Identifier
-
Mp00043:
Integer partitions
—to Dyck path⟶
Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
St000006: Dyck paths ⟶ ℤ
Values
[1] => [1,0,1,0] => [1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => 1
[2] => [1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => 2
[1,1] => [1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => 1
[3] => [1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 2
[2,1] => [1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => 3
[1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => 1
[3,1] => [1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => 4
[2,2] => [1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => 3
[2,1,1] => [1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => 2
[3,2] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => 5
[3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => 4
[2,2,1] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => 3
[3,2,1] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => 6
[] => [] => [1,0] => [1,1,0,0] => 0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The dinv of a Dyck path.
Let $a=(a_1,\ldots,a_n)$ be the area sequence of a Dyck path $D$ (see St000012The area of a Dyck path.).
The dinv statistic of $D$ is
$$ \operatorname{dinv}(D) = \# \big\{ i < j : a_i-a_j \in \{ 0,1 \} \big\}.$$
Equivalently, $\operatorname{dinv}(D)$ is also equal to the number of boxes in the partition above $D$ whose arm length is one larger or equal to its leg length.
There is a recursive definition of the $(\operatorname{area},\operatorname{dinv})$ pair of statistics, see [2].
Let $a=(0,a_2,\ldots,a_r,0,a_{r+2},\ldots,a_n)$ be the area sequence of the Dyck path $D$ with $a_i > 0$ for $2\leq i\leq r$ (so that the path touches the diagonal for the first time after $r$ steps). Assume that $D$ has $v$ entries where $a_i=0$. Let $D'$ be the path with the area sequence $(0,a_{r+2},\ldots,a_n,a_2-1,a_3-1,\ldots,a_r-1)$, then the statistics are related by
$$(\operatorname{area}(D),\operatorname{dinv}(D)) = (\operatorname{area}(D')+r-1,\operatorname{dinv}(D')+v-1).$$
Let $a=(a_1,\ldots,a_n)$ be the area sequence of a Dyck path $D$ (see St000012The area of a Dyck path.).
The dinv statistic of $D$ is
$$ \operatorname{dinv}(D) = \# \big\{ i < j : a_i-a_j \in \{ 0,1 \} \big\}.$$
Equivalently, $\operatorname{dinv}(D)$ is also equal to the number of boxes in the partition above $D$ whose arm length is one larger or equal to its leg length.
There is a recursive definition of the $(\operatorname{area},\operatorname{dinv})$ pair of statistics, see [2].
Let $a=(0,a_2,\ldots,a_r,0,a_{r+2},\ldots,a_n)$ be the area sequence of the Dyck path $D$ with $a_i > 0$ for $2\leq i\leq r$ (so that the path touches the diagonal for the first time after $r$ steps). Assume that $D$ has $v$ entries where $a_i=0$. Let $D'$ be the path with the area sequence $(0,a_{r+2},\ldots,a_n,a_2-1,a_3-1,\ldots,a_r-1)$, then the statistics are related by
$$(\operatorname{area}(D),\operatorname{dinv}(D)) = (\operatorname{area}(D')+r-1,\operatorname{dinv}(D')+v-1).$$
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
to Dyck path
Description
Sends a partition to the shortest Dyck path tracing the shape of its Ferrers diagram.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!