Your data matches 35 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00197: Lattices lattice of congruencesLattices
St001876: Lattices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 2
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,2),(2,1)],3)
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 2
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(2,1)],3)
=> 0
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1)],8)
=> ([(0,2),(2,1)],3)
=> 0
([(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3),(6,4)],8)
=> ([(0,2),(2,1)],3)
=> 0
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3),(6,4),(6,5)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,3),(5,4),(7,6)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(6,5)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,4),(0,5),(1,7),(2,6),(3,6),(4,7),(5,1),(5,2),(5,3),(6,7)],8)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,3),(7,6)],8)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
([(0,5),(1,7),(2,7),(3,6),(4,2),(4,6),(5,1),(5,3),(5,4),(6,7)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(5,3),(6,1),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> 0
([(0,5),(1,7),(2,7),(3,7),(4,7),(5,4),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(6,7)],8)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
Description
The number of 2-regular simple modules in the incidence algebra of the lattice.
Mp00197: Lattices lattice of congruencesLattices
St001877: Lattices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 2
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,2),(2,1)],3)
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 2
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(2,1)],3)
=> 0
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1)],8)
=> ([(0,2),(2,1)],3)
=> 0
([(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3),(6,4)],8)
=> ([(0,2),(2,1)],3)
=> 0
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3),(6,4),(6,5)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,3),(5,4),(7,6)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(6,5)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,4),(0,5),(1,7),(2,6),(3,6),(4,7),(5,1),(5,2),(5,3),(6,7)],8)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,3),(7,6)],8)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
([(0,5),(1,7),(2,7),(3,6),(4,2),(4,6),(5,1),(5,3),(5,4),(6,7)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(5,3),(6,1),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> 0
([(0,5),(1,7),(2,7),(3,7),(4,7),(5,4),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(6,7)],8)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
Description
Number of indecomposable injective modules with projective dimension 2.
Mp00197: Lattices lattice of congruencesLattices
Mp00263: Lattices join irreduciblesPosets
St000849: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2)],3)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 2
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 2
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(1,2)],3)
=> 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2)],3)
=> 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(1,2)],3)
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> 1
([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2)],3)
=> 1
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 2
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2)],3)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0
([(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3),(6,4)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3),(6,4),(6,5)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 2
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> 1
([(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,3),(5,4),(7,6)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 2
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(6,5)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> 1
([(0,4),(0,5),(1,7),(2,6),(3,6),(4,7),(5,1),(5,2),(5,3),(6,7)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0
([(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,3),(7,6)],8)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2)],3)
=> 1
([(0,5),(1,7),(2,7),(3,6),(4,2),(4,6),(5,1),(5,3),(5,4),(6,7)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> 1
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(5,3),(6,1),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0
([(0,5),(1,7),(2,7),(3,7),(4,7),(5,4),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(6,7)],8)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(1,2)],3)
=> 1
Description
The number of 1/3-balanced pairs in a poset. A pair of elements $x,y$ of a poset is $\alpha$-balanced if the proportion of linear extensions where $x$ comes before $y$ is between $\alpha$ and $1-\alpha$. Kislitsyn [1] conjectured that every poset which is not a chain has a $1/3$-balanced pair. Brightwell, Felsner and Trotter [2] show that at least a $(1-\sqrt 5)/10$-balanced pair exists in posets which are not chains. Olson and Sagan [3] show that posets corresponding to skew Ferrers diagrams have a $1/3$-balanced pair.
Mp00197: Lattices lattice of congruencesLattices
Mp00263: Lattices join irreduciblesPosets
St001397: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2)],3)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 2
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 2
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(1,2)],3)
=> 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2)],3)
=> 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(1,2)],3)
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> 1
([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2)],3)
=> 1
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 2
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2)],3)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0
([(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3),(6,4)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3),(6,4),(6,5)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 2
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> 1
([(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,3),(5,4),(7,6)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 2
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(6,5)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> 1
([(0,4),(0,5),(1,7),(2,6),(3,6),(4,7),(5,1),(5,2),(5,3),(6,7)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0
([(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,3),(7,6)],8)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2)],3)
=> 1
([(0,5),(1,7),(2,7),(3,6),(4,2),(4,6),(5,1),(5,3),(5,4),(6,7)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> 1
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(5,3),(6,1),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0
([(0,5),(1,7),(2,7),(3,7),(4,7),(5,4),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(6,7)],8)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(1,2)],3)
=> 1
Description
Number of pairs of incomparable elements in a finite poset. For a finite poset $(P,\leq)$, this is the number of unordered pairs $\{x,y\} \in \binom{P}{2}$ with $x \not\leq y$ and $y \not\leq x$.
Mp00197: Lattices lattice of congruencesLattices
Mp00193: Lattices to posetPosets
St001633: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 2
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 2
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3),(6,4)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3),(6,4),(6,5)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,3),(5,4),(7,6)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(6,5)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,4),(0,5),(1,7),(2,6),(3,6),(4,7),(5,1),(5,2),(5,3),(6,7)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,3),(7,6)],8)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
([(0,5),(1,7),(2,7),(3,6),(4,2),(4,6),(5,1),(5,3),(5,4),(6,7)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(5,3),(6,1),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(0,5),(1,7),(2,7),(3,7),(4,7),(5,4),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(6,7)],8)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
Description
The number of simple modules with projective dimension two in the incidence algebra of the poset.
Matching statistic: St000185
Mp00197: Lattices lattice of congruencesLattices
Mp00193: Lattices to posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
St000185: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> [5,2]
=> 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> [5,2]
=> 2
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> [5,2]
=> 2
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 0
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 0
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 0
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> 1
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 0
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3),(6,4)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3),(6,4),(6,5)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,3),(5,4),(7,6)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 0
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(6,5)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,4),(0,5),(1,7),(2,6),(3,6),(4,7),(5,1),(5,2),(5,3),(6,7)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,3),(7,6)],8)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> 1
([(0,5),(1,7),(2,7),(3,6),(4,2),(4,6),(5,1),(5,3),(5,4),(6,7)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(5,3),(6,1),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,5),(1,7),(2,7),(3,7),(4,7),(5,4),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(6,7)],8)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> 1
Description
The weighted size of a partition. Let $\lambda = (\lambda_0\geq\lambda_1 \geq \dots\geq\lambda_m)$ be an integer partition. Then the weighted size of $\lambda$ is $$\sum_{i=0}^m i \cdot \lambda_i.$$ This is also the sum of the leg lengths of the cells in $\lambda$, or $$ \sum_i \binom{\lambda^{\prime}_i}{2} $$ where $\lambda^{\prime}$ is the conjugate partition of $\lambda$. This is the minimal number of inversions a permutation with the given shape can have, see [1, cor.2.2]. This is also the smallest possible sum of the entries of a semistandard tableau (allowing 0 as a part) of shape $\lambda=(\lambda_0,\lambda_1,\ldots,\lambda_m)$, obtained uniquely by placing $i-1$ in all the cells of the $i$th row of $\lambda$, see [2, eq.7.103].
Matching statistic: St000362
Mp00197: Lattices lattice of congruencesLattices
Mp00193: Lattices to posetPosets
Mp00198: Posets incomparability graphGraphs
St000362: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(3,6),(4,5)],7)
=> 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(3,6),(4,5)],7)
=> 2
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(3,6),(4,5)],7)
=> 2
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 1
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3),(6,4)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3),(6,4),(6,5)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,3),(5,4),(7,6)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(6,5)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,4),(0,5),(1,7),(2,6),(3,6),(4,7),(5,1),(5,2),(5,3),(6,7)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,3),(7,6)],8)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 1
([(0,5),(1,7),(2,7),(3,6),(4,2),(4,6),(5,1),(5,3),(5,4),(6,7)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(5,3),(6,1),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,5),(1,7),(2,7),(3,7),(4,7),(5,4),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(6,7)],8)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 1
Description
The size of a minimal vertex cover of a graph. A '''vertex cover''' of a graph $G$ is a subset $S$ of the vertices of $G$ such that each edge of $G$ contains at least one vertex of $S$. Finding a minimal vertex cover is an NP-hard optimization problem.
Matching statistic: St000387
Mp00197: Lattices lattice of congruencesLattices
Mp00193: Lattices to posetPosets
Mp00198: Posets incomparability graphGraphs
St000387: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(3,6),(4,5)],7)
=> 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(3,6),(4,5)],7)
=> 2
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(3,6),(4,5)],7)
=> 2
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 1
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3),(6,4)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3),(6,4),(6,5)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,3),(5,4),(7,6)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(6,5)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,4),(0,5),(1,7),(2,6),(3,6),(4,7),(5,1),(5,2),(5,3),(6,7)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,3),(7,6)],8)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 1
([(0,5),(1,7),(2,7),(3,6),(4,2),(4,6),(5,1),(5,3),(5,4),(6,7)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(5,3),(6,1),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,5),(1,7),(2,7),(3,7),(4,7),(5,4),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(6,7)],8)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 1
Description
The matching number of a graph. For a graph $G$, this is defined as the maximal size of a '''matching''' or '''independent edge set''' (a set of edges without common vertices) contained in $G$.
Matching statistic: St000985
Mp00197: Lattices lattice of congruencesLattices
Mp00193: Lattices to posetPosets
Mp00198: Posets incomparability graphGraphs
St000985: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(3,6),(4,5)],7)
=> 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(3,6),(4,5)],7)
=> 2
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(3,6),(4,5)],7)
=> 2
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 1
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3),(6,4)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3),(6,4),(6,5)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,3),(5,4),(7,6)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(6,5)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,4),(0,5),(1,7),(2,6),(3,6),(4,7),(5,1),(5,2),(5,3),(6,7)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,3),(7,6)],8)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 1
([(0,5),(1,7),(2,7),(3,6),(4,2),(4,6),(5,1),(5,3),(5,4),(6,7)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(5,3),(6,1),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,5),(1,7),(2,7),(3,7),(4,7),(5,4),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(6,7)],8)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 1
Description
The number of positive eigenvalues of the adjacency matrix of the graph.
Matching statistic: St001176
Mp00197: Lattices lattice of congruencesLattices
Mp00193: Lattices to posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
St001176: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> [5,2]
=> 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> [5,2]
=> 2
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 0
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> [5,2]
=> 2
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 0
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 0
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 0
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> 1
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 0
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3),(6,4)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3),(6,4),(6,5)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,3),(5,4),(7,6)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(6,1),(6,2),(6,5)],8)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 0
([(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(6,5)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,4),(0,5),(1,7),(2,6),(3,6),(4,7),(5,1),(5,2),(5,3),(6,7)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,3),(7,6)],8)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> 1
([(0,5),(1,7),(2,7),(3,6),(4,2),(4,6),(5,1),(5,3),(5,4),(6,7)],8)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,3),(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(6,1),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,4),(0,6),(1,7),(2,7),(3,7),(4,7),(5,2),(5,3),(6,1),(6,5)],8)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,5),(1,7),(2,7),(3,7),(4,7),(5,4),(5,6),(6,1),(6,2),(6,3)],8)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(6,7)],8)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> 1
Description
The size of a partition minus its first part. This is the number of boxes in its diagram that are not in the first row.
The following 25 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001214The aft of an integer partition. St001305The number of induced cycles on four vertices in a graph. St001311The cyclomatic number of a graph. St001317The minimal number of occurrences of the forest-pattern in a linear ordering of the vertices of the graph. St001324The minimal number of occurrences of the chordal-pattern in a linear ordering of the vertices of the graph. St001326The minimal number of occurrences of the interval-pattern in a linear ordering of the vertices of the graph. St001971The number of negative eigenvalues of the adjacency matrix of the graph. St000456The monochromatic index of a connected graph. St000814The sum of the entries in the column specified by the partition of the change of basis matrix from elementary symmetric functions to Schur symmetric functions. St001271The competition number of a graph. St001725The harmonious chromatic number of a graph. St001883The mutual visibility number of a graph. St000848The balance constant multiplied with the number of linear extensions of a poset. St001117The game chromatic index of a graph. St001574The minimal number of edges to add or remove to make a graph regular. St001576The minimal number of edges to add or remove to make a graph vertex transitive. St001742The difference of the maximal and the minimal degree in a graph. St001812The biclique partition number of a graph. St000450The number of edges minus the number of vertices plus 2 of a graph. St001624The breadth of a lattice. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St001330The hat guessing number of a graph. St000718The largest Laplacian eigenvalue of a graph if it is integral. St000454The largest eigenvalue of a graph if it is integral. St000422The energy of a graph, if it is integral.