,2,1] => 13
[1,1,4,1] => [3,1,1,2] => 12
[1,1,5] => [3,1,1,1,1] => 18
[1,2,1,1,1,1] => [2,5] => 2
[1,2,1,1,2] => [2,4,1] => 8
[1,2,1,2,1] => [2,3,2] => 7
[1,2,1,3] => [2,3,1,1] => 13
[1,2,2,1,1] => [2,2,3] => 6
[1,2,2,2] => [2,2,2,1] => 12
[1,2,3,1] => [2,2,1,2] => 11
[1,2,4] => [2,2,1,1,1] => 17
[1,3,1,1,1] => [2,1,4] => 5
[1,3,1,2] => [2,1,3,1] => 11
[1,3,2,1] => [2,1,2,2] => 10
[1,3,3] => [2,1,2,1,1] => 16
[1,4,1,1] => [2,1,1,3] => 9
[1,4,2] => [2,1,1,2,1] => 15
[1,5,1] => [2,1,1,1,2] => 14
[1,6] => [2,1,1,1,1,1] => 20
[2,1,1,1,1,1] => [1,6] => 1
[2,1,1,1,2] => [1,5,1] => 7
[2,1,1,2,1] => [1,4,2] => 6
[2,1,1,3] => [1,4,1,1] => 12
[2,1,2,1,1] => [1,3,3] => 5
[2,1,2,2] => [1,3,2,1] => 11
>>> Load all 423 entries. <<<
[2,1,3,1] => [1,3,1,2] => 10
[2,1,4] => [1,3,1,1,1] => 16
[2,2,1,1,1] => [1,2,4] => 4
[2,2,1,2] => [1,2,3,1] => 10
[2,2,2,1] => [1,2,2,2] => 9
[2,2,3] => [1,2,2,1,1] => 15
[2,3,1,1] => [1,2,1,3] => 8
[2,3,2] => [1,2,1,2,1] => 14
[2,4,1] => [1,2,1,1,2] => 13
[2,5] => [1,2,1,1,1,1] => 19
[3,1,1,1,1] => [1,1,5] => 3
[3,1,1,2] => [1,1,4,1] => 9
[3,1,2,1] => [1,1,3,2] => 8
[3,1,3] => [1,1,3,1,1] => 14
[3,2,1,1] => [1,1,2,3] => 7
[3,2,2] => [1,1,2,2,1] => 13
[3,3,1] => [1,1,2,1,2] => 12
[3,4] => [1,1,2,1,1,1] => 18
[4,1,1,1] => [1,1,1,4] => 6
[4,1,2] => [1,1,1,3,1] => 12
[4,2,1] => [1,1,1,2,2] => 11
[4,3] => [1,1,1,2,1,1] => 17
[5,1,1] => [1,1,1,1,3] => 10
[5,2] => [1,1,1,1,2,1] => 16
[6,1] => [1,1,1,1,1,2] => 15
[7] => [1,1,1,1,1,1,1] => 21
[1,1,1,1,1,1,1,1] => [8] => 0
[1,1,1,1,1,1,2] => [7,1] => 7
[1,1,1,1,1,2,1] => [6,2] => 6
[1,1,1,1,1,3] => [6,1,1] => 13
[1,1,1,1,2,1,1] => [5,3] => 5
[1,1,1,1,2,2] => [5,2,1] => 12
[1,1,1,1,3,1] => [5,1,2] => 11
[1,1,1,1,4] => [5,1,1,1] => 18
[1,1,1,2,1,1,1] => [4,4] => 4
[1,1,1,2,1,2] => [4,3,1] => 11
[1,1,1,2,2,1] => [4,2,2] => 10
[1,1,1,2,3] => [4,2,1,1] => 17
[1,1,1,3,1,1] => [4,1,3] => 9
[1,1,1,3,2] => [4,1,2,1] => 16
[1,1,1,4,1] => [4,1,1,2] => 15
[1,1,1,5] => [4,1,1,1,1] => 22
[1,1,2,1,1,1,1] => [3,5] => 3
[1,1,2,1,1,2] => [3,4,1] => 10
[1,1,2,1,2,1] => [3,3,2] => 9
[1,1,2,1,3] => [3,3,1,1] => 16
[1,1,2,2,1,1] => [3,2,3] => 8
[1,1,2,2,2] => [3,2,2,1] => 15
[1,1,2,3,1] => [3,2,1,2] => 14
[1,1,2,4] => [3,2,1,1,1] => 21
[1,1,3,1,1,1] => [3,1,4] => 7
[1,1,3,1,2] => [3,1,3,1] => 14
[1,1,3,2,1] => [3,1,2,2] => 13
[1,1,3,3] => [3,1,2,1,1] => 20
[1,1,4,1,1] => [3,1,1,3] => 12
[1,1,4,2] => [3,1,1,2,1] => 19
[1,1,5,1] => [3,1,1,1,2] => 18
[1,1,6] => [3,1,1,1,1,1] => 25
[1,2,1,1,1,1,1] => [2,6] => 2
[1,2,1,1,1,2] => [2,5,1] => 9
[1,2,1,1,2,1] => [2,4,2] => 8
[1,2,1,1,3] => [2,4,1,1] => 15
[1,2,1,2,1,1] => [2,3,3] => 7
[1,2,1,2,2] => [2,3,2,1] => 14
[1,2,1,3,1] => [2,3,1,2] => 13
[1,2,1,4] => [2,3,1,1,1] => 20
[1,2,2,1,1,1] => [2,2,4] => 6
[1,2,2,1,2] => [2,2,3,1] => 13
[1,2,2,2,1] => [2,2,2,2] => 12
[1,2,2,3] => [2,2,2,1,1] => 19
[1,2,3,1,1] => [2,2,1,3] => 11
[1,2,3,2] => [2,2,1,2,1] => 18
[1,2,4,1] => [2,2,1,1,2] => 17
[1,2,5] => [2,2,1,1,1,1] => 24
[1,3,1,1,1,1] => [2,1,5] => 5
[1,3,1,1,2] => [2,1,4,1] => 12
[1,3,1,2,1] => [2,1,3,2] => 11
[1,3,1,3] => [2,1,3,1,1] => 18
[1,3,2,1,1] => [2,1,2,3] => 10
[1,3,2,2] => [2,1,2,2,1] => 17
[1,3,3,1] => [2,1,2,1,2] => 16
[1,3,4] => [2,1,2,1,1,1] => 23
[1,4,1,1,1] => [2,1,1,4] => 9
[1,4,1,2] => [2,1,1,3,1] => 16
[1,4,2,1] => [2,1,1,2,2] => 15
[1,4,3] => [2,1,1,2,1,1] => 22
[1,5,1,1] => [2,1,1,1,3] => 14
[1,5,2] => [2,1,1,1,2,1] => 21
[1,6,1] => [2,1,1,1,1,2] => 20
[1,7] => [2,1,1,1,1,1,1] => 27
[2,1,1,1,1,1,1] => [1,7] => 1
[2,1,1,1,1,2] => [1,6,1] => 8
[2,1,1,1,2,1] => [1,5,2] => 7
[2,1,1,1,3] => [1,5,1,1] => 14
[2,1,1,2,1,1] => [1,4,3] => 6
[2,1,1,2,2] => [1,4,2,1] => 13
[2,1,1,3,1] => [1,4,1,2] => 12
[2,1,1,4] => [1,4,1,1,1] => 19
[2,1,2,1,1,1] => [1,3,4] => 5
[2,1,2,1,2] => [1,3,3,1] => 12
[2,1,2,2,1] => [1,3,2,2] => 11
[2,1,2,3] => [1,3,2,1,1] => 18
[2,1,3,1,1] => [1,3,1,3] => 10
[2,1,3,2] => [1,3,1,2,1] => 17
[2,1,4,1] => [1,3,1,1,2] => 16
[2,1,5] => [1,3,1,1,1,1] => 23
[2,2,1,1,1,1] => [1,2,5] => 4
[2,2,1,1,2] => [1,2,4,1] => 11
[2,2,1,2,1] => [1,2,3,2] => 10
[2,2,1,3] => [1,2,3,1,1] => 17
[2,2,2,1,1] => [1,2,2,3] => 9
[2,2,2,2] => [1,2,2,2,1] => 16
[2,2,3,1] => [1,2,2,1,2] => 15
[2,2,4] => [1,2,2,1,1,1] => 22
[2,3,1,1,1] => [1,2,1,4] => 8
[2,3,1,2] => [1,2,1,3,1] => 15
[2,3,2,1] => [1,2,1,2,2] => 14
[2,3,3] => [1,2,1,2,1,1] => 21
[2,4,1,1] => [1,2,1,1,3] => 13
[2,4,2] => [1,2,1,1,2,1] => 20
[2,5,1] => [1,2,1,1,1,2] => 19
[2,6] => [1,2,1,1,1,1,1] => 26
[3,1,1,1,1,1] => [1,1,6] => 3
[3,1,1,1,2] => [1,1,5,1] => 10
[3,1,1,2,1] => [1,1,4,2] => 9
[3,1,1,3] => [1,1,4,1,1] => 16
[3,1,2,1,1] => [1,1,3,3] => 8
[3,1,2,2] => [1,1,3,2,1] => 15
[3,1,3,1] => [1,1,3,1,2] => 14
[3,1,4] => [1,1,3,1,1,1] => 21
[3,2,1,1,1] => [1,1,2,4] => 7
[3,2,1,2] => [1,1,2,3,1] => 14
[3,2,2,1] => [1,1,2,2,2] => 13
[3,2,3] => [1,1,2,2,1,1] => 20
[3,3,1,1] => [1,1,2,1,3] => 12
[3,3,2] => [1,1,2,1,2,1] => 19
[3,4,1] => [1,1,2,1,1,2] => 18
[3,5] => [1,1,2,1,1,1,1] => 25
[4,1,1,1,1] => [1,1,1,5] => 6
[4,1,1,2] => [1,1,1,4,1] => 13
[4,1,2,1] => [1,1,1,3,2] => 12
[4,1,3] => [1,1,1,3,1,1] => 19
[4,2,1,1] => [1,1,1,2,3] => 11
[4,2,2] => [1,1,1,2,2,1] => 18
[4,3,1] => [1,1,1,2,1,2] => 17
[4,4] => [1,1,1,2,1,1,1] => 24
[5,1,1,1] => [1,1,1,1,4] => 10
[5,1,2] => [1,1,1,1,3,1] => 17
[5,2,1] => [1,1,1,1,2,2] => 16
[5,3] => [1,1,1,1,2,1,1] => 23
[6,1,1] => [1,1,1,1,1,3] => 15
[6,2] => [1,1,1,1,1,2,1] => 22
[7,1] => [1,1,1,1,1,1,2] => 21
[8] => [1,1,1,1,1,1,1,1] => 28
[1,1,1,1,1,1,1,2] => [8,1] => 8
[1,1,1,1,1,1,3] => [7,1,1] => 15
[1,1,1,1,1,2,2] => [6,2,1] => 14
[1,1,3,1,1,2] => [3,1,4,1] => 15
[1,2,2,1,1,2] => [2,2,4,1] => 14
[1,3,1,1,1,2] => [2,1,5,1] => 13
[2,1,1,1,1,1,1,1] => [1,8] => 1
[2,1,1,1,1,1,2] => [1,7,1] => 9
[2,1,1,1,1,2,1] => [1,6,2] => 8
[2,1,1,1,1,3] => [1,6,1,1] => 16
[2,1,1,1,2,2] => [1,5,2,1] => 15
[2,1,1,1,3,1] => [1,5,1,2] => 14
[2,1,1,2,1,2] => [1,4,3,1] => 14
[2,1,1,2,2,1] => [1,4,2,2] => 13
[2,1,1,3,1,1] => [1,4,1,3] => 12
[2,1,1,5] => [1,4,1,1,1,1] => 27
[2,1,2,1,1,2] => [1,3,4,1] => 13
[2,1,2,4] => [1,3,2,1,1,1] => 26
[2,1,3,3] => [1,3,1,2,1,1] => 25
[2,1,4,2] => [1,3,1,1,2,1] => 24
[2,2,1,1,1,2] => [1,2,5,1] => 12
[2,2,3,2] => [1,2,2,1,2,1] => 23
[2,3,2,2] => [1,2,1,2,2,1] => 22
[2,4,1,2] => [1,2,1,1,3,1] => 21
[3,1,1,1,1,2] => [1,1,6,1] => 11
[3,3,1,2] => [1,1,2,1,3,1] => 20
[4,2,1,2] => [1,1,1,2,3,1] => 19
[5,1,1,2] => [1,1,1,1,4,1] => 18
[1,1,1,1,1,1,1,1,2] => [9,1] => 9
[1,1,1,1,1,1,1,3] => [8,1,1] => 17
[1,1,1,1,2,1,1,1,1] => [5,5] => 5
[1,1,1,2,1,1,3] => [4,4,1,1] => 21
[1,1,1,2,1,3,1] => [4,3,1,2] => 19
[1,1,1,2,3,1,1] => [4,2,1,3] => 17
[1,1,1,4,1,1,1] => [4,1,1,4] => 15
[1,1,2,1,2,2,1] => [3,3,2,2] => 17
[1,1,2,1,5] => [3,3,1,1,1,1] => 33
[1,1,2,2,2,1,1] => [3,2,2,3] => 15
[1,1,2,3,3] => [3,2,1,2,1,1] => 31
[1,1,2,5,1] => [3,2,1,1,1,2] => 29
[1,1,3,2,1,1,1] => [3,1,2,4] => 13
[1,1,4,1,3] => [3,1,1,3,1,1] => 29
[1,1,4,3,1] => [3,1,1,2,1,2] => 27
[1,1,6,1,1] => [3,1,1,1,1,3] => 25
[1,2,2,1,2,1,1] => [2,2,3,3] => 13
[1,2,2,2,3] => [2,2,2,2,1,1] => 29
[1,2,2,4,1] => [2,2,2,1,1,2] => 27
[1,2,4,2,1] => [2,2,1,1,2,2] => 25
[1,2,7] => [2,2,1,1,1,1,1,1] => 41
[1,3,1,1,1,1,2] => [2,1,6,1] => 14
[1,3,1,2,1,1,1] => [2,1,3,4] => 11
[1,3,2,1,3] => [2,1,2,3,1,1] => 27
[1,3,2,3,1] => [2,1,2,2,1,2] => 25
[1,3,4,1,1] => [2,1,2,1,1,3] => 23
[1,4,2,2,1] => [2,1,1,2,2,2] => 23
[1,4,5] => [2,1,1,2,1,1,1,1] => 39
[1,5,2,1,1] => [2,1,1,1,2,3] => 21
[1,6,3] => [2,1,1,1,1,2,1,1] => 37
[1,8,1] => [2,1,1,1,1,1,1,2] => 35
[2,1,1,1,1,1,1,1,1] => [1,9] => 1
[2,1,1,1,1,1,1,2] => [1,8,1] => 10
[2,1,1,1,1,1,3] => [1,7,1,1] => 18
[2,1,1,1,1,2,2] => [1,6,2,1] => 17
[2,1,1,1,1,3,1] => [1,6,1,2] => 16
[2,1,1,1,2,1,2] => [1,5,3,1] => 16
[2,1,1,1,5] => [1,5,1,1,1,1] => 31
[2,1,1,2,1,1,2] => [1,4,4,1] => 15
[2,1,1,4,2] => [1,4,1,1,2,1] => 28
[2,1,2,1,1,1,2] => [1,3,5,1] => 14
[2,1,4,1,2] => [1,3,1,1,3,1] => 25
[2,2,1,1,1,1,2] => [1,2,6,1] => 13
[2,4,1,1,2] => [1,2,1,1,4,1] => 22
[3,1,1,1,1,1,2] => [1,1,7,1] => 12
[3,1,1,2,1,1,1] => [1,1,4,4] => 9
[3,1,2,1,3] => [1,1,3,3,1,1] => 25
[3,1,2,3,1] => [1,1,3,2,1,2] => 23
[3,1,4,1,1] => [1,1,3,1,1,3] => 21
[3,2,2,2,1] => [1,1,2,2,2,2] => 21
[3,2,5] => [1,1,2,2,1,1,1,1] => 37
[3,3,2,1,1] => [1,1,2,1,2,3] => 19
[3,4,3] => [1,1,2,1,1,2,1,1] => 35
[3,6,1] => [1,1,2,1,1,1,1,2] => 33
[5,1,1,1,2] => [1,1,1,1,5,1] => 19
[5,1,2,1,1] => [1,1,1,1,3,3] => 17
[5,2,3] => [1,1,1,1,2,2,1,1] => 33
[5,4,1] => [1,1,1,1,2,1,1,2] => 31
[7,2,1] => [1,1,1,1,1,1,2,2] => 29
[10] => [1,1,1,1,1,1,1,1,1,1] => 45
[1,2,2,2,2,2,1] => [2,2,2,2,2,2] => 30
[1,2,2,4,3] => [2,2,2,1,1,2,1,1] => 48
[1,2,4,4,1] => [2,2,1,1,2,1,1,2] => 44
[1,2,4,2,3] => [2,2,1,1,2,2,1,1] => 46
[1,3,4,3,1] => [2,1,2,1,1,2,1,2] => 42
[1,3,2,3,3] => [2,1,2,2,1,2,1,1] => 46
[1,4,4,2,1] => [2,1,1,2,1,1,2,2] => 40
[1,4,2,4,1] => [2,1,1,2,2,1,1,2] => 42
[1,4,2,2,3] => [2,1,1,2,2,2,1,1] => 44
[1,6,5] => [2,1,1,1,1,2,1,1,1,1] => 58
[3,4,2,2,1] => [1,1,2,1,1,2,2,2] => 36
[3,6,3] => [1,1,2,1,1,1,1,2,1,1] => 54
[3,3,2,3,1] => [1,1,2,1,2,2,1,2] => 38
[3,2,4,2,1] => [1,1,2,2,1,1,2,2] => 38
[3,2,2,4,1] => [1,1,2,2,2,1,1,2] => 40
[3,2,2,2,3] => [1,1,2,2,2,2,1,1] => 42
[3,4,5] => [1,1,2,1,1,2,1,1,1,1] => 56
[5,6,1] => [1,1,1,1,2,1,1,1,1,2] => 50
[5,4,3] => [1,1,1,1,2,1,1,2,1,1] => 52
[5,2,5] => [1,1,1,1,2,2,1,1,1,1] => 54
[1,1,1,1,1,1,1,1,1,2] => [10,1] => 10
[12] => [1,1,1,1,1,1,1,1,1,1,1,1] => 66
[3,2,7] => [1,1,2,2,1,1,1,1,1,1] => 58
[7,2,3] => [1,1,1,1,1,1,2,2,1,1] => 50
[1,1,2,5,3] => [3,2,1,1,1,2,1,1] => 50
[3,1,2,3,3] => [1,1,3,2,1,2,1,1] => 44
[1,1,4,3,3] => [3,1,1,2,1,2,1,1] => 48
[1,1,1,2,1,3,3] => [4,3,1,2,1,1] => 40
[3,3,2,1,3] => [1,1,2,1,2,3,1,1] => 40
[1,5,2,1,3] => [2,1,1,1,2,3,1,1] => 42
[1,3,1,2,1,1,3] => [2,1,3,4,1,1] => 32
[1,1,1,4,1,1,3] => [4,1,1,4,1,1] => 36
[5,2,2,2,1] => [1,1,1,1,2,2,2,2] => 34
[1,1,2,3,2,2,1] => [3,2,1,2,2,2] => 32
[3,1,2,1,2,2,1] => [1,1,3,3,2,2] => 26
[1,3,2,1,2,2,1] => [2,1,2,3,2,2] => 28
[1,1,1,2,1,1,2,2,1] => [4,4,2,2] => 22
[1,1,2,1,2,4,1] => [3,3,2,1,1,2] => 36
[3,1,2,5,1] => [1,1,3,2,1,1,1,2] => 42
[1,1,4,5,1] => [3,1,1,2,1,1,1,2] => 46
[1,2,2,1,2,3,1] => [2,2,3,2,1,2] => 32
[1,1,2,2,2,3,1] => [3,2,2,2,1,2] => 34
[1,1,1,2,3,3,1] => [4,2,1,2,1,2] => 36
[3,1,1,2,1,3,1] => [1,1,4,3,1,2] => 28
[1,1,3,2,1,3,1] => [3,1,2,3,1,2] => 32
[1,1,1,1,2,1,1,3,1] => [5,4,1,2] => 24
[1,2,4,1,2,1,1] => [2,2,1,1,3,3] => 26
[3,2,2,1,2,1,1] => [1,1,2,2,3,3] => 22
[1,4,2,1,2,1,1] => [2,1,1,2,3,3] => 24
[1,1,2,1,2,1,2,1,1] => [3,3,3,3] => 18
[5,3,2,1,1] => [1,1,1,1,2,1,2,3] => 32
[1,2,2,3,2,1,1] => [2,2,2,1,2,3] => 28
[3,5,2,1,1] => [1,1,2,1,1,1,2,3] => 34
[1,1,2,4,2,1,1] => [3,2,1,1,2,3] => 30
[3,1,2,2,2,1,1] => [1,1,3,2,2,3] => 24
[1,3,2,2,2,1,1] => [2,1,2,2,2,3] => 26
[1,1,1,2,1,2,2,1,1] => [4,3,2,3] => 20
[3,3,4,1,1] => [1,1,2,1,2,1,1,3] => 36
[1,5,4,1,1] => [2,1,1,1,2,1,1,3] => 38
[3,1,1,2,3,1,1] => [1,1,4,2,1,3] => 26
[1,3,1,2,3,1,1] => [2,1,3,2,1,3] => 28
[1,1,1,4,3,1,1] => [4,1,1,2,1,3] => 32
[5,1,1,2,1,1,1] => [1,1,1,1,4,4] => 18
[1,2,2,1,1,2,1,1,1] => [2,2,4,4] => 14
[3,3,1,2,1,1,1] => [1,1,2,1,3,4] => 20
[1,5,1,2,1,1,1] => [2,1,1,1,3,4] => 22
[1,1,2,2,1,2,1,1,1] => [3,2,3,4] => 16
[3,1,3,2,1,1,1] => [1,1,3,1,2,4] => 22
[1,3,3,2,1,1,1] => [2,1,2,1,2,4] => 24
[1,1,1,2,2,2,1,1,1] => [4,2,2,4] => 18
[3,1,1,4,1,1,1] => [1,1,4,1,1,4] => 24
[1,3,1,4,1,1,1] => [2,1,3,1,1,4] => 26
[1,1,3,4,1,1,1] => [3,1,2,1,1,4] => 28
[1,1,1,1,2,3,1,1,1] => [5,2,1,4] => 20
[1,3,1,1,2,1,1,1,1] => [2,1,4,5] => 12
[1,1,1,3,2,1,1,1,1] => [4,1,2,5] => 16
[1,1,1,1,1,2,1,1,1,1,1] => [6,6] => 6
[2,1,1,1,1,1,1,1,1,1] => [1,10] => 1
[2,1,1,1,1,1,2,2] => [1,7,2,1] => 19
[2,2,1,1,1,1,1,2] => [1,2,7,1] => 14
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The major index of the composition.
The descents of a composition $[c_1,c_2,\dots,c_k]$ are the partial sums $c_1, c_1+c_2,\dots, c_1+\dots+c_{k-1}$, excluding the sum of all parts. The major index of a composition is the sum of its descents.
For details about the major index see Permutations/Descents-Major.
Map
complement
Description
The complement of a composition.
The complement of a composition $I$ is defined as follows:
If $I$ is the empty composition, then the complement is also the empty composition. Otherwise, let $S$ be the descent set corresponding to $I=(i_1,\dots,i_k)$, that is, the subset
$$\{ i_1, i_1 + i_2, \ldots, i_1 + i_2 + \cdots + i_{k-1} \}$$
of $\{ 1, 2, \ldots, |I|-1 \}$. Then, the complement of $I$ is the composition of the same size as $I$, whose descent set is $\{ 1, 2, \ldots, |I|-1 \} \setminus S$.
The complement of a composition $I$ coincides with the reversal (Mp00038reverse) of the composition conjugate (Mp00041conjugate) to $I$.