Processing math: 100%

Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001956
St001956: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> 0
[1,0,1,0]
=> 0
[1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> 1
[1,0,1,1,0,0]
=> 2
[1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0]
=> 3
[1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> 3
[1,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,0,0,1,0]
=> 3
[1,0,1,1,0,1,0,0]
=> 4
[1,0,1,1,1,0,0,0]
=> 4
[1,1,0,0,1,0,1,0]
=> 4
[1,1,0,0,1,1,0,0]
=> 5
[1,1,0,1,0,0,1,0]
=> 5
[1,1,0,1,0,1,0,0]
=> 6
[1,1,0,1,1,0,0,0]
=> 3
[1,1,1,0,0,0,1,0]
=> 0
[1,1,1,0,0,1,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> 6
[1,0,1,0,1,0,1,1,0,0]
=> 5
[1,0,1,0,1,1,0,0,1,0]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> 4
[1,0,1,1,0,0,1,0,1,0]
=> 5
[1,0,1,1,0,0,1,1,0,0]
=> 6
[1,0,1,1,0,1,0,0,1,0]
=> 6
[1,0,1,1,0,1,0,1,0,0]
=> 7
[1,0,1,1,0,1,1,0,0,0]
=> 7
[1,0,1,1,1,0,0,0,1,0]
=> 6
[1,0,1,1,1,0,0,1,0,0]
=> 7
[1,0,1,1,1,0,1,0,0,0]
=> 7
[1,0,1,1,1,1,0,0,0,0]
=> 4
[1,1,0,0,1,0,1,0,1,0]
=> 7
[1,1,0,0,1,0,1,1,0,0]
=> 6
[1,1,0,0,1,1,0,0,1,0]
=> 7
[1,1,0,0,1,1,0,1,0,0]
=> 8
[1,1,0,0,1,1,1,0,0,0]
=> 8
[1,1,0,1,0,0,1,0,1,0]
=> 8
[1,1,0,1,0,0,1,1,0,0]
=> 9
[1,1,0,1,0,1,0,0,1,0]
=> 9
[1,1,0,1,0,1,0,1,0,0]
=> 10
[1,1,0,1,0,1,1,0,0,0]
=> 7
[1,1,0,1,1,0,0,0,1,0]
=> 4
[1,1,0,1,1,0,0,1,0,0]
=> 5
[1,1,0,1,1,0,1,0,0,0]
=> 5
[1,1,0,1,1,1,0,0,0,0]
=> 6
Description
The comajor index for set-valued two-row standard Young tableaux. The comajorindex is the sum k(n+1k) over all natural descents k. Bijections via bicolored Motzkin paths (with two restrictions, see [1]) give the following for Dyck paths. Let j be smallest integer such that 2j is a down step. Then k is a natural descent if * k2j and positions 2(k1)1,2(k1) are a valley i.e. [0,1], or * k2j and positions 2(k1)1,2(k1) are a peak i.e. [1,0], or * k1j and positions 2(k1),2k1,2k form [0,1,1], or * k=j and positions 2k1,2k are double down i.e. [0,0], or * k<j and positions 2k1,2k are a valley i.e. [0,1].