searching the database
Your data matches 60 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001879
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(2,3),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
([(0,5),(1,2),(1,5),(2,3),(2,4),(5,3),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,4),(1,2),(1,4),(2,5),(4,3),(4,5)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(1,5),(2,3),(2,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(1,4),(1,5),(2,3),(2,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,4),(0,5),(1,2),(1,4),(2,3),(3,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(1,5),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,5),(1,4),(4,2),(4,5),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(1,5),(3,4),(4,2),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,5),(1,3),(1,5),(4,2),(5,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,4),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,5),(1,2),(2,3),(2,5),(3,4),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,5),(1,3),(3,4),(4,2),(4,5)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,3),(0,4),(0,5),(4,6),(5,1),(5,6),(6,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(3,6),(4,1),(4,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,1),(4,5),(4,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,2),(0,3),(2,4),(2,6),(3,4),(3,6),(4,5),(6,1),(6,5)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(1,3),(1,5),(3,6),(5,2),(5,6),(6,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(3,4),(4,6),(6,5)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,6),(1,6),(2,3),(2,6),(3,5),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,6),(1,6),(4,2),(5,4),(6,3),(6,5)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,3),(1,6),(2,6),(3,5),(3,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(1,3),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,3),(1,6),(2,6),(3,5),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 2
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Matching statistic: St001846
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 3
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(2,3),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 4
([(0,5),(1,2),(1,5),(2,3),(2,4),(5,3),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(0,4),(1,2),(1,4),(2,5),(4,3),(4,5)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 3
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(1,5),(2,3),(2,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(1,4),(1,5),(2,3),(2,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 3
([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 3
([(0,4),(0,5),(1,2),(1,4),(2,3),(3,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 4
([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 3
([(1,5),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(0,5),(1,4),(4,2),(4,5),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 3
([(1,5),(3,4),(4,2),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 3
([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(0,5),(1,3),(1,5),(4,2),(5,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 3
([(0,4),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(0,5),(1,2),(2,3),(2,5),(3,4),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(0,5),(1,3),(3,4),(4,2),(4,5)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 3
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 4
([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(0,3),(0,4),(0,5),(4,6),(5,1),(5,6),(6,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(3,6),(4,1),(4,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,1),(4,5),(4,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(0,2),(0,3),(2,4),(2,6),(3,4),(3,6),(4,5),(6,1),(6,5)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(1,3),(1,5),(3,6),(5,2),(5,6),(6,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(3,4),(4,6),(6,5)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(0,6),(1,6),(2,3),(2,6),(3,5),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(0,6),(1,6),(4,2),(5,4),(6,3),(6,5)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(0,3),(1,6),(2,6),(3,5),(3,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(1,3),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(0,3),(1,6),(2,6),(3,5),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([(0,1),(1,2),(1,3),(2,4),(2,16),(3,6),(3,16),(4,18),(5,17),(6,5),(6,19),(7,9),(7,11),(8,10),(8,14),(9,21),(10,22),(11,21),(12,20),(13,12),(13,22),(14,7),(14,15),(14,22),(15,9),(15,20),(16,8),(16,18),(16,19),(17,12),(17,15),(18,10),(18,13),(19,13),(19,14),(19,17),(20,21),(22,11),(22,20)],23)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? = 7
([(0,1),(1,3),(1,4),(2,14),(3,6),(3,20),(4,5),(4,20),(5,19),(6,7),(6,21),(7,18),(8,12),(8,13),(9,11),(9,17),(10,22),(11,24),(12,23),(13,2),(13,23),(15,13),(15,22),(16,10),(16,24),(17,8),(17,15),(17,24),(18,10),(18,15),(19,11),(19,16),(20,9),(20,19),(20,21),(21,16),(21,17),(21,18),(22,23),(23,14),(24,12),(24,22)],25)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? = 7
([(0,6),(0,7),(1,5),(1,7),(2,3),(2,5),(2,6),(3,4),(4,7)],8)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ? = 9
Description
The number of elements which do not have a complement in the lattice.
A complement of an element $x$ in a lattice is an element $y$ such that the meet of $x$ and $y$ is the bottom element and their join is the top element.
Matching statistic: St001616
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(2,3),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 6 = 4 + 2
([(0,5),(1,2),(1,5),(2,3),(2,4),(5,3),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(1,2),(1,4),(2,5),(4,3),(4,5)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(1,5),(2,3),(2,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(1,4),(1,5),(2,3),(2,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(0,4),(0,5),(1,2),(1,4),(2,3),(3,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 6 = 4 + 2
([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(1,5),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,5),(1,4),(4,2),(4,5),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(1,5),(3,4),(4,2),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,5),(1,3),(1,5),(4,2),(5,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(0,4),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,5),(1,2),(2,3),(2,5),(3,4),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,5),(1,3),(3,4),(4,2),(4,5)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,3),(0,4),(0,5),(4,6),(5,1),(5,6),(6,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(3,6),(4,1),(4,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,1),(4,5),(4,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,2),(0,3),(2,4),(2,6),(3,4),(3,6),(4,5),(6,1),(6,5)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(1,3),(1,5),(3,6),(5,2),(5,6),(6,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(3,4),(4,6),(6,5)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,6),(1,6),(2,3),(2,6),(3,5),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,6),(1,6),(4,2),(5,4),(6,3),(6,5)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,3),(1,6),(2,6),(3,5),(3,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(1,3),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,3),(1,6),(2,6),(3,5),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,1),(1,2),(1,3),(2,4),(2,16),(3,6),(3,16),(4,18),(5,17),(6,5),(6,19),(7,9),(7,11),(8,10),(8,14),(9,21),(10,22),(11,21),(12,20),(13,12),(13,22),(14,7),(14,15),(14,22),(15,9),(15,20),(16,8),(16,18),(16,19),(17,12),(17,15),(18,10),(18,13),(19,13),(19,14),(19,17),(20,21),(22,11),(22,20)],23)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? = 7 + 2
([(0,1),(1,3),(1,4),(2,14),(3,6),(3,20),(4,5),(4,20),(5,19),(6,7),(6,21),(7,18),(8,12),(8,13),(9,11),(9,17),(10,22),(11,24),(12,23),(13,2),(13,23),(15,13),(15,22),(16,10),(16,24),(17,8),(17,15),(17,24),(18,10),(18,15),(19,11),(19,16),(20,9),(20,19),(20,21),(21,16),(21,17),(21,18),(22,23),(23,14),(24,12),(24,22)],25)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? = 7 + 2
([(0,6),(0,7),(1,5),(1,7),(2,3),(2,5),(2,6),(3,4),(4,7)],8)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ? = 9 + 2
Description
The number of neutral elements in a lattice.
An element $e$ of the lattice $L$ is neutral if the sublattice generated by $e$, $x$ and $y$ is distributive for all $x, y \in L$.
Matching statistic: St000479
Values
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 3 + 2
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(2,3),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 6 = 4 + 2
([(0,5),(1,2),(1,5),(2,3),(2,4),(5,3),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(0,4),(1,2),(1,4),(2,5),(4,3),(4,5)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 3 + 2
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(1,5),(2,3),(2,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(1,4),(1,5),(2,3),(2,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 3 + 2
([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 3 + 2
([(0,4),(0,5),(1,2),(1,4),(2,3),(3,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 6 = 4 + 2
([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 3 + 2
([(1,5),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(0,5),(1,4),(4,2),(4,5),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 3 + 2
([(1,5),(3,4),(4,2),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 3 + 2
([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(0,5),(1,3),(1,5),(4,2),(5,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 3 + 2
([(0,4),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(0,5),(1,2),(2,3),(2,5),(3,4),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(0,5),(1,3),(3,4),(4,2),(4,5)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 3 + 2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 6 = 4 + 2
([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(0,3),(0,4),(0,5),(4,6),(5,1),(5,6),(6,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(3,6),(4,1),(4,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,1),(4,5),(4,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(0,2),(0,3),(2,4),(2,6),(3,4),(3,6),(4,5),(6,1),(6,5)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(1,3),(1,5),(3,6),(5,2),(5,6),(6,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(3,4),(4,6),(6,5)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(0,6),(1,6),(2,3),(2,6),(3,5),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(0,6),(1,6),(4,2),(5,4),(6,3),(6,5)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(0,3),(1,6),(2,6),(3,5),(3,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(1,3),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(0,3),(1,6),(2,6),(3,5),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 2 + 2
([(0,1),(1,2),(1,3),(2,4),(2,16),(3,6),(3,16),(4,18),(5,17),(6,5),(6,19),(7,9),(7,11),(8,10),(8,14),(9,21),(10,22),(11,21),(12,20),(13,12),(13,22),(14,7),(14,15),(14,22),(15,9),(15,20),(16,8),(16,18),(16,19),(17,12),(17,15),(18,10),(18,13),(19,13),(19,14),(19,17),(20,21),(22,11),(22,20)],23)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ?
=> ? = 7 + 2
([(0,1),(1,3),(1,4),(2,14),(3,6),(3,20),(4,5),(4,20),(5,19),(6,7),(6,21),(7,18),(8,12),(8,13),(9,11),(9,17),(10,22),(11,24),(12,23),(13,2),(13,23),(15,13),(15,22),(16,10),(16,24),(17,8),(17,15),(17,24),(18,10),(18,15),(19,11),(19,16),(20,9),(20,19),(20,21),(21,16),(21,17),(21,18),(22,23),(23,14),(24,12),(24,22)],25)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ?
=> ? = 7 + 2
([(0,6),(1,7),(2,8),(3,9),(4,3),(4,7),(5,2),(5,10),(6,1),(6,4),(7,5),(7,9),(9,10),(10,8)],11)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ?
=> ? = 6 + 2
([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,1),(5,6),(6,4),(6,8),(8,9),(9,7)],10)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ?
=> ? = 6 + 2
([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,4),(5,6),(6,9),(7,8),(9,1),(9,7)],10)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ?
=> ? = 6 + 2
([(0,4),(0,6),(1,9),(3,8),(4,7),(5,3),(5,10),(6,5),(6,7),(7,10),(8,9),(9,2),(10,1),(10,8)],11)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ?
=> ? = 6 + 2
([(0,6),(0,7),(1,5),(1,7),(2,3),(2,5),(2,6),(3,4),(4,7)],8)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ([(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8)],10)
=> ? = 9 + 2
([(0,6),(0,7),(0,8),(2,17),(3,16),(4,9),(4,12),(5,10),(5,15),(6,13),(6,19),(7,13),(7,18),(8,5),(8,18),(8,19),(9,3),(9,22),(10,2),(10,21),(11,1),(12,22),(13,20),(14,11),(15,9),(15,21),(16,11),(17,14),(18,4),(18,15),(18,20),(19,10),(19,20),(20,12),(20,21),(21,17),(21,22),(22,14),(22,16)],23)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ?
=> ? = 7 + 2
([(0,4),(0,5),(2,20),(3,19),(4,21),(5,6),(5,7),(5,21),(6,9),(6,17),(6,18),(7,11),(7,18),(8,12),(8,14),(9,13),(9,15),(10,1),(11,22),(12,24),(13,3),(13,23),(14,2),(14,24),(15,14),(15,23),(16,10),(17,13),(17,22),(18,8),(18,15),(18,22),(19,16),(20,10),(21,11),(21,17),(22,12),(22,23),(23,19),(23,24),(24,16),(24,20)],25)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ?
=> ? = 7 + 2
([(0,7),(1,3),(1,7),(2,6),(3,4),(4,2),(4,5),(7,5),(7,6)],8)
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ?
=> ? = 7 + 2
([(0,6),(0,7),(1,2),(1,7),(2,6),(4,5),(6,4),(7,3),(7,5)],8)
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ?
=> ? = 7 + 2
([(0,7),(1,3),(1,7),(3,5),(4,2),(4,6),(5,6),(7,4),(7,5)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ?
=> ? = 6 + 2
([(0,6),(1,4),(1,6),(3,5),(4,3),(4,7),(6,7),(7,2),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ?
=> ? = 6 + 2
([(0,3),(0,7),(1,6),(1,7),(3,5),(3,6),(5,4),(6,2),(6,4),(7,5)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ?
=> ? = 6 + 2
([(0,3),(0,7),(1,5),(1,7),(2,6),(3,4),(3,5),(5,2),(7,4),(7,6)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ?
=> ? = 6 + 2
([(0,7),(1,2),(1,7),(2,3),(2,6),(3,4),(3,5),(6,5),(7,4),(7,6)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ?
=> ? = 6 + 2
Description
The Ramsey number of a graph.
This is the smallest integer $n$ such that every two-colouring of the edges of the complete graph $K_n$ contains a (not necessarily induced) monochromatic copy of the given graph. [1]
Thus, the Ramsey number of the complete graph $K_n$ is the ordinary Ramsey number $R(n,n)$. Very few of these numbers are known, in particular, it is only known that $43\leq R(5,5)\leq 48$. [2,3,4,5]
Matching statistic: St001622
Values
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 3 + 2
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(2,3),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> 6 = 4 + 2
([(0,5),(1,2),(1,5),(2,3),(2,4),(5,3),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(0,4),(1,2),(1,4),(2,5),(4,3),(4,5)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 3 + 2
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(1,5),(2,3),(2,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(1,4),(1,5),(2,3),(2,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 3 + 2
([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 3 + 2
([(0,4),(0,5),(1,2),(1,4),(2,3),(3,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> 6 = 4 + 2
([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 3 + 2
([(1,5),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(0,5),(1,4),(4,2),(4,5),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 3 + 2
([(1,5),(3,4),(4,2),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 3 + 2
([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(0,5),(1,3),(1,5),(4,2),(5,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 3 + 2
([(0,4),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(0,5),(1,2),(2,3),(2,5),(3,4),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(0,5),(1,3),(3,4),(4,2),(4,5)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 3 + 2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 4 + 2
([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(0,3),(0,4),(0,5),(4,6),(5,1),(5,6),(6,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(3,6),(4,1),(4,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,1),(4,5),(4,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(0,2),(0,3),(2,4),(2,6),(3,4),(3,6),(4,5),(6,1),(6,5)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(1,3),(1,5),(3,6),(5,2),(5,6),(6,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(3,4),(4,6),(6,5)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(0,6),(1,6),(2,3),(2,6),(3,5),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(0,6),(1,6),(4,2),(5,4),(6,3),(6,5)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(0,3),(1,6),(2,6),(3,5),(3,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(1,3),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(0,3),(1,6),(2,6),(3,5),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 2 + 2
([(0,6),(1,4),(1,6),(3,5),(4,3),(6,2),(6,5)],7)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(2,10),(3,11),(4,9),(5,4),(5,11),(6,1),(7,8),(8,3),(8,5),(9,10),(10,6),(11,2),(11,9)],12)
=> ? = 6 + 2
([(0,6),(1,3),(1,6),(3,4),(4,2),(4,5),(6,5)],7)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(2,10),(3,11),(4,9),(5,4),(5,11),(6,1),(7,8),(8,3),(8,5),(9,10),(10,6),(11,2),(11,9)],12)
=> ? = 6 + 2
([(0,6),(1,4),(1,6),(3,5),(4,2),(4,5),(6,3)],7)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(2,10),(3,11),(4,9),(5,4),(5,11),(6,1),(7,8),(8,3),(8,5),(9,10),(10,6),(11,2),(11,9)],12)
=> ? = 6 + 2
([(0,5),(0,6),(1,4),(1,6),(2,5),(3,2),(4,3)],7)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(2,10),(3,11),(4,9),(5,4),(5,11),(6,1),(7,8),(8,3),(8,5),(9,10),(10,6),(11,2),(11,9)],12)
=> ? = 6 + 2
([(0,1),(1,2),(1,3),(2,4),(2,16),(3,6),(3,16),(4,18),(5,17),(6,5),(6,19),(7,9),(7,11),(8,10),(8,14),(9,21),(10,22),(11,21),(12,20),(13,12),(13,22),(14,7),(14,15),(14,22),(15,9),(15,20),(16,8),(16,18),(16,19),(17,12),(17,15),(18,10),(18,13),(19,13),(19,14),(19,17),(20,21),(22,11),(22,20)],23)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ?
=> ? = 7 + 2
([(0,1),(1,3),(1,4),(2,14),(3,6),(3,20),(4,5),(4,20),(5,19),(6,7),(6,21),(7,18),(8,12),(8,13),(9,11),(9,17),(10,22),(11,24),(12,23),(13,2),(13,23),(15,13),(15,22),(16,10),(16,24),(17,8),(17,15),(17,24),(18,10),(18,15),(19,11),(19,16),(20,9),(20,19),(20,21),(21,16),(21,17),(21,18),(22,23),(23,14),(24,12),(24,22)],25)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ?
=> ? = 7 + 2
([(0,6),(1,7),(2,8),(3,9),(4,3),(4,7),(5,2),(5,10),(6,1),(6,4),(7,5),(7,9),(9,10),(10,8)],11)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ?
=> ? = 6 + 2
([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,1),(5,6),(6,4),(6,8),(8,9),(9,7)],10)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ?
=> ? = 6 + 2
([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,4),(5,6),(6,9),(7,8),(9,1),(9,7)],10)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ?
=> ? = 6 + 2
([(0,4),(0,6),(1,9),(3,8),(4,7),(5,3),(5,10),(6,5),(6,7),(7,10),(8,9),(9,2),(10,1),(10,8)],11)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ?
=> ? = 6 + 2
([(0,6),(0,7),(1,5),(1,7),(2,3),(2,5),(2,6),(3,4),(4,7)],8)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ?
=> ? = 9 + 2
([(0,6),(0,7),(0,8),(2,17),(3,16),(4,9),(4,12),(5,10),(5,15),(6,13),(6,19),(7,13),(7,18),(8,5),(8,18),(8,19),(9,3),(9,22),(10,2),(10,21),(11,1),(12,22),(13,20),(14,11),(15,9),(15,21),(16,11),(17,14),(18,4),(18,15),(18,20),(19,10),(19,20),(20,12),(20,21),(21,17),(21,22),(22,14),(22,16)],23)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ?
=> ? = 7 + 2
([(0,4),(0,5),(2,20),(3,19),(4,21),(5,6),(5,7),(5,21),(6,9),(6,17),(6,18),(7,11),(7,18),(8,12),(8,14),(9,13),(9,15),(10,1),(11,22),(12,24),(13,3),(13,23),(14,2),(14,24),(15,14),(15,23),(16,10),(17,13),(17,22),(18,8),(18,15),(18,22),(19,16),(20,10),(21,11),(21,17),(22,12),(22,23),(23,19),(23,24),(24,16),(24,20)],25)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ?
=> ? = 7 + 2
([(0,7),(1,3),(1,7),(2,6),(3,4),(4,2),(4,5),(7,5),(7,6)],8)
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ?
=> ? = 7 + 2
([(0,6),(0,7),(1,2),(1,7),(2,6),(4,5),(6,4),(7,3),(7,5)],8)
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ?
=> ? = 7 + 2
([(0,7),(1,3),(1,7),(3,5),(4,2),(4,6),(5,6),(7,4),(7,5)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ?
=> ? = 6 + 2
([(0,6),(1,4),(1,6),(3,5),(4,3),(4,7),(6,7),(7,2),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ?
=> ? = 6 + 2
([(0,3),(0,7),(1,6),(1,7),(3,5),(3,6),(5,4),(6,2),(6,4),(7,5)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ?
=> ? = 6 + 2
([(0,3),(0,7),(1,5),(1,7),(2,6),(3,4),(3,5),(5,2),(7,4),(7,6)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ?
=> ? = 6 + 2
([(0,7),(1,2),(1,7),(2,3),(2,6),(3,4),(3,5),(6,5),(7,4),(7,6)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ?
=> ? = 6 + 2
Description
The number of join-irreducible elements of a lattice.
An element $j$ of a lattice $L$ is '''join irreducible''' if it is not the least element and if $j=x\vee y$, then $j\in\{x,y\}$ for all $x,y\in L$.
Matching statistic: St000550
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(2,3),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 6 = 4 + 2
([(0,5),(1,2),(1,5),(2,3),(2,4),(5,3),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(1,2),(1,4),(2,5),(4,3),(4,5)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(1,5),(2,3),(2,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(1,4),(1,5),(2,3),(2,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(0,4),(0,5),(1,2),(1,4),(2,3),(3,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 6 = 4 + 2
([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(1,5),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,5),(1,4),(4,2),(4,5),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(1,5),(3,4),(4,2),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,5),(1,3),(1,5),(4,2),(5,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(0,4),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,5),(1,2),(2,3),(2,5),(3,4),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,5),(1,3),(3,4),(4,2),(4,5)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,3),(0,4),(0,5),(4,6),(5,1),(5,6),(6,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(3,6),(4,1),(4,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,1),(4,5),(4,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,2),(0,3),(2,4),(2,6),(3,4),(3,6),(4,5),(6,1),(6,5)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(1,3),(1,5),(3,6),(5,2),(5,6),(6,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(3,4),(4,6),(6,5)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,6),(1,6),(2,3),(2,6),(3,5),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,6),(1,6),(4,2),(5,4),(6,3),(6,5)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,3),(1,6),(2,6),(3,5),(3,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(1,3),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,3),(1,6),(2,6),(3,5),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,6),(1,4),(1,6),(3,5),(4,3),(6,2),(6,5)],7)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 6 + 2
([(0,6),(1,3),(1,6),(3,4),(4,2),(4,5),(6,5)],7)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 6 + 2
([(0,6),(1,4),(1,6),(3,5),(4,2),(4,5),(6,3)],7)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 6 + 2
([(0,5),(0,6),(1,4),(1,6),(2,5),(3,2),(4,3)],7)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 6 + 2
([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 6 + 2
([(0,1),(1,2),(1,3),(2,4),(2,16),(3,6),(3,16),(4,18),(5,17),(6,5),(6,19),(7,9),(7,11),(8,10),(8,14),(9,21),(10,22),(11,21),(12,20),(13,12),(13,22),(14,7),(14,15),(14,22),(15,9),(15,20),(16,8),(16,18),(16,19),(17,12),(17,15),(18,10),(18,13),(19,13),(19,14),(19,17),(20,21),(22,11),(22,20)],23)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? = 7 + 2
([(0,1),(1,3),(1,4),(2,14),(3,6),(3,20),(4,5),(4,20),(5,19),(6,7),(6,21),(7,18),(8,12),(8,13),(9,11),(9,17),(10,22),(11,24),(12,23),(13,2),(13,23),(15,13),(15,22),(16,10),(16,24),(17,8),(17,15),(17,24),(18,10),(18,15),(19,11),(19,16),(20,9),(20,19),(20,21),(21,16),(21,17),(21,18),(22,23),(23,14),(24,12),(24,22)],25)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? = 7 + 2
([(0,6),(1,7),(2,8),(3,9),(4,3),(4,7),(5,2),(5,10),(6,1),(6,4),(7,5),(7,9),(9,10),(10,8)],11)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 6 + 2
([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,1),(5,6),(6,4),(6,8),(8,9),(9,7)],10)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 6 + 2
([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,4),(5,6),(6,9),(7,8),(9,1),(9,7)],10)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 6 + 2
([(0,4),(0,6),(1,9),(3,8),(4,7),(5,3),(5,10),(6,5),(6,7),(7,10),(8,9),(9,2),(10,1),(10,8)],11)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 6 + 2
([(0,2),(0,9),(3,4),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 6 + 2
([(0,6),(0,7),(1,5),(3,7),(4,3),(5,4),(5,6),(7,2)],8)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 6 + 2
([(0,6),(0,7),(1,5),(1,7),(2,3),(2,5),(2,6),(3,4),(4,7)],8)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ? = 9 + 2
([(0,3),(0,6),(1,6),(1,7),(2,4),(2,5),(3,4),(3,7),(6,2),(7,5)],8)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 6 + 2
([(0,9),(1,8),(2,9),(3,5),(4,3),(5,7),(6,4),(7,2),(8,6)],10)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 6 + 2
([(0,6),(0,7),(0,8),(2,17),(3,16),(4,9),(4,12),(5,10),(5,15),(6,13),(6,19),(7,13),(7,18),(8,5),(8,18),(8,19),(9,3),(9,22),(10,2),(10,21),(11,1),(12,22),(13,20),(14,11),(15,9),(15,21),(16,11),(17,14),(18,4),(18,15),(18,20),(19,10),(19,20),(20,12),(20,21),(21,17),(21,22),(22,14),(22,16)],23)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ? = 7 + 2
([(0,4),(0,5),(2,20),(3,19),(4,21),(5,6),(5,7),(5,21),(6,9),(6,17),(6,18),(7,11),(7,18),(8,12),(8,14),(9,13),(9,15),(10,1),(11,22),(12,24),(13,3),(13,23),(14,2),(14,24),(15,14),(15,23),(16,10),(17,13),(17,22),(18,8),(18,15),(18,22),(19,16),(20,10),(21,11),(21,17),(22,12),(22,23),(23,19),(23,24),(24,16),(24,20)],25)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ? = 7 + 2
([(0,7),(1,3),(1,7),(2,6),(3,4),(4,2),(4,5),(7,5),(7,6)],8)
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ? = 7 + 2
([(0,6),(0,7),(1,2),(1,7),(2,6),(4,5),(6,4),(7,3),(7,5)],8)
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ? = 7 + 2
([(0,7),(1,3),(1,7),(3,5),(4,2),(4,6),(5,6),(7,4),(7,5)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 6 + 2
([(0,6),(1,4),(1,6),(3,5),(4,3),(4,7),(6,7),(7,2),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 6 + 2
([(0,3),(0,7),(1,6),(1,7),(3,5),(3,6),(5,4),(6,2),(6,4),(7,5)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 6 + 2
([(0,3),(0,7),(1,5),(1,7),(2,6),(3,4),(3,5),(5,2),(7,4),(7,6)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 6 + 2
([(0,7),(1,2),(1,7),(2,3),(2,6),(3,4),(3,5),(6,5),(7,4),(7,6)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 6 + 2
Description
The number of modular elements of a lattice.
A pair $(x, y)$ of elements of a lattice $L$ is a modular pair if for every $z\geq y$ we have that $(y\vee x) \wedge z = y \vee (x \wedge z)$. An element $x$ is left-modular if $(x, y)$ is a modular pair for every $y\in L$, and is modular if both $(x, y)$ and $(y, x)$ are modular pairs for every $y\in L$.
Matching statistic: St000551
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(2,3),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 6 = 4 + 2
([(0,5),(1,2),(1,5),(2,3),(2,4),(5,3),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(1,2),(1,4),(2,5),(4,3),(4,5)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(1,5),(2,3),(2,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(1,4),(1,5),(2,3),(2,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(0,4),(0,5),(1,2),(1,4),(2,3),(3,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 6 = 4 + 2
([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(1,5),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,5),(1,4),(4,2),(4,5),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(1,5),(3,4),(4,2),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,5),(1,3),(1,5),(4,2),(5,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(0,4),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,5),(1,2),(2,3),(2,5),(3,4),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,5),(1,3),(3,4),(4,2),(4,5)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,3),(0,4),(0,5),(4,6),(5,1),(5,6),(6,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(3,6),(4,1),(4,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,1),(4,5),(4,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,2),(0,3),(2,4),(2,6),(3,4),(3,6),(4,5),(6,1),(6,5)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(1,3),(1,5),(3,6),(5,2),(5,6),(6,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(3,4),(4,6),(6,5)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,6),(1,6),(2,3),(2,6),(3,5),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,6),(1,6),(4,2),(5,4),(6,3),(6,5)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,3),(1,6),(2,6),(3,5),(3,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(1,3),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,3),(1,6),(2,6),(3,5),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,6),(1,4),(1,6),(3,5),(4,3),(6,2),(6,5)],7)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 6 + 2
([(0,6),(1,3),(1,6),(3,4),(4,2),(4,5),(6,5)],7)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 6 + 2
([(0,6),(1,4),(1,6),(3,5),(4,2),(4,5),(6,3)],7)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 6 + 2
([(0,5),(0,6),(1,4),(1,6),(2,5),(3,2),(4,3)],7)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 6 + 2
([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 6 + 2
([(0,1),(1,2),(1,3),(2,4),(2,16),(3,6),(3,16),(4,18),(5,17),(6,5),(6,19),(7,9),(7,11),(8,10),(8,14),(9,21),(10,22),(11,21),(12,20),(13,12),(13,22),(14,7),(14,15),(14,22),(15,9),(15,20),(16,8),(16,18),(16,19),(17,12),(17,15),(18,10),(18,13),(19,13),(19,14),(19,17),(20,21),(22,11),(22,20)],23)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? = 7 + 2
([(0,1),(1,3),(1,4),(2,14),(3,6),(3,20),(4,5),(4,20),(5,19),(6,7),(6,21),(7,18),(8,12),(8,13),(9,11),(9,17),(10,22),(11,24),(12,23),(13,2),(13,23),(15,13),(15,22),(16,10),(16,24),(17,8),(17,15),(17,24),(18,10),(18,15),(19,11),(19,16),(20,9),(20,19),(20,21),(21,16),(21,17),(21,18),(22,23),(23,14),(24,12),(24,22)],25)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? = 7 + 2
([(0,6),(1,7),(2,8),(3,9),(4,3),(4,7),(5,2),(5,10),(6,1),(6,4),(7,5),(7,9),(9,10),(10,8)],11)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 6 + 2
([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,1),(5,6),(6,4),(6,8),(8,9),(9,7)],10)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 6 + 2
([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,4),(5,6),(6,9),(7,8),(9,1),(9,7)],10)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 6 + 2
([(0,4),(0,6),(1,9),(3,8),(4,7),(5,3),(5,10),(6,5),(6,7),(7,10),(8,9),(9,2),(10,1),(10,8)],11)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 6 + 2
([(0,2),(0,9),(3,4),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 6 + 2
([(0,6),(0,7),(1,5),(3,7),(4,3),(5,4),(5,6),(7,2)],8)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 6 + 2
([(0,6),(0,7),(1,5),(1,7),(2,3),(2,5),(2,6),(3,4),(4,7)],8)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ? = 9 + 2
([(0,3),(0,6),(1,6),(1,7),(2,4),(2,5),(3,4),(3,7),(6,2),(7,5)],8)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 6 + 2
([(0,9),(1,8),(2,9),(3,5),(4,3),(5,7),(6,4),(7,2),(8,6)],10)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 6 + 2
([(0,6),(0,7),(0,8),(2,17),(3,16),(4,9),(4,12),(5,10),(5,15),(6,13),(6,19),(7,13),(7,18),(8,5),(8,18),(8,19),(9,3),(9,22),(10,2),(10,21),(11,1),(12,22),(13,20),(14,11),(15,9),(15,21),(16,11),(17,14),(18,4),(18,15),(18,20),(19,10),(19,20),(20,12),(20,21),(21,17),(21,22),(22,14),(22,16)],23)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ? = 7 + 2
([(0,4),(0,5),(2,20),(3,19),(4,21),(5,6),(5,7),(5,21),(6,9),(6,17),(6,18),(7,11),(7,18),(8,12),(8,14),(9,13),(9,15),(10,1),(11,22),(12,24),(13,3),(13,23),(14,2),(14,24),(15,14),(15,23),(16,10),(17,13),(17,22),(18,8),(18,15),(18,22),(19,16),(20,10),(21,11),(21,17),(22,12),(22,23),(23,19),(23,24),(24,16),(24,20)],25)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ? = 7 + 2
([(0,7),(1,3),(1,7),(2,6),(3,4),(4,2),(4,5),(7,5),(7,6)],8)
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ? = 7 + 2
([(0,6),(0,7),(1,2),(1,7),(2,6),(4,5),(6,4),(7,3),(7,5)],8)
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ? = 7 + 2
([(0,7),(1,3),(1,7),(3,5),(4,2),(4,6),(5,6),(7,4),(7,5)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 6 + 2
([(0,6),(1,4),(1,6),(3,5),(4,3),(4,7),(6,7),(7,2),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 6 + 2
([(0,3),(0,7),(1,6),(1,7),(3,5),(3,6),(5,4),(6,2),(6,4),(7,5)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 6 + 2
([(0,3),(0,7),(1,5),(1,7),(2,6),(3,4),(3,5),(5,2),(7,4),(7,6)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 6 + 2
([(0,7),(1,2),(1,7),(2,3),(2,6),(3,4),(3,5),(6,5),(7,4),(7,6)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 6 + 2
Description
The number of left modular elements of a lattice.
A pair $(x, y)$ of elements of a lattice $L$ is a modular pair if for every $z\geq y$ we have that $(y\vee x) \wedge z = y \vee (x \wedge z)$. An element $x$ is left-modular if $(x, y)$ is a modular pair for every $y\in L$.
Matching statistic: St001880
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(2,3),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 6 = 4 + 2
([(0,5),(1,2),(1,5),(2,3),(2,4),(5,3),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(1,2),(1,4),(2,5),(4,3),(4,5)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(1,5),(2,3),(2,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(1,4),(1,5),(2,3),(2,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(0,4),(0,5),(1,2),(1,4),(2,3),(3,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 6 = 4 + 2
([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(1,5),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,5),(1,4),(4,2),(4,5),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(1,5),(3,4),(4,2),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,5),(1,3),(1,5),(4,2),(5,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(0,4),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,5),(1,2),(2,3),(2,5),(3,4),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,5),(1,3),(3,4),(4,2),(4,5)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,3),(0,4),(0,5),(4,6),(5,1),(5,6),(6,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(3,6),(4,1),(4,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,1),(4,5),(4,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,2),(0,3),(2,4),(2,6),(3,4),(3,6),(4,5),(6,1),(6,5)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(1,3),(1,5),(3,6),(5,2),(5,6),(6,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(3,4),(4,6),(6,5)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,6),(1,6),(2,3),(2,6),(3,5),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,6),(1,6),(4,2),(5,4),(6,3),(6,5)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,3),(1,6),(2,6),(3,5),(3,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(1,3),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,3),(1,6),(2,6),(3,5),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([(0,6),(1,4),(1,6),(3,5),(4,3),(6,2),(6,5)],7)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 6 + 2
([(0,6),(1,3),(1,6),(3,4),(4,2),(4,5),(6,5)],7)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 6 + 2
([(0,6),(1,4),(1,6),(3,5),(4,2),(4,5),(6,3)],7)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 6 + 2
([(0,5),(0,6),(1,4),(1,6),(2,5),(3,2),(4,3)],7)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 6 + 2
([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 6 + 2
([(0,1),(1,2),(1,3),(2,4),(2,16),(3,6),(3,16),(4,18),(5,17),(6,5),(6,19),(7,9),(7,11),(8,10),(8,14),(9,21),(10,22),(11,21),(12,20),(13,12),(13,22),(14,7),(14,15),(14,22),(15,9),(15,20),(16,8),(16,18),(16,19),(17,12),(17,15),(18,10),(18,13),(19,13),(19,14),(19,17),(20,21),(22,11),(22,20)],23)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? = 7 + 2
([(0,1),(1,3),(1,4),(2,14),(3,6),(3,20),(4,5),(4,20),(5,19),(6,7),(6,21),(7,18),(8,12),(8,13),(9,11),(9,17),(10,22),(11,24),(12,23),(13,2),(13,23),(15,13),(15,22),(16,10),(16,24),(17,8),(17,15),(17,24),(18,10),(18,15),(19,11),(19,16),(20,9),(20,19),(20,21),(21,16),(21,17),(21,18),(22,23),(23,14),(24,12),(24,22)],25)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ? = 7 + 2
([(0,6),(1,7),(2,8),(3,9),(4,3),(4,7),(5,2),(5,10),(6,1),(6,4),(7,5),(7,9),(9,10),(10,8)],11)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 6 + 2
([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,1),(5,6),(6,4),(6,8),(8,9),(9,7)],10)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 6 + 2
([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,4),(5,6),(6,9),(7,8),(9,1),(9,7)],10)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 6 + 2
([(0,4),(0,6),(1,9),(3,8),(4,7),(5,3),(5,10),(6,5),(6,7),(7,10),(8,9),(9,2),(10,1),(10,8)],11)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 6 + 2
([(0,2),(0,9),(3,4),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 6 + 2
([(0,6),(0,7),(1,5),(3,7),(4,3),(5,4),(5,6),(7,2)],8)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 6 + 2
([(0,6),(0,7),(1,5),(1,7),(2,3),(2,5),(2,6),(3,4),(4,7)],8)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ? = 9 + 2
([(0,3),(0,6),(1,6),(1,7),(2,4),(2,5),(3,4),(3,7),(6,2),(7,5)],8)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 6 + 2
([(0,9),(1,8),(2,9),(3,5),(4,3),(5,7),(6,4),(7,2),(8,6)],10)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 6 + 2
([(0,6),(0,7),(0,8),(2,17),(3,16),(4,9),(4,12),(5,10),(5,15),(6,13),(6,19),(7,13),(7,18),(8,5),(8,18),(8,19),(9,3),(9,22),(10,2),(10,21),(11,1),(12,22),(13,20),(14,11),(15,9),(15,21),(16,11),(17,14),(18,4),(18,15),(18,20),(19,10),(19,20),(20,12),(20,21),(21,17),(21,22),(22,14),(22,16)],23)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ? = 7 + 2
([(0,4),(0,5),(2,20),(3,19),(4,21),(5,6),(5,7),(5,21),(6,9),(6,17),(6,18),(7,11),(7,18),(8,12),(8,14),(9,13),(9,15),(10,1),(11,22),(12,24),(13,3),(13,23),(14,2),(14,24),(15,14),(15,23),(16,10),(17,13),(17,22),(18,8),(18,15),(18,22),(19,16),(20,10),(21,11),(21,17),(22,12),(22,23),(23,19),(23,24),(24,16),(24,20)],25)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ? = 7 + 2
([(0,7),(1,3),(1,7),(2,6),(3,4),(4,2),(4,5),(7,5),(7,6)],8)
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ? = 7 + 2
([(0,6),(0,7),(1,2),(1,7),(2,6),(4,5),(6,4),(7,3),(7,5)],8)
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ? = 7 + 2
([(0,7),(1,3),(1,7),(3,5),(4,2),(4,6),(5,6),(7,4),(7,5)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 6 + 2
([(0,6),(1,4),(1,6),(3,5),(4,3),(4,7),(6,7),(7,2),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 6 + 2
([(0,3),(0,7),(1,6),(1,7),(3,5),(3,6),(5,4),(6,2),(6,4),(7,5)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 6 + 2
([(0,3),(0,7),(1,5),(1,7),(2,6),(3,4),(3,5),(5,2),(7,4),(7,6)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 6 + 2
([(0,7),(1,2),(1,7),(2,3),(2,6),(3,4),(3,5),(6,5),(7,4),(7,6)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 6 + 2
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Matching statistic: St000987
Values
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 3 + 1
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(2,3),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 5 = 4 + 1
([(0,5),(1,2),(1,5),(2,3),(2,4),(5,3),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(0,4),(1,2),(1,4),(2,5),(4,3),(4,5)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 3 + 1
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(1,5),(2,3),(2,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(1,4),(1,5),(2,3),(2,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 3 + 1
([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 3 + 1
([(0,4),(0,5),(1,2),(1,4),(2,3),(3,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 5 = 4 + 1
([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 3 + 1
([(1,5),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(0,5),(1,4),(4,2),(4,5),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 3 + 1
([(1,5),(3,4),(4,2),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 3 + 1
([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(0,5),(1,3),(1,5),(4,2),(5,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 3 + 1
([(0,4),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(0,5),(1,2),(2,3),(2,5),(3,4),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(0,5),(1,3),(3,4),(4,2),(4,5)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 3 + 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 5 = 4 + 1
([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(0,3),(0,4),(0,5),(4,6),(5,1),(5,6),(6,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(3,6),(4,1),(4,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,1),(4,5),(4,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(0,2),(0,3),(2,4),(2,6),(3,4),(3,6),(4,5),(6,1),(6,5)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(1,3),(1,5),(3,6),(5,2),(5,6),(6,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(3,4),(4,6),(6,5)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(0,6),(1,6),(2,3),(2,6),(3,5),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(0,6),(1,6),(4,2),(5,4),(6,3),(6,5)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(0,3),(1,6),(2,6),(3,5),(3,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(1,3),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(0,3),(1,6),(2,6),(3,5),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(0,6),(1,4),(1,6),(3,5),(4,3),(6,2),(6,5)],7)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(1,6),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7)],8)
=> ? = 6 + 1
([(0,6),(1,3),(1,6),(3,4),(4,2),(4,5),(6,5)],7)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(1,6),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7)],8)
=> ? = 6 + 1
([(0,6),(1,4),(1,6),(3,5),(4,2),(4,5),(6,3)],7)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(1,6),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7)],8)
=> ? = 6 + 1
([(0,5),(0,6),(1,4),(1,6),(2,5),(3,2),(4,3)],7)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(1,6),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7)],8)
=> ? = 6 + 1
([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(1,6),(2,3),(2,4),(3,5),(4,6),(5,7)],8)
=> ? = 6 + 1
([(0,1),(1,2),(1,3),(2,4),(2,16),(3,6),(3,16),(4,18),(5,17),(6,5),(6,19),(7,9),(7,11),(8,10),(8,14),(9,21),(10,22),(11,21),(12,20),(13,12),(13,22),(14,7),(14,15),(14,22),(15,9),(15,20),(16,8),(16,18),(16,19),(17,12),(17,15),(18,10),(18,13),(19,13),(19,14),(19,17),(20,21),(22,11),(22,20)],23)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ?
=> ? = 7 + 1
([(0,1),(1,3),(1,4),(2,14),(3,6),(3,20),(4,5),(4,20),(5,19),(6,7),(6,21),(7,18),(8,12),(8,13),(9,11),(9,17),(10,22),(11,24),(12,23),(13,2),(13,23),(15,13),(15,22),(16,10),(16,24),(17,8),(17,15),(17,24),(18,10),(18,15),(19,11),(19,16),(20,9),(20,19),(20,21),(21,16),(21,17),(21,18),(22,23),(23,14),(24,12),(24,22)],25)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ?
=> ? = 7 + 1
([(0,6),(1,7),(2,8),(3,9),(4,3),(4,7),(5,2),(5,10),(6,1),(6,4),(7,5),(7,9),(9,10),(10,8)],11)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ?
=> ? = 6 + 1
([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,1),(5,6),(6,4),(6,8),(8,9),(9,7)],10)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ?
=> ? = 6 + 1
([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,4),(5,6),(6,9),(7,8),(9,1),(9,7)],10)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ?
=> ? = 6 + 1
([(0,4),(0,6),(1,9),(3,8),(4,7),(5,3),(5,10),(6,5),(6,7),(7,10),(8,9),(9,2),(10,1),(10,8)],11)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ?
=> ? = 6 + 1
([(0,2),(0,9),(3,4),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(1,6),(2,3),(2,4),(3,5),(4,6),(5,7)],8)
=> ? = 6 + 1
([(0,6),(0,7),(1,5),(3,7),(4,3),(5,4),(5,6),(7,2)],8)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(0,5),(1,4),(2,6),(2,7),(3,6),(3,7),(4,6),(5,7)],8)
=> ? = 6 + 1
([(0,6),(0,7),(1,5),(1,7),(2,3),(2,5),(2,6),(3,4),(4,7)],8)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ([(0,9),(1,8),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(4,5),(4,6),(4,8),(5,9),(6,9),(7,9)],10)
=> ? = 9 + 1
([(0,3),(0,6),(1,6),(1,7),(2,4),(2,5),(3,4),(3,7),(6,2),(7,5)],8)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(0,5),(1,4),(2,6),(2,7),(3,6),(3,7),(4,6),(5,7)],8)
=> ? = 6 + 1
([(0,9),(1,8),(2,9),(3,5),(4,3),(5,7),(6,4),(7,2),(8,6)],10)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(1,6),(2,3),(2,4),(3,5),(4,6),(5,7)],8)
=> ? = 6 + 1
([(0,6),(0,7),(0,8),(2,17),(3,16),(4,9),(4,12),(5,10),(5,15),(6,13),(6,19),(7,13),(7,18),(8,5),(8,18),(8,19),(9,3),(9,22),(10,2),(10,21),(11,1),(12,22),(13,20),(14,11),(15,9),(15,21),(16,11),(17,14),(18,4),(18,15),(18,20),(19,10),(19,20),(20,12),(20,21),(21,17),(21,22),(22,14),(22,16)],23)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ?
=> ? = 7 + 1
([(0,4),(0,5),(2,20),(3,19),(4,21),(5,6),(5,7),(5,21),(6,9),(6,17),(6,18),(7,11),(7,18),(8,12),(8,14),(9,13),(9,15),(10,1),(11,22),(12,24),(13,3),(13,23),(14,2),(14,24),(15,14),(15,23),(16,10),(17,13),(17,22),(18,8),(18,15),(18,22),(19,16),(20,10),(21,11),(21,17),(22,12),(22,23),(23,19),(23,24),(24,16),(24,20)],25)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ?
=> ? = 7 + 1
([(0,7),(1,3),(1,7),(2,6),(3,4),(4,2),(4,5),(7,5),(7,6)],8)
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ?
=> ? = 7 + 1
([(0,6),(0,7),(1,2),(1,7),(2,6),(4,5),(6,4),(7,3),(7,5)],8)
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ?
=> ? = 7 + 1
([(0,7),(1,3),(1,7),(3,5),(4,2),(4,6),(5,6),(7,4),(7,5)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ?
=> ? = 6 + 1
([(0,6),(1,4),(1,6),(3,5),(4,3),(4,7),(6,7),(7,2),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ?
=> ? = 6 + 1
([(0,3),(0,7),(1,6),(1,7),(3,5),(3,6),(5,4),(6,2),(6,4),(7,5)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ?
=> ? = 6 + 1
([(0,3),(0,7),(1,5),(1,7),(2,6),(3,4),(3,5),(5,2),(7,4),(7,6)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ?
=> ? = 6 + 1
([(0,7),(1,2),(1,7),(2,3),(2,6),(3,4),(3,5),(6,5),(7,4),(7,6)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ?
=> ? = 6 + 1
Description
The number of positive eigenvalues of the Laplacian matrix of the graph.
This is the number of vertices minus the number of connected components of the graph.
Matching statistic: St000453
Values
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 5 = 3 + 2
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(2,3),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 6 = 4 + 2
([(0,5),(1,2),(1,5),(2,3),(2,4),(5,3),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(0,4),(1,2),(1,4),(2,5),(4,3),(4,5)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 5 = 3 + 2
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(1,5),(2,3),(2,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(1,4),(1,5),(2,3),(2,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 5 = 3 + 2
([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 5 = 3 + 2
([(0,4),(0,5),(1,2),(1,4),(2,3),(3,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 6 = 4 + 2
([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 5 = 3 + 2
([(1,5),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(0,5),(1,4),(4,2),(4,5),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 5 = 3 + 2
([(1,5),(3,4),(4,2),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 5 = 3 + 2
([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(0,5),(1,3),(1,5),(4,2),(5,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 5 = 3 + 2
([(0,4),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(0,5),(1,2),(2,3),(2,5),(3,4),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(0,5),(1,3),(3,4),(4,2),(4,5)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 5 = 3 + 2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 6 = 4 + 2
([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(0,3),(0,4),(0,5),(4,6),(5,1),(5,6),(6,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(3,6),(4,1),(4,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,1),(4,5),(4,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(0,2),(0,3),(2,4),(2,6),(3,4),(3,6),(4,5),(6,1),(6,5)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(1,3),(1,5),(3,6),(5,2),(5,6),(6,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(3,4),(4,6),(6,5)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(0,6),(1,6),(2,3),(2,6),(3,5),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(0,6),(1,6),(4,2),(5,4),(6,3),(6,5)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(0,3),(1,6),(2,6),(3,5),(3,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(1,3),(2,6),(3,5),(4,6),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(0,3),(1,6),(2,6),(3,5),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 2 + 2
([(0,6),(1,4),(1,6),(3,5),(4,3),(6,2),(6,5)],7)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(1,6),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7)],8)
=> ? = 6 + 2
([(0,6),(1,3),(1,6),(3,4),(4,2),(4,5),(6,5)],7)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(1,6),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7)],8)
=> ? = 6 + 2
([(0,6),(1,4),(1,6),(3,5),(4,2),(4,5),(6,3)],7)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(1,6),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7)],8)
=> ? = 6 + 2
([(0,5),(0,6),(1,4),(1,6),(2,5),(3,2),(4,3)],7)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(1,6),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7)],8)
=> ? = 6 + 2
([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(1,6),(2,3),(2,4),(3,5),(4,6),(5,7)],8)
=> ? = 6 + 2
([(0,1),(1,2),(1,3),(2,4),(2,16),(3,6),(3,16),(4,18),(5,17),(6,5),(6,19),(7,9),(7,11),(8,10),(8,14),(9,21),(10,22),(11,21),(12,20),(13,12),(13,22),(14,7),(14,15),(14,22),(15,9),(15,20),(16,8),(16,18),(16,19),(17,12),(17,15),(18,10),(18,13),(19,13),(19,14),(19,17),(20,21),(22,11),(22,20)],23)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ?
=> ? = 7 + 2
([(0,1),(1,3),(1,4),(2,14),(3,6),(3,20),(4,5),(4,20),(5,19),(6,7),(6,21),(7,18),(8,12),(8,13),(9,11),(9,17),(10,22),(11,24),(12,23),(13,2),(13,23),(15,13),(15,22),(16,10),(16,24),(17,8),(17,15),(17,24),(18,10),(18,15),(19,11),(19,16),(20,9),(20,19),(20,21),(21,16),(21,17),(21,18),(22,23),(23,14),(24,12),(24,22)],25)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> ?
=> ? = 7 + 2
([(0,6),(1,7),(2,8),(3,9),(4,3),(4,7),(5,2),(5,10),(6,1),(6,4),(7,5),(7,9),(9,10),(10,8)],11)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ?
=> ? = 6 + 2
([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,1),(5,6),(6,4),(6,8),(8,9),(9,7)],10)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ?
=> ? = 6 + 2
([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,4),(5,6),(6,9),(7,8),(9,1),(9,7)],10)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ?
=> ? = 6 + 2
([(0,4),(0,6),(1,9),(3,8),(4,7),(5,3),(5,10),(6,5),(6,7),(7,10),(8,9),(9,2),(10,1),(10,8)],11)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ?
=> ? = 6 + 2
([(0,2),(0,9),(3,4),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(1,6),(2,3),(2,4),(3,5),(4,6),(5,7)],8)
=> ? = 6 + 2
([(0,6),(0,7),(1,5),(3,7),(4,3),(5,4),(5,6),(7,2)],8)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(0,5),(1,4),(2,6),(2,7),(3,6),(3,7),(4,6),(5,7)],8)
=> ? = 6 + 2
([(0,6),(0,7),(1,5),(1,7),(2,3),(2,5),(2,6),(3,4),(4,7)],8)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ([(0,9),(1,8),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(4,5),(4,6),(4,8),(5,9),(6,9),(7,9)],10)
=> ? = 9 + 2
([(0,3),(0,6),(1,6),(1,7),(2,4),(2,5),(3,4),(3,7),(6,2),(7,5)],8)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(0,5),(1,4),(2,6),(2,7),(3,6),(3,7),(4,6),(5,7)],8)
=> ? = 6 + 2
([(0,9),(1,8),(2,9),(3,5),(4,3),(5,7),(6,4),(7,2),(8,6)],10)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(1,6),(2,3),(2,4),(3,5),(4,6),(5,7)],8)
=> ? = 6 + 2
([(0,6),(0,7),(0,8),(2,17),(3,16),(4,9),(4,12),(5,10),(5,15),(6,13),(6,19),(7,13),(7,18),(8,5),(8,18),(8,19),(9,3),(9,22),(10,2),(10,21),(11,1),(12,22),(13,20),(14,11),(15,9),(15,21),(16,11),(17,14),(18,4),(18,15),(18,20),(19,10),(19,20),(20,12),(20,21),(21,17),(21,22),(22,14),(22,16)],23)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ?
=> ? = 7 + 2
([(0,4),(0,5),(2,20),(3,19),(4,21),(5,6),(5,7),(5,21),(6,9),(6,17),(6,18),(7,11),(7,18),(8,12),(8,14),(9,13),(9,15),(10,1),(11,22),(12,24),(13,3),(13,23),(14,2),(14,24),(15,14),(15,23),(16,10),(17,13),(17,22),(18,8),(18,15),(18,22),(19,16),(20,10),(21,11),(21,17),(22,12),(22,23),(23,19),(23,24),(24,16),(24,20)],25)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> ?
=> ? = 7 + 2
([(0,7),(1,3),(1,7),(2,6),(3,4),(4,2),(4,5),(7,5),(7,6)],8)
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> ?
=> ? = 7 + 2
([(0,6),(0,7),(1,2),(1,7),(2,6),(4,5),(6,4),(7,3),(7,5)],8)
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> ?
=> ? = 7 + 2
([(0,7),(1,3),(1,7),(3,5),(4,2),(4,6),(5,6),(7,4),(7,5)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ?
=> ? = 6 + 2
([(0,6),(1,4),(1,6),(3,5),(4,3),(4,7),(6,7),(7,2),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ?
=> ? = 6 + 2
([(0,3),(0,7),(1,6),(1,7),(3,5),(3,6),(5,4),(6,2),(6,4),(7,5)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ?
=> ? = 6 + 2
([(0,3),(0,7),(1,5),(1,7),(2,6),(3,4),(3,5),(5,2),(7,4),(7,6)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ?
=> ? = 6 + 2
([(0,7),(1,2),(1,7),(2,3),(2,6),(3,4),(3,5),(6,5),(7,4),(7,6)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ?
=> ? = 6 + 2
Description
The number of distinct Laplacian eigenvalues of a graph.
The following 50 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000636The hull number of a graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000917The open packing number of a graph. St000918The 2-limited packing number of a graph. St001315The dissociation number of a graph. St001318The number of vertices of the largest induced subforest with the same number of connected components of a graph. St001321The number of vertices of the largest induced subforest of a graph. St001342The number of vertices in the center of a graph. St001356The number of vertices in prime modules of a graph. St001654The monophonic hull number of a graph. St001655The general position number of a graph. St001656The monophonic position number of a graph. St001672The restrained domination number of a graph. St001615The number of join prime elements of a lattice. St001617The dimension of the space of valuations of a lattice. St001300The rank of the boundary operator in degree 1 of the chain complex of the order complex of the poset. St000656The number of cuts of a poset. St001717The largest size of an interval in a poset. St000189The number of elements in the poset. St001391The disjunction number of a graph. St001649The length of a longest trail in a graph. St000299The number of nonisomorphic vertex-induced subtrees. St001623The number of doubly irreducible elements of a lattice. St001626The number of maximal proper sublattices of a lattice. St001875The number of simple modules with projective dimension at most 1. St000327The number of cover relations in a poset. St001637The number of (upper) dissectors of a poset. St001668The number of points of the poset minus the width of the poset. St001834The number of non-isomorphic minors of a graph. St001618The cardinality of the Frattini sublattice of a lattice. St001720The minimal length of a chain of small intervals in a lattice. St001613The binary logarithm of the size of the center of a lattice. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001820The size of the image of the pop stack sorting operator. St001881The number of factors of a lattice as a Cartesian product of lattices. St001845The number of join irreducibles minus the rank of a lattice. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001681The number of inclusion-wise minimal subsets of a lattice, whose meet is the bottom element. St001619The number of non-isomorphic sublattices of a lattice. St001666The number of non-isomorphic subposets of a lattice which are lattices. St001833The number of linear intervals in a lattice. St001677The number of non-degenerate subsets of a lattice whose meet is the bottom element. St001620The number of sublattices of a lattice. St001679The number of subsets of a lattice whose meet is the bottom element. St000909The number of maximal chains of maximal size in a poset. St000070The number of antichains in a poset. St000363The number of minimal vertex covers of a graph. St001933The largest multiplicity of a part in an integer partition. St000993The multiplicity of the largest part of an integer partition. St000911The number of maximal antichains of maximal size in a poset.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!