*****************************************************************************
*       www.FindStat.org - The Combinatorial Statistic Finder               *
*                                                                           *
*       Copyright (C) 2019 The FindStatCrew <info@findstat.org>             *
*                                                                           *
*    This information is distributed in the hope that it will be useful,    *
*    but WITHOUT ANY WARRANTY; without even the implied warranty of         *
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                   *
*****************************************************************************

-----------------------------------------------------------------------------
Statistic identifier: St000003

-----------------------------------------------------------------------------
Collection: Integer partitions

-----------------------------------------------------------------------------
Description: The number of [[/StandardTableaux|standard Young tableaux]] of the partition.

-----------------------------------------------------------------------------
References: 

-----------------------------------------------------------------------------
Code:
def statistic(x):
    return StandardTableaux(x).cardinality()

-----------------------------------------------------------------------------
Statistic values:

[]                        => 1
[1]                       => 1
[2]                       => 1
[1,1]                     => 1
[3]                       => 1
[2,1]                     => 2
[1,1,1]                   => 1
[4]                       => 1
[3,1]                     => 3
[2,2]                     => 2
[2,1,1]                   => 3
[1,1,1,1]                 => 1
[5]                       => 1
[4,1]                     => 4
[3,2]                     => 5
[3,1,1]                   => 6
[2,2,1]                   => 5
[2,1,1,1]                 => 4
[1,1,1,1,1]               => 1
[6]                       => 1
[5,1]                     => 5
[4,2]                     => 9
[4,1,1]                   => 10
[3,3]                     => 5
[3,2,1]                   => 16
[3,1,1,1]                 => 10
[2,2,2]                   => 5
[2,2,1,1]                 => 9
[2,1,1,1,1]               => 5
[1,1,1,1,1,1]             => 1
[7]                       => 1
[6,1]                     => 6
[5,2]                     => 14
[5,1,1]                   => 15
[4,3]                     => 14
[4,2,1]                   => 35
[4,1,1,1]                 => 20
[3,3,1]                   => 21
[3,2,2]                   => 21
[3,2,1,1]                 => 35
[3,1,1,1,1]               => 15
[2,2,2,1]                 => 14
[2,2,1,1,1]               => 14
[2,1,1,1,1,1]             => 6
[1,1,1,1,1,1,1]           => 1
[8]                       => 1
[7,1]                     => 7
[6,2]                     => 20
[6,1,1]                   => 21
[5,3]                     => 28
[5,2,1]                   => 64
[5,1,1,1]                 => 35
[4,4]                     => 14
[4,3,1]                   => 70
[4,2,2]                   => 56
[4,2,1,1]                 => 90
[4,1,1,1,1]               => 35
[3,3,2]                   => 42
[3,3,1,1]                 => 56
[3,2,2,1]                 => 70
[3,2,1,1,1]               => 64
[3,1,1,1,1,1]             => 21
[2,2,2,2]                 => 14
[2,2,2,1,1]               => 28
[2,2,1,1,1,1]             => 20
[2,1,1,1,1,1,1]           => 7
[1,1,1,1,1,1,1,1]         => 1
[9]                       => 1
[8,1]                     => 8
[7,2]                     => 27
[7,1,1]                   => 28
[6,3]                     => 48
[6,2,1]                   => 105
[6,1,1,1]                 => 56
[5,4]                     => 42
[5,3,1]                   => 162
[5,2,2]                   => 120
[5,2,1,1]                 => 189
[5,1,1,1,1]               => 70
[4,4,1]                   => 84
[4,3,2]                   => 168
[4,3,1,1]                 => 216
[4,2,2,1]                 => 216
[4,2,1,1,1]               => 189
[4,1,1,1,1,1]             => 56
[3,3,3]                   => 42
[3,3,2,1]                 => 168
[3,3,1,1,1]               => 120
[3,2,2,2]                 => 84
[3,2,2,1,1]               => 162
[3,2,1,1,1,1]             => 105
[3,1,1,1,1,1,1]           => 28
[2,2,2,2,1]               => 42
[2,2,2,1,1,1]             => 48
[2,2,1,1,1,1,1]           => 27
[2,1,1,1,1,1,1,1]         => 8
[1,1,1,1,1,1,1,1,1]       => 1
[10]                      => 1
[9,1]                     => 9
[8,2]                     => 35
[8,1,1]                   => 36
[7,3]                     => 75
[7,2,1]                   => 160
[7,1,1,1]                 => 84
[6,4]                     => 90
[6,3,1]                   => 315
[6,2,2]                   => 225
[6,2,1,1]                 => 350
[6,1,1,1,1]               => 126
[5,5]                     => 42
[5,4,1]                   => 288
[5,3,2]                   => 450
[5,3,1,1]                 => 567
[5,2,2,1]                 => 525
[5,2,1,1,1]               => 448
[5,1,1,1,1,1]             => 126
[4,4,2]                   => 252
[4,4,1,1]                 => 300
[4,3,3]                   => 210
[4,3,2,1]                 => 768
[4,3,1,1,1]               => 525
[4,2,2,2]                 => 300
[4,2,2,1,1]               => 567
[4,2,1,1,1,1]             => 350
[4,1,1,1,1,1,1]           => 84
[3,3,3,1]                 => 210
[3,3,2,2]                 => 252
[3,3,2,1,1]               => 450
[3,3,1,1,1,1]             => 225
[3,2,2,2,1]               => 288
[3,2,2,1,1,1]             => 315
[3,2,1,1,1,1,1]           => 160
[3,1,1,1,1,1,1,1]         => 36
[2,2,2,2,2]               => 42
[2,2,2,2,1,1]             => 90
[2,2,2,1,1,1,1]           => 75
[2,2,1,1,1,1,1,1]         => 35
[2,1,1,1,1,1,1,1,1]       => 9
[1,1,1,1,1,1,1,1,1,1]     => 1
[11]                      => 1
[10,1]                    => 10
[9,2]                     => 44
[9,1,1]                   => 45
[8,3]                     => 110
[8,2,1]                   => 231
[8,1,1,1]                 => 120
[7,4]                     => 165
[7,3,1]                   => 550
[7,2,2]                   => 385
[7,2,1,1]                 => 594
[7,1,1,1,1]               => 210
[6,5]                     => 132
[6,4,1]                   => 693
[6,3,2]                   => 990
[6,3,1,1]                 => 1232
[6,2,2,1]                 => 1100
[6,2,1,1,1]               => 924
[6,1,1,1,1,1]             => 252
[5,5,1]                   => 330
[5,4,2]                   => 990
[5,4,1,1]                 => 1155
[5,3,3]                   => 660
[5,3,2,1]                 => 2310
[5,3,1,1,1]               => 1540
[5,2,2,2]                 => 825
[5,2,2,1,1]               => 1540
[5,2,1,1,1,1]             => 924
[5,1,1,1,1,1,1]           => 210
[4,4,3]                   => 462
[4,4,2,1]                 => 1320
[4,4,1,1,1]               => 825
[4,3,3,1]                 => 1188
[4,3,2,2]                 => 1320
[4,3,2,1,1]               => 2310
[4,3,1,1,1,1]             => 1100
[4,2,2,2,1]               => 1155
[4,2,2,1,1,1]             => 1232
[4,2,1,1,1,1,1]           => 594
[4,1,1,1,1,1,1,1]         => 120
[3,3,3,2]                 => 462
[3,3,3,1,1]               => 660
[3,3,2,2,1]               => 990
[3,3,2,1,1,1]             => 990
[3,3,1,1,1,1,1]           => 385
[3,2,2,2,2]               => 330
[3,2,2,2,1,1]             => 693
[3,2,2,1,1,1,1]           => 550
[3,2,1,1,1,1,1,1]         => 231
[3,1,1,1,1,1,1,1,1]       => 45
[2,2,2,2,2,1]             => 132
[2,2,2,2,1,1,1]           => 165
[2,2,2,1,1,1,1,1]         => 110
[2,2,1,1,1,1,1,1,1]       => 44
[2,1,1,1,1,1,1,1,1,1]     => 10
[1,1,1,1,1,1,1,1,1,1,1]   => 1
[12]                      => 1
[11,1]                    => 11
[10,2]                    => 54
[10,1,1]                  => 55
[9,3]                     => 154
[9,2,1]                   => 320
[9,1,1,1]                 => 165
[8,4]                     => 275
[8,3,1]                   => 891
[8,2,2]                   => 616
[8,2,1,1]                 => 945
[8,1,1,1,1]               => 330
[7,5]                     => 297
[7,4,1]                   => 1408
[7,3,2]                   => 1925
[7,3,1,1]                 => 2376
[7,2,2,1]                 => 2079
[7,2,1,1,1]               => 1728
[7,1,1,1,1,1]             => 462
[6,6]                     => 132
[6,5,1]                   => 1155
[6,4,2]                   => 2673
[6,4,1,1]                 => 3080
[6,3,3]                   => 1650
[6,3,2,1]                 => 5632
[6,3,1,1,1]               => 3696
[6,2,2,2]                 => 1925
[6,2,2,1,1]               => 3564
[6,2,1,1,1,1]             => 2100
[6,1,1,1,1,1,1]           => 462
[5,5,2]                   => 1320
[5,5,1,1]                 => 1485
[5,4,3]                   => 2112
[5,4,2,1]                 => 5775
[5,4,1,1,1]               => 3520
[5,3,3,1]                 => 4158
[5,3,2,2]                 => 4455
[5,3,2,1,1]               => 7700
[5,3,1,1,1,1]             => 3564
[5,2,2,2,1]               => 3520
[5,2,2,1,1,1]             => 3696
[5,2,1,1,1,1,1]           => 1728
[5,1,1,1,1,1,1,1]         => 330
[4,4,4]                   => 462
[4,4,3,1]                 => 2970
[4,4,2,2]                 => 2640
[4,4,2,1,1]               => 4455
[4,4,1,1,1,1]             => 1925
[4,3,3,2]                 => 2970
[4,3,3,1,1]               => 4158
[4,3,2,2,1]               => 5775
[4,3,2,1,1,1]             => 5632
[4,3,1,1,1,1,1]           => 2079
[4,2,2,2,2]               => 1485
[4,2,2,2,1,1]             => 3080
[4,2,2,1,1,1,1]           => 2376
[4,2,1,1,1,1,1,1]         => 945
[4,1,1,1,1,1,1,1,1]       => 165
[3,3,3,3]                 => 462
[3,3,3,2,1]               => 2112
[3,3,3,1,1,1]             => 1650
[3,3,2,2,2]               => 1320
[3,3,2,2,1,1]             => 2673
[3,3,2,1,1,1,1]           => 1925
[3,3,1,1,1,1,1,1]         => 616
[3,2,2,2,2,1]             => 1155
[3,2,2,2,1,1,1]           => 1408
[3,2,2,1,1,1,1,1]         => 891
[3,2,1,1,1,1,1,1,1]       => 320
[3,1,1,1,1,1,1,1,1,1]     => 55
[2,2,2,2,2,2]             => 132
[2,2,2,2,2,1,1]           => 297
[2,2,2,2,1,1,1,1]         => 275
[2,2,2,1,1,1,1,1,1]       => 154
[2,2,1,1,1,1,1,1,1,1]     => 54
[2,1,1,1,1,1,1,1,1,1,1]   => 11
[1,1,1,1,1,1,1,1,1,1,1,1] => 1
[8,5]                     => 572
[7,6]                     => 429
[7,5,1]                   => 2860
[7,4,2]                   => 6006
[6,6,1]                   => 1287
[5,5,3]                   => 3432
[5,4,4]                   => 2574
[5,4,3,1]                 => 15015
[5,4,2,2]                 => 12870
[5,4,2,1,1]               => 21450
[5,4,1,1,1,1]             => 9009
[5,3,3,2]                 => 11583
[5,3,3,1,1]               => 16016
[5,3,2,2,1]               => 21450
[5,3,2,1,1,1]             => 20592
[4,4,4,1]                 => 3432
[4,4,3,2]                 => 8580
[4,4,3,1,1]               => 11583
[4,4,2,2,1]               => 12870
[4,3,3,3]                 => 3432
[4,3,3,2,1]               => 15015
[3,3,3,3,1]               => 2574
[3,3,3,2,2]               => 3432
[3,3,2,2,2,1]             => 5148
[3,2,2,2,2,2]             => 1287
[2,2,2,2,2,2,1]           => 429
[9,5]                     => 1001
[8,5,1]                   => 6006
[7,7]                     => 429
[7,5,2]                   => 14014
[7,4,3]                   => 16016
[6,6,2]                   => 6435
[6,4,4]                   => 9009
[6,2,2,2,2]               => 14014
[5,5,4]                   => 6006
[5,5,1,1,1,1]             => 14014
[5,4,3,2]                 => 48048
[5,4,3,1,1]               => 64064
[5,4,2,2,1]               => 68640
[5,4,2,1,1,1]             => 63063
[5,3,3,2,1]               => 64064
[5,3,2,2,2]               => 35035
[5,2,2,2,2,1]             => 21021
[4,4,4,2]                 => 12012
[4,4,3,3]                 => 12012
[4,4,3,2,1]               => 48048
[4,3,2,2,2,1]             => 36608
[3,3,3,3,2]               => 6006
[3,3,3,3,1,1]             => 9009
[3,3,2,2,2,2]             => 6435
[2,2,2,2,2,2,2]           => 429
[9,5,1]                   => 11375
[8,5,2]                   => 32032
[7,5,3]                   => 45045
[6,6,3]                   => 21450
[6,5,4]                   => 30030
[6,5,1,1,1,1]             => 63700
[6,3,3,3]                 => 50050
[6,2,2,2,2,1]             => 63700
[5,5,5]                   => 6006
[5,4,3,2,1]               => 292864
[5,4,3,1,1,1]             => 210210
[5,3,2,2,2,1]             => 162162
[4,4,4,3]                 => 24024
[4,4,4,1,1,1]             => 50050
[3,3,3,3,3]               => 6006
[3,3,3,3,2,1]             => 30030
[3,3,3,2,2,2]             => 21450
[8,8]                     => 1430
[8,5,3]                   => 112112
[7,5,3,1]                 => 416988
[6,6,4]                   => 51480
[5,5,3,3]                 => 171600
[5,5,2,2,2]               => 250250
[5,4,3,2,1,1]             => 1153152
[5,4,2,2,2,1]             => 630630
[4,4,4,4]                 => 24024
[4,4,4,2,2]               => 171600
[4,3,3,3,2,1]             => 292864
[3,3,3,3,2,2]             => 51480
[2,2,2,2,2,2,2,2]         => 1430
[8,6,3]                   => 272272
[6,5,3,3]                 => 972400
[6,5,2,2,2]               => 1361360
[6,4,4,3]                 => 816816
[6,4,4,1,1,1]             => 1591200
[6,3,3,3,2]               => 1089088
[6,3,3,3,1,1]             => 1591200
[5,5,4,3]                 => 583440
[5,5,4,1,1,1]             => 1089088
[5,5,2,2,2,1]             => 1361360
[5,4,3,2,2,1]             => 3573570
[5,3,3,3,2,1]             => 1633632
[4,4,4,3,2]               => 583440
[4,4,4,3,1,1]             => 816816
[4,4,4,2,2,1]             => 972400
[4,4,4,3,2,1]             => 3734016
[5,4,3,3,2,1]             => 10720710
[6,3,3,3,2,1]             => 6789120
[6,5,2,2,2,1]             => 7920640
[5,5,3,3,1,1]             => 6534528
[6,5,4,1,1,1]             => 6789120
[5,5,3,3,2]               => 4594590
[5,5,4,2,2]               => 4594590
[6,4,4,2,2]               => 6534528
[6,5,4,3]                 => 3734016
[2,2,2,2,2,2,2,2,2]       => 4862
[3,3,3,3,3,3]             => 87516
[6,6,6]                   => 87516
[9,6,3]                   => 678912
[8,6,4]                   => 787644
[9,9]                     => 4862
[5,4,4,3,2,1]             => 34918884
[5,5,3,3,2,1]             => 31039008
[5,5,4,2,2,1]             => 29930472
[6,4,4,2,2,1]             => 42325920
[5,5,4,3,1,1]             => 26604864
[6,4,4,3,1,1]             => 36732852
[6,5,3,3,1,1]             => 42325920
[5,5,4,3,2]               => 19399380
[6,4,4,3,2]               => 26604864
[6,5,3,3,2]               => 29930472
[6,5,4,2,2]               => 31039008
[6,5,4,3,1]               => 34918884
[6,5,4,1,1,1,1]           => 23279256
[9,6,4]                   => 2116296
[8,5,4,2]                 => 16325712
[8,5,5,1]                 => 5038800
[5,5,4,3,2,1]             => 141892608
[6,4,4,3,2,1]             => 193489920
[6,5,3,3,2,1]             => 214988800
[6,5,4,2,2,1]             => 214988800
[6,5,4,3,1,1]             => 193489920
[6,5,4,3,2]               => 141892608
[6,5,2,2,2,2,1]           => 81477396
[6,5,4,2,1,1,1]           => 203693490
[7,5,4,3,1]               => 154313250
[8,6,4,2]                 => 55099278
[10,6,4]                  => 5038800
[10,7,3]                  => 3779100
[9,7,4]                   => 5290740
[9,5,5,1]                 => 13856700
[6,5,4,3,2,1]             => 1100742656
[6,3,3,3,3,2,1]           => 203693490
[6,5,3,2,2,2,1]           => 733296564
[6,5,4,3,1,1,1]           => 814773960
[3,3,3,3,3,3,3]           => 1385670
[11,7,3]                  => 8478750
[4,4,4,4,3,2,1]           => 341429088
[6,4,3,3,3,2,1]           => 2048574528
[9,6,4,3]                 => 611080470
[9,6,5,3]                 => 2007835830
[3,3,3,3,3,3,3,3]         => 23371634
[11,7,5,1]                => 1699755200
[8,8,8]                   => 23371634

-----------------------------------------------------------------------------
Created: Sep 14, 2011 at 16:53 by Chris Berg

-----------------------------------------------------------------------------
Last Updated: Sep 18, 2022 at 20:49 by Martin Rubey