Your data matches 72 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001698
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00045: Integer partitions reading tableauStandard tableaux
St001698: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [2]
=> [[1,2]]
=> 0
([],2)
=> [2,2]
=> [[1,2],[3,4]]
=> 0
([(0,1)],2)
=> [3]
=> [[1,2,3]]
=> 0
([],3)
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> 0
([(1,2)],3)
=> [6]
=> [[1,2,3,4,5,6]]
=> 0
([(0,1),(0,2)],3)
=> [3,2]
=> [[1,2,5],[3,4]]
=> 1
([(0,2),(2,1)],3)
=> [4]
=> [[1,2,3,4]]
=> 0
([(0,2),(1,2)],3)
=> [3,2]
=> [[1,2,5],[3,4]]
=> 1
([(0,2),(0,3),(3,1)],4)
=> [7]
=> [[1,2,3,4,5,6,7]]
=> 0
([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> 2
([(1,2),(2,3)],4)
=> [4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> 0
([(0,3),(3,1),(3,2)],4)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> 2
([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> 2
([(0,3),(1,2),(1,3)],4)
=> [5,3]
=> [[1,2,3,7,8],[4,5,6]]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> 2
([(0,3),(2,1),(3,2)],4)
=> [5]
=> [[1,2,3,4,5]]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [7]
=> [[1,2,3,4,5,6,7]]
=> 0
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [4,2,2]
=> [[1,2,7,8],[3,4],[5,6]]
=> 4
([(0,4),(1,4),(4,2),(4,3)],5)
=> [4,2,2]
=> [[1,2,7,8],[3,4],[5,6]]
=> 4
([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> 3
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [4,2,2]
=> [[1,2,7,8],[3,4],[5,6]]
=> 4
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [8]
=> [[1,2,3,4,5,6,7,8]]
=> 0
([(0,3),(3,4),(4,1),(4,2)],5)
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> 3
([(0,4),(1,2),(2,4),(4,3)],5)
=> [8]
=> [[1,2,3,4,5,6,7,8]]
=> 0
([(0,4),(3,2),(4,1),(4,3)],5)
=> [8]
=> [[1,2,3,4,5,6,7,8]]
=> 0
([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> [[1,2,3,4,5,6]]
=> 0
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> 3
([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> [[1,2,5,6,7,8],[3,4]]
=> 4
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [6,2]
=> [[1,2,5,6,7,8],[3,4]]
=> 4
([(0,4),(3,5),(4,3),(5,1),(5,2)],6)
=> [6,2]
=> [[1,2,5,6,7,8],[3,4]]
=> 4
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [6,2]
=> [[1,2,5,6,7,8],[3,4]]
=> 4
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [7]
=> [[1,2,3,4,5,6,7]]
=> 0
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [6,2]
=> [[1,2,5,6,7,8],[3,4]]
=> 4
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [8]
=> [[1,2,3,4,5,6,7,8]]
=> 0
Description
The comajor index of a standard tableau minus the weighted size of its shape.
Matching statistic: St001699
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
St001699: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [2]
=> [[1,2]]
=> 0
([],2)
=> [2,2]
=> [[1,2],[3,4]]
=> 0
([(0,1)],2)
=> [3]
=> [[1,2,3]]
=> 0
([],3)
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> 0
([(1,2)],3)
=> [6]
=> [[1,2,3,4,5,6]]
=> 0
([(0,1),(0,2)],3)
=> [3,2]
=> [[1,2,3],[4,5]]
=> 1
([(0,2),(2,1)],3)
=> [4]
=> [[1,2,3,4]]
=> 0
([(0,2),(1,2)],3)
=> [3,2]
=> [[1,2,3],[4,5]]
=> 1
([(0,2),(0,3),(3,1)],4)
=> [7]
=> [[1,2,3,4,5,6,7]]
=> 0
([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> 2
([(1,2),(2,3)],4)
=> [4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> 0
([(0,3),(3,1),(3,2)],4)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> 2
([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> 2
([(0,3),(1,2),(1,3)],4)
=> [5,3]
=> [[1,2,3,4,5],[6,7,8]]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> 2
([(0,3),(2,1),(3,2)],4)
=> [5]
=> [[1,2,3,4,5]]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [7]
=> [[1,2,3,4,5,6,7]]
=> 0
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> [[1,2,3,4,5],[6,7]]
=> 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [4,2,2]
=> [[1,2,3,4],[5,6],[7,8]]
=> 4
([(0,4),(1,4),(4,2),(4,3)],5)
=> [4,2,2]
=> [[1,2,3,4],[5,6],[7,8]]
=> 4
([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> [[1,2,3,4,5],[6,7]]
=> 3
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [4,2,2]
=> [[1,2,3,4],[5,6],[7,8]]
=> 4
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [8]
=> [[1,2,3,4,5,6,7,8]]
=> 0
([(0,3),(3,4),(4,1),(4,2)],5)
=> [5,2]
=> [[1,2,3,4,5],[6,7]]
=> 3
([(0,4),(1,2),(2,4),(4,3)],5)
=> [8]
=> [[1,2,3,4,5,6,7,8]]
=> 0
([(0,4),(3,2),(4,1),(4,3)],5)
=> [8]
=> [[1,2,3,4,5,6,7,8]]
=> 0
([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> [[1,2,3,4,5,6]]
=> 0
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> [[1,2,3,4,5],[6,7]]
=> 3
([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> [[1,2,3,4,5,6],[7,8]]
=> 4
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [6,2]
=> [[1,2,3,4,5,6],[7,8]]
=> 4
([(0,4),(3,5),(4,3),(5,1),(5,2)],6)
=> [6,2]
=> [[1,2,3,4,5,6],[7,8]]
=> 4
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [6,2]
=> [[1,2,3,4,5,6],[7,8]]
=> 4
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [7]
=> [[1,2,3,4,5,6,7]]
=> 0
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [6,2]
=> [[1,2,3,4,5,6],[7,8]]
=> 4
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [8]
=> [[1,2,3,4,5,6,7,8]]
=> 0
Description
The major index of a standard tableau minus the weighted size of its shape.
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00095: Integer partitions to binary wordBinary words
Mp00104: Binary words reverseBinary words
St000293: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [2]
=> 100 => 001 => 0
([],2)
=> [2,2]
=> 1100 => 0011 => 0
([(0,1)],2)
=> [3]
=> 1000 => 0001 => 0
([],3)
=> [2,2,2,2]
=> 111100 => 001111 => 0
([(1,2)],3)
=> [6]
=> 1000000 => 0000001 => 0
([(0,1),(0,2)],3)
=> [3,2]
=> 10100 => 00101 => 1
([(0,2),(2,1)],3)
=> [4]
=> 10000 => 00001 => 0
([(0,2),(1,2)],3)
=> [3,2]
=> 10100 => 00101 => 1
([(0,2),(0,3),(3,1)],4)
=> [7]
=> 10000000 => 00000001 => 0
([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> 100100 => 001001 => 2
([(1,2),(2,3)],4)
=> [4,4]
=> 110000 => 000011 => 0
([(0,3),(3,1),(3,2)],4)
=> [4,2]
=> 100100 => 001001 => 2
([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 100100 => 001001 => 2
([(0,3),(1,2),(1,3)],4)
=> [5,3]
=> 1001000 => 0001001 => 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [3,2,2]
=> 101100 => 001101 => 2
([(0,3),(2,1),(3,2)],4)
=> [5]
=> 100000 => 000001 => 0
([(0,3),(1,2),(2,3)],4)
=> [7]
=> 10000000 => 00000001 => 0
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> 1000100 => 0010001 => 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [4,2,2]
=> 1001100 => 0011001 => 4
([(0,4),(1,4),(4,2),(4,3)],5)
=> [4,2,2]
=> 1001100 => 0011001 => 4
([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> 1000100 => 0010001 => 3
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [4,2,2]
=> 1001100 => 0011001 => 4
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [8]
=> 100000000 => 000000001 => 0
([(0,3),(3,4),(4,1),(4,2)],5)
=> [5,2]
=> 1000100 => 0010001 => 3
([(0,4),(1,2),(2,4),(4,3)],5)
=> [8]
=> 100000000 => 000000001 => 0
([(0,4),(3,2),(4,1),(4,3)],5)
=> [8]
=> 100000000 => 000000001 => 0
([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 1000000 => 0000001 => 0
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> 1000100 => 0010001 => 3
([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 10000100 => 00100001 => 4
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [6,2]
=> 10000100 => 00100001 => 4
([(0,4),(3,5),(4,3),(5,1),(5,2)],6)
=> [6,2]
=> 10000100 => 00100001 => 4
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [6,2]
=> 10000100 => 00100001 => 4
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [7]
=> 10000000 => 00000001 => 0
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [6,2]
=> 10000100 => 00100001 => 4
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [8]
=> 100000000 => 000000001 => 0
Description
The number of inversions of a binary word.
Matching statistic: St000454
Mp00198: Posets incomparability graphGraphs
Mp00247: Graphs de-duplicateGraphs
Mp00111: Graphs complementGraphs
St000454: Graphs ⟶ ℤResult quality: 34% values known / values provided: 34%distinct values known / distinct values provided: 40%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
([],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,1)],2)
=> ([],2)
=> ([],1)
=> ([],1)
=> 0
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 0
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 1
([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> ([],1)
=> 0
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 1
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 0
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 2
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 2
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> ([],1)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 0
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ? = 4
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ? = 4
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 3
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ? = 4
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 0
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 3
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 0
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 0
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> ([],1)
=> 0
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 3
([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 4
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 4
([(0,4),(3,5),(4,3),(5,1),(5,2)],6)
=> ([(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 4
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 4
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],1)
=> ([],1)
=> 0
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 4
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> ([],1)
=> ([],1)
=> 0
Description
The largest eigenvalue of a graph if it is integral. If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree. This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001881
Mp00198: Posets incomparability graphGraphs
Mp00111: Graphs complementGraphs
Mp00266: Graphs connected vertex partitionsLattices
St001881: Lattices ⟶ ℤResult quality: 29% values known / values provided: 29%distinct values known / distinct values provided: 60%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([],2)
=> ([(0,1)],2)
=> ([],2)
=> ([],1)
=> 1 = 0 + 1
([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],1)
=> 1 = 0 + 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 0 + 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 2 + 1
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 2 + 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 2 + 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 3 = 2 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 2 + 1
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ? = 0 + 1
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 0 + 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,12),(1,15),(1,28),(1,31),(1,34),(2,11),(2,14),(2,28),(2,30),(2,33),(3,10),(3,13),(3,28),(3,29),(3,32),(4,10),(4,16),(4,19),(4,21),(4,30),(4,31),(5,11),(5,17),(5,20),(5,22),(5,29),(5,31),(6,12),(6,18),(6,23),(6,24),(6,29),(6,30),(7,13),(7,16),(7,20),(7,23),(7,33),(7,34),(8,14),(8,17),(8,19),(8,24),(8,32),(8,34),(9,15),(9,18),(9,21),(9,22),(9,32),(9,33),(10,25),(10,35),(10,45),(11,26),(11,36),(11,45),(12,27),(12,37),(12,45),(13,25),(13,38),(13,44),(14,26),(14,39),(14,44),(15,27),(15,40),(15,44),(16,25),(16,42),(16,43),(17,26),(17,41),(17,43),(18,27),(18,41),(18,42),(19,35),(19,39),(19,43),(20,36),(20,38),(20,43),(21,35),(21,40),(21,42),(22,36),(22,40),(22,41),(23,37),(23,38),(23,42),(24,37),(24,39),(24,41),(25,46),(26,46),(27,46),(28,44),(28,45),(29,38),(29,41),(29,45),(30,39),(30,42),(30,45),(31,40),(31,43),(31,45),(32,35),(32,41),(32,44),(33,36),(33,42),(33,44),(34,37),(34,43),(34,44),(35,46),(36,46),(37,46),(38,46),(39,46),(40,46),(41,46),(42,46),(43,46),(44,46),(45,46)],47)
=> ? = 3 + 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,16),(1,20),(1,24),(1,30),(1,32),(2,15),(2,19),(2,23),(2,30),(2,31),(3,17),(3,21),(3,23),(3,29),(3,32),(4,18),(4,22),(4,24),(4,29),(4,31),(5,10),(5,13),(5,14),(5,17),(5,18),(5,30),(6,10),(6,11),(6,12),(6,15),(6,16),(6,29),(7,9),(7,11),(7,13),(7,19),(7,22),(7,32),(8,9),(8,12),(8,14),(8,20),(8,21),(8,31),(9,35),(9,36),(9,41),(10,33),(10,34),(10,41),(11,25),(11,38),(11,41),(12,26),(12,37),(12,41),(13,28),(13,39),(13,41),(14,27),(14,40),(14,41),(15,25),(15,33),(15,37),(16,26),(16,33),(16,38),(17,27),(17,34),(17,39),(18,28),(18,34),(18,40),(19,25),(19,35),(19,39),(20,26),(20,36),(20,40),(21,27),(21,36),(21,37),(22,28),(22,35),(22,38),(23,37),(23,39),(24,38),(24,40),(25,42),(26,42),(27,42),(28,42),(29,34),(29,37),(29,38),(30,33),(30,39),(30,40),(31,35),(31,37),(31,40),(32,36),(32,38),(32,39),(33,42),(34,42),(35,42),(36,42),(37,42),(38,42),(39,42),(40,42),(41,42)],43)
=> ? = 4 + 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,16),(1,20),(1,24),(1,30),(1,32),(2,15),(2,19),(2,23),(2,30),(2,31),(3,17),(3,21),(3,23),(3,29),(3,32),(4,18),(4,22),(4,24),(4,29),(4,31),(5,10),(5,13),(5,14),(5,17),(5,18),(5,30),(6,10),(6,11),(6,12),(6,15),(6,16),(6,29),(7,9),(7,11),(7,13),(7,19),(7,22),(7,32),(8,9),(8,12),(8,14),(8,20),(8,21),(8,31),(9,35),(9,36),(9,41),(10,33),(10,34),(10,41),(11,25),(11,38),(11,41),(12,26),(12,37),(12,41),(13,28),(13,39),(13,41),(14,27),(14,40),(14,41),(15,25),(15,33),(15,37),(16,26),(16,33),(16,38),(17,27),(17,34),(17,39),(18,28),(18,34),(18,40),(19,25),(19,35),(19,39),(20,26),(20,36),(20,40),(21,27),(21,36),(21,37),(22,28),(22,35),(22,38),(23,37),(23,39),(24,38),(24,40),(25,42),(26,42),(27,42),(28,42),(29,34),(29,37),(29,38),(30,33),(30,39),(30,40),(31,35),(31,37),(31,40),(32,36),(32,38),(32,39),(33,42),(34,42),(35,42),(36,42),(37,42),(38,42),(39,42),(40,42),(41,42)],43)
=> ? = 4 + 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,12),(1,15),(1,28),(1,31),(1,34),(2,11),(2,14),(2,28),(2,30),(2,33),(3,10),(3,13),(3,28),(3,29),(3,32),(4,10),(4,16),(4,19),(4,21),(4,30),(4,31),(5,11),(5,17),(5,20),(5,22),(5,29),(5,31),(6,12),(6,18),(6,23),(6,24),(6,29),(6,30),(7,13),(7,16),(7,20),(7,23),(7,33),(7,34),(8,14),(8,17),(8,19),(8,24),(8,32),(8,34),(9,15),(9,18),(9,21),(9,22),(9,32),(9,33),(10,25),(10,35),(10,45),(11,26),(11,36),(11,45),(12,27),(12,37),(12,45),(13,25),(13,38),(13,44),(14,26),(14,39),(14,44),(15,27),(15,40),(15,44),(16,25),(16,42),(16,43),(17,26),(17,41),(17,43),(18,27),(18,41),(18,42),(19,35),(19,39),(19,43),(20,36),(20,38),(20,43),(21,35),(21,40),(21,42),(22,36),(22,40),(22,41),(23,37),(23,38),(23,42),(24,37),(24,39),(24,41),(25,46),(26,46),(27,46),(28,44),(28,45),(29,38),(29,41),(29,45),(30,39),(30,42),(30,45),(31,40),(31,43),(31,45),(32,35),(32,41),(32,44),(33,36),(33,42),(33,44),(34,37),(34,43),(34,44),(35,46),(36,46),(37,46),(38,46),(39,46),(40,46),(41,46),(42,46),(43,46),(44,46),(45,46)],47)
=> ? = 3 + 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,16),(1,20),(1,24),(1,30),(1,32),(2,15),(2,19),(2,23),(2,30),(2,31),(3,17),(3,21),(3,23),(3,29),(3,32),(4,18),(4,22),(4,24),(4,29),(4,31),(5,10),(5,13),(5,14),(5,17),(5,18),(5,30),(6,10),(6,11),(6,12),(6,15),(6,16),(6,29),(7,9),(7,11),(7,13),(7,19),(7,22),(7,32),(8,9),(8,12),(8,14),(8,20),(8,21),(8,31),(9,35),(9,36),(9,41),(10,33),(10,34),(10,41),(11,25),(11,38),(11,41),(12,26),(12,37),(12,41),(13,28),(13,39),(13,41),(14,27),(14,40),(14,41),(15,25),(15,33),(15,37),(16,26),(16,33),(16,38),(17,27),(17,34),(17,39),(18,28),(18,34),(18,40),(19,25),(19,35),(19,39),(20,26),(20,36),(20,40),(21,27),(21,36),(21,37),(22,28),(22,35),(22,38),(23,37),(23,39),(24,38),(24,40),(25,42),(26,42),(27,42),(28,42),(29,34),(29,37),(29,38),(30,33),(30,39),(30,40),(31,35),(31,37),(31,40),(32,36),(32,38),(32,39),(33,42),(34,42),(35,42),(36,42),(37,42),(38,42),(39,42),(40,42),(41,42)],43)
=> ? = 4 + 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,9),(1,26),(1,27),(1,28),(2,9),(2,10),(2,11),(2,29),(2,30),(3,13),(3,17),(3,21),(3,28),(3,30),(4,12),(4,16),(4,21),(4,27),(4,29),(5,15),(5,18),(5,20),(5,27),(5,30),(6,14),(6,19),(6,20),(6,28),(6,29),(7,11),(7,16),(7,17),(7,18),(7,19),(7,26),(8,10),(8,12),(8,13),(8,14),(8,15),(8,26),(9,35),(9,38),(10,31),(10,32),(10,35),(11,33),(11,34),(11,35),(12,22),(12,31),(12,36),(13,22),(13,32),(13,37),(14,23),(14,31),(14,37),(15,23),(15,32),(15,36),(16,24),(16,33),(16,36),(17,24),(17,34),(17,37),(18,25),(18,34),(18,36),(19,25),(19,33),(19,37),(20,23),(20,25),(20,38),(21,22),(21,24),(21,38),(22,39),(23,39),(24,39),(25,39),(26,35),(26,36),(26,37),(27,36),(27,38),(28,37),(28,38),(29,31),(29,33),(29,38),(30,32),(30,34),(30,38),(31,39),(32,39),(33,39),(34,39),(35,39),(36,39),(37,39),(38,39)],40)
=> ? = 0 + 1
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,12),(1,15),(1,28),(1,31),(1,34),(2,11),(2,14),(2,28),(2,30),(2,33),(3,10),(3,13),(3,28),(3,29),(3,32),(4,10),(4,16),(4,19),(4,21),(4,30),(4,31),(5,11),(5,17),(5,20),(5,22),(5,29),(5,31),(6,12),(6,18),(6,23),(6,24),(6,29),(6,30),(7,13),(7,16),(7,20),(7,23),(7,33),(7,34),(8,14),(8,17),(8,19),(8,24),(8,32),(8,34),(9,15),(9,18),(9,21),(9,22),(9,32),(9,33),(10,25),(10,35),(10,45),(11,26),(11,36),(11,45),(12,27),(12,37),(12,45),(13,25),(13,38),(13,44),(14,26),(14,39),(14,44),(15,27),(15,40),(15,44),(16,25),(16,42),(16,43),(17,26),(17,41),(17,43),(18,27),(18,41),(18,42),(19,35),(19,39),(19,43),(20,36),(20,38),(20,43),(21,35),(21,40),(21,42),(22,36),(22,40),(22,41),(23,37),(23,38),(23,42),(24,37),(24,39),(24,41),(25,46),(26,46),(27,46),(28,44),(28,45),(29,38),(29,41),(29,45),(30,39),(30,42),(30,45),(31,40),(31,43),(31,45),(32,35),(32,41),(32,44),(33,36),(33,42),(33,44),(34,37),(34,43),(34,44),(35,46),(36,46),(37,46),(38,46),(39,46),(40,46),(41,46),(42,46),(43,46),(44,46),(45,46)],47)
=> ? = 3 + 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,9),(1,26),(1,27),(1,28),(2,9),(2,10),(2,11),(2,29),(2,30),(3,13),(3,17),(3,21),(3,28),(3,30),(4,12),(4,16),(4,21),(4,27),(4,29),(5,15),(5,18),(5,20),(5,27),(5,30),(6,14),(6,19),(6,20),(6,28),(6,29),(7,11),(7,16),(7,17),(7,18),(7,19),(7,26),(8,10),(8,12),(8,13),(8,14),(8,15),(8,26),(9,35),(9,38),(10,31),(10,32),(10,35),(11,33),(11,34),(11,35),(12,22),(12,31),(12,36),(13,22),(13,32),(13,37),(14,23),(14,31),(14,37),(15,23),(15,32),(15,36),(16,24),(16,33),(16,36),(17,24),(17,34),(17,37),(18,25),(18,34),(18,36),(19,25),(19,33),(19,37),(20,23),(20,25),(20,38),(21,22),(21,24),(21,38),(22,39),(23,39),(24,39),(25,39),(26,35),(26,36),(26,37),(27,36),(27,38),(28,37),(28,38),(29,31),(29,33),(29,38),(30,32),(30,34),(30,38),(31,39),(32,39),(33,39),(34,39),(35,39),(36,39),(37,39),(38,39)],40)
=> ? = 0 + 1
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,9),(1,26),(1,27),(1,28),(2,9),(2,10),(2,11),(2,29),(2,30),(3,13),(3,17),(3,21),(3,28),(3,30),(4,12),(4,16),(4,21),(4,27),(4,29),(5,15),(5,18),(5,20),(5,27),(5,30),(6,14),(6,19),(6,20),(6,28),(6,29),(7,11),(7,16),(7,17),(7,18),(7,19),(7,26),(8,10),(8,12),(8,13),(8,14),(8,15),(8,26),(9,35),(9,38),(10,31),(10,32),(10,35),(11,33),(11,34),(11,35),(12,22),(12,31),(12,36),(13,22),(13,32),(13,37),(14,23),(14,31),(14,37),(15,23),(15,32),(15,36),(16,24),(16,33),(16,36),(17,24),(17,34),(17,37),(18,25),(18,34),(18,36),(19,25),(19,33),(19,37),(20,23),(20,25),(20,38),(21,22),(21,24),(21,38),(22,39),(23,39),(24,39),(25,39),(26,35),(26,36),(26,37),(27,36),(27,38),(28,37),(28,38),(29,31),(29,33),(29,38),(30,32),(30,34),(30,38),(31,39),(32,39),(33,39),(34,39),(35,39),(36,39),(37,39),(38,39)],40)
=> ? = 0 + 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,13),(1,14),(1,20),(1,28),(1,29),(1,31),(2,11),(2,12),(2,19),(2,26),(2,27),(2,31),(3,16),(3,18),(3,22),(3,27),(3,29),(3,30),(4,15),(4,17),(4,21),(4,26),(4,28),(4,30),(5,11),(5,15),(5,24),(5,29),(5,32),(5,34),(6,12),(6,16),(6,25),(6,28),(6,32),(6,35),(7,13),(7,17),(7,25),(7,27),(7,33),(7,34),(8,14),(8,18),(8,24),(8,26),(8,33),(8,35),(9,21),(9,22),(9,23),(9,31),(9,34),(9,35),(10,19),(10,20),(10,23),(10,30),(10,32),(10,33),(11,36),(11,40),(11,50),(12,36),(12,41),(12,49),(13,37),(13,42),(13,50),(14,37),(14,43),(14,49),(15,38),(15,40),(15,48),(16,39),(16,41),(16,48),(17,38),(17,42),(17,47),(18,39),(18,43),(18,47),(19,36),(19,44),(19,47),(20,37),(20,44),(20,48),(21,38),(21,45),(21,49),(22,39),(22,45),(22,50),(23,44),(23,45),(23,46),(24,40),(24,43),(24,46),(25,41),(25,42),(25,46),(26,40),(26,47),(26,49),(27,41),(27,47),(27,50),(28,42),(28,48),(28,49),(29,43),(29,48),(29,50),(30,45),(30,47),(30,48),(31,44),(31,49),(31,50),(32,36),(32,46),(32,48),(33,37),(33,46),(33,47),(34,38),(34,46),(34,50),(35,39),(35,46),(35,49),(36,51),(37,51),(38,51),(39,51),(40,51),(41,51),(42,51),(43,51),(44,51),(45,51),(46,51),(47,51),(48,51),(49,51),(50,51)],52)
=> ? = 0 + 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,12),(1,15),(1,28),(1,31),(1,34),(2,11),(2,14),(2,28),(2,30),(2,33),(3,10),(3,13),(3,28),(3,29),(3,32),(4,10),(4,16),(4,19),(4,21),(4,30),(4,31),(5,11),(5,17),(5,20),(5,22),(5,29),(5,31),(6,12),(6,18),(6,23),(6,24),(6,29),(6,30),(7,13),(7,16),(7,20),(7,23),(7,33),(7,34),(8,14),(8,17),(8,19),(8,24),(8,32),(8,34),(9,15),(9,18),(9,21),(9,22),(9,32),(9,33),(10,25),(10,35),(10,45),(11,26),(11,36),(11,45),(12,27),(12,37),(12,45),(13,25),(13,38),(13,44),(14,26),(14,39),(14,44),(15,27),(15,40),(15,44),(16,25),(16,42),(16,43),(17,26),(17,41),(17,43),(18,27),(18,41),(18,42),(19,35),(19,39),(19,43),(20,36),(20,38),(20,43),(21,35),(21,40),(21,42),(22,36),(22,40),(22,41),(23,37),(23,38),(23,42),(24,37),(24,39),(24,41),(25,46),(26,46),(27,46),(28,44),(28,45),(29,38),(29,41),(29,45),(30,39),(30,42),(30,45),(31,40),(31,43),(31,45),(32,35),(32,41),(32,44),(33,36),(33,42),(33,44),(34,37),(34,43),(34,44),(35,46),(36,46),(37,46),(38,46),(39,46),(40,46),(41,46),(42,46),(43,46),(44,46),(45,46)],47)
=> ? = 3 + 1
([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(1,16),(1,21),(1,22),(1,28),(1,47),(1,52),(1,53),(1,88),(1,89),(1,91),(2,15),(2,19),(2,20),(2,27),(2,46),(2,50),(2,51),(2,86),(2,87),(2,91),(3,18),(3,24),(3,26),(3,30),(3,49),(3,55),(3,57),(3,87),(3,89),(3,90),(4,17),(4,23),(4,25),(4,29),(4,48),(4,54),(4,56),(4,86),(4,88),(4,90),(5,15),(5,31),(5,32),(5,39),(5,47),(5,54),(5,55),(5,92),(5,93),(5,97),(6,16),(6,33),(6,34),(6,40),(6,46),(6,56),(6,57),(6,94),(6,95),(6,97),(7,17),(7,35),(7,37),(7,41),(7,49),(7,50),(7,52),(7,92),(7,94),(7,96),(8,18),(8,36),(8,38),(8,42),(8,48),(8,51),(8,53),(8,93),(8,95),(8,96),(9,19),(9,23),(9,31),(9,35),(9,44),(9,82),(9,84),(9,89),(9,95),(10,20),(10,24),(10,32),(10,36),(10,45),(10,82),(10,85),(10,88),(10,94),(11,21),(11,25),(11,33),(11,37),(11,45),(11,83),(11,84),(11,87),(11,93),(12,22),(12,26),(12,34),(12,38),(12,44),(12,83),(12,85),(12,86),(12,92),(13,29),(13,30),(13,41),(13,42),(13,43),(13,84),(13,85),(13,91),(13,97),(14,27),(14,28),(14,39),(14,40),(14,43),(14,82),(14,83),(14,90),(14,96),(15,70),(15,71),(15,78),(15,152),(15,153),(15,157),(16,72),(16,73),(16,79),(16,154),(16,155),(16,157),(17,74),(17,76),(17,80),(17,152),(17,154),(17,156),(18,75),(18,77),(18,81),(18,153),(18,155),(18,156),(19,58),(19,70),(19,99),(19,122),(19,134),(19,168),(20,59),(20,71),(20,98),(20,123),(20,134),(20,167),(21,60),(21,72),(21,101),(21,124),(21,135),(21,168),(22,61),(22,73),(22,100),(22,125),(22,135),(22,167),(23,62),(23,74),(23,104),(23,122),(23,136),(23,166),(24,63),(24,75),(24,105),(24,123),(24,137),(24,166),(25,64),(25,76),(25,102),(25,124),(25,136),(25,165),(26,65),(26,77),(26,103),(26,125),(26,137),(26,165),(27,66),(27,78),(27,106),(27,126),(27,134),(27,165),(28,67),(28,79),(28,107),(28,126),(28,135),(28,166),(29,68),(29,80),(29,108),(29,127),(29,136),(29,167),(30,69),(30,81),(30,109),(30,127),(30,137),(30,168),(31,62),(31,70),(31,113),(31,128),(31,138),(31,172),(32,63),(32,71),(32,112),(32,129),(32,138),(32,171),(33,64),(33,72),(33,111),(33,130),(33,139),(33,172),(34,65),(34,73),(34,110),(34,131),(34,139),(34,171),(35,58),(35,74),(35,117),(35,128),(35,140),(35,170),(36,59),(36,75),(36,116),(36,129),(36,141),(36,170),(37,60),(37,76),(37,115),(37,130),(37,140),(37,169),(38,61),(38,77),(38,114),(38,131),(38,141),(38,169),(39,67),(39,78),(39,118),(39,132),(39,138),(39,169),(40,66),(40,79),(40,119),(40,132),(40,139),(40,170),(41,69),(41,80),(41,120),(41,133),(41,140),(41,171),(42,68),(42,81),(42,121),(42,133),(42,141),(42,172),(43,126),(43,127),(43,132),(43,133),(43,158),(44,122),(44,125),(44,128),(44,131),(44,158),(45,123),(45,124),(45,129),(45,130),(45,158),(46,66),(46,98),(46,99),(46,110),(46,111),(46,157),(47,67),(47,100),(47,101),(47,112),(47,113),(47,157),(48,68),(48,102),(48,104),(48,114),(48,116),(48,156),(49,69),(49,103),(49,105),(49,115),(49,117),(49,156),(50,58),(50,98),(50,106),(50,115),(50,120),(50,152),(51,59),(51,99),(51,106),(51,114),(51,121),(51,153),(52,60),(52,100),(52,107),(52,117),(52,120),(52,154),(53,61),(53,101),(53,107),(53,116),(53,121),(53,155),(54,62),(54,102),(54,108),(54,112),(54,118),(54,152),(55,63),(55,103),(55,109),(55,113),(55,118),(55,153),(56,64),(56,104),(56,108),(56,110),(56,119),(56,154),(57,65),(57,105),(57,109),(57,111),(57,119),(57,155),(58,159),(58,173),(58,180),(59,160),(59,173),(59,179),(60,161),(60,174),(60,180),(61,162),(61,174),(61,179),(62,159),(62,175),(62,178),(63,160),(63,176),(63,178),(64,161),(64,175),(64,177),(65,162),(65,176),(65,177),(66,163),(66,173),(66,177),(67,163),(67,174),(67,178),(68,164),(68,175),(68,179),(69,164),(69,176),(69,180),(70,142),(70,159),(70,184),(71,142),(71,160),(71,183),(72,143),(72,161),(72,184),(73,143),(73,162),(73,183),(74,144),(74,159),(74,182),(75,145),(75,160),(75,182),(76,144),(76,161),(76,181),(77,145),(77,162),(77,181),(78,142),(78,163),(78,181),(79,143),(79,163),(79,182),(80,144),(80,164),(80,183),(81,145),(81,164),(81,184),(82,134),(82,138),(82,158),(82,166),(82,170),(83,135),(83,139),(83,158),(83,165),(83,169),(84,136),(84,140),(84,158),(84,168),(84,172),(85,137),(85,141),(85,158),(85,167),(85,171),(86,110),(86,114),(86,122),(86,152),(86,165),(86,167),(87,111),(87,115),(87,123),(87,153),(87,165),(87,168),(88,112),(88,116),(88,124),(88,154),(88,166),(88,167),(89,113),(89,117),(89,125),(89,155),(89,166),(89,168),(90,118),(90,119),(90,127),(90,156),(90,165),(90,166),(91,120),(91,121),(91,126),(91,157),(91,167),(91,168),(92,100),(92,103),(92,128),(92,152),(92,169),(92,171),(93,101),(93,102),(93,129),(93,153),(93,169),(93,172),(94,98),(94,105),(94,130),(94,154),(94,170),(94,171),(95,99),(95,104),(95,131),(95,155),(95,170),(95,172),(96,106),(96,107),(96,133),(96,156),(96,169),(96,170),(97,108),(97,109),(97,132),(97,157),(97,171),(97,172),(98,147),(98,173),(98,183),(99,146),(99,173),(99,184),(100,149),(100,174),(100,183),(101,148),(101,174),(101,184),(102,148),(102,175),(102,181),(103,149),(103,176),(103,181),(104,146),(104,175),(104,182),(105,147),(105,176),(105,182),(106,150),(106,173),(106,181),(107,150),(107,174),(107,182),(108,151),(108,175),(108,183),(109,151),(109,176),(109,184),(110,146),(110,177),(110,183),(111,147),(111,177),(111,184),(112,148),(112,178),(112,183),(113,149),(113,178),(113,184),(114,146),(114,179),(114,181),(115,147),(115,180),(115,181),(116,148),(116,179),(116,182),(117,149),(117,180),(117,182),(118,151),(118,178),(118,181),(119,151),(119,177),(119,182),(120,150),(120,180),(120,183),(121,150),(121,179),(121,184),(122,146),(122,159),(122,186),(123,147),(123,160),(123,186),(124,148),(124,161),(124,186),(125,149),(125,162),(125,186),(126,150),(126,163),(126,186),(127,151),(127,164),(127,186),(128,149),(128,159),(128,185),(129,148),(129,160),(129,185),(130,147),(130,161),(130,185),(131,146),(131,162),(131,185),(132,151),(132,163),(132,185),(133,150),(133,164),(133,185),(134,142),(134,173),(134,186),(135,143),(135,174),(135,186),(136,144),(136,175),(136,186),(137,145),(137,176),(137,186),(138,142),(138,178),(138,185),(139,143),(139,177),(139,185),(140,144),(140,180),(140,185),(141,145),(141,179),(141,185),(142,187),(143,187),(144,187),(145,187),(146,187),(147,187),(148,187),(149,187),(150,187),(151,187),(152,159),(152,181),(152,183),(153,160),(153,181),(153,184),(154,161),(154,182),(154,183),(155,162),(155,182),(155,184),(156,164),(156,181),(156,182),(157,163),(157,183),(157,184),(158,185),(158,186),(159,187),(160,187),(161,187),(162,187),(163,187),(164,187),(165,177),(165,181),(165,186),(166,178),(166,182),(166,186),(167,179),(167,183),(167,186),(168,180),(168,184),(168,186),(169,174),(169,181),(169,185),(170,173),(170,182),(170,185),(171,176),(171,183),(171,185),(172,175),(172,184),(172,185),(173,187),(174,187),(175,187),(176,187),(177,187),(178,187),(179,187),(180,187),(181,187),(182,187),(183,187),(184,187),(185,187),(186,187)],188)
=> ? = 4 + 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(1,16),(1,21),(1,22),(1,28),(1,47),(1,52),(1,53),(1,88),(1,89),(1,91),(2,15),(2,19),(2,20),(2,27),(2,46),(2,50),(2,51),(2,86),(2,87),(2,91),(3,18),(3,24),(3,26),(3,30),(3,49),(3,55),(3,57),(3,87),(3,89),(3,90),(4,17),(4,23),(4,25),(4,29),(4,48),(4,54),(4,56),(4,86),(4,88),(4,90),(5,15),(5,31),(5,32),(5,39),(5,47),(5,54),(5,55),(5,92),(5,93),(5,97),(6,16),(6,33),(6,34),(6,40),(6,46),(6,56),(6,57),(6,94),(6,95),(6,97),(7,17),(7,35),(7,37),(7,41),(7,49),(7,50),(7,52),(7,92),(7,94),(7,96),(8,18),(8,36),(8,38),(8,42),(8,48),(8,51),(8,53),(8,93),(8,95),(8,96),(9,19),(9,23),(9,31),(9,35),(9,44),(9,82),(9,84),(9,89),(9,95),(10,20),(10,24),(10,32),(10,36),(10,45),(10,82),(10,85),(10,88),(10,94),(11,21),(11,25),(11,33),(11,37),(11,45),(11,83),(11,84),(11,87),(11,93),(12,22),(12,26),(12,34),(12,38),(12,44),(12,83),(12,85),(12,86),(12,92),(13,29),(13,30),(13,41),(13,42),(13,43),(13,84),(13,85),(13,91),(13,97),(14,27),(14,28),(14,39),(14,40),(14,43),(14,82),(14,83),(14,90),(14,96),(15,70),(15,71),(15,78),(15,152),(15,153),(15,157),(16,72),(16,73),(16,79),(16,154),(16,155),(16,157),(17,74),(17,76),(17,80),(17,152),(17,154),(17,156),(18,75),(18,77),(18,81),(18,153),(18,155),(18,156),(19,58),(19,70),(19,99),(19,122),(19,134),(19,168),(20,59),(20,71),(20,98),(20,123),(20,134),(20,167),(21,60),(21,72),(21,101),(21,124),(21,135),(21,168),(22,61),(22,73),(22,100),(22,125),(22,135),(22,167),(23,62),(23,74),(23,104),(23,122),(23,136),(23,166),(24,63),(24,75),(24,105),(24,123),(24,137),(24,166),(25,64),(25,76),(25,102),(25,124),(25,136),(25,165),(26,65),(26,77),(26,103),(26,125),(26,137),(26,165),(27,66),(27,78),(27,106),(27,126),(27,134),(27,165),(28,67),(28,79),(28,107),(28,126),(28,135),(28,166),(29,68),(29,80),(29,108),(29,127),(29,136),(29,167),(30,69),(30,81),(30,109),(30,127),(30,137),(30,168),(31,62),(31,70),(31,113),(31,128),(31,138),(31,172),(32,63),(32,71),(32,112),(32,129),(32,138),(32,171),(33,64),(33,72),(33,111),(33,130),(33,139),(33,172),(34,65),(34,73),(34,110),(34,131),(34,139),(34,171),(35,58),(35,74),(35,117),(35,128),(35,140),(35,170),(36,59),(36,75),(36,116),(36,129),(36,141),(36,170),(37,60),(37,76),(37,115),(37,130),(37,140),(37,169),(38,61),(38,77),(38,114),(38,131),(38,141),(38,169),(39,67),(39,78),(39,118),(39,132),(39,138),(39,169),(40,66),(40,79),(40,119),(40,132),(40,139),(40,170),(41,69),(41,80),(41,120),(41,133),(41,140),(41,171),(42,68),(42,81),(42,121),(42,133),(42,141),(42,172),(43,126),(43,127),(43,132),(43,133),(43,158),(44,122),(44,125),(44,128),(44,131),(44,158),(45,123),(45,124),(45,129),(45,130),(45,158),(46,66),(46,98),(46,99),(46,110),(46,111),(46,157),(47,67),(47,100),(47,101),(47,112),(47,113),(47,157),(48,68),(48,102),(48,104),(48,114),(48,116),(48,156),(49,69),(49,103),(49,105),(49,115),(49,117),(49,156),(50,58),(50,98),(50,106),(50,115),(50,120),(50,152),(51,59),(51,99),(51,106),(51,114),(51,121),(51,153),(52,60),(52,100),(52,107),(52,117),(52,120),(52,154),(53,61),(53,101),(53,107),(53,116),(53,121),(53,155),(54,62),(54,102),(54,108),(54,112),(54,118),(54,152),(55,63),(55,103),(55,109),(55,113),(55,118),(55,153),(56,64),(56,104),(56,108),(56,110),(56,119),(56,154),(57,65),(57,105),(57,109),(57,111),(57,119),(57,155),(58,159),(58,173),(58,180),(59,160),(59,173),(59,179),(60,161),(60,174),(60,180),(61,162),(61,174),(61,179),(62,159),(62,175),(62,178),(63,160),(63,176),(63,178),(64,161),(64,175),(64,177),(65,162),(65,176),(65,177),(66,163),(66,173),(66,177),(67,163),(67,174),(67,178),(68,164),(68,175),(68,179),(69,164),(69,176),(69,180),(70,142),(70,159),(70,184),(71,142),(71,160),(71,183),(72,143),(72,161),(72,184),(73,143),(73,162),(73,183),(74,144),(74,159),(74,182),(75,145),(75,160),(75,182),(76,144),(76,161),(76,181),(77,145),(77,162),(77,181),(78,142),(78,163),(78,181),(79,143),(79,163),(79,182),(80,144),(80,164),(80,183),(81,145),(81,164),(81,184),(82,134),(82,138),(82,158),(82,166),(82,170),(83,135),(83,139),(83,158),(83,165),(83,169),(84,136),(84,140),(84,158),(84,168),(84,172),(85,137),(85,141),(85,158),(85,167),(85,171),(86,110),(86,114),(86,122),(86,152),(86,165),(86,167),(87,111),(87,115),(87,123),(87,153),(87,165),(87,168),(88,112),(88,116),(88,124),(88,154),(88,166),(88,167),(89,113),(89,117),(89,125),(89,155),(89,166),(89,168),(90,118),(90,119),(90,127),(90,156),(90,165),(90,166),(91,120),(91,121),(91,126),(91,157),(91,167),(91,168),(92,100),(92,103),(92,128),(92,152),(92,169),(92,171),(93,101),(93,102),(93,129),(93,153),(93,169),(93,172),(94,98),(94,105),(94,130),(94,154),(94,170),(94,171),(95,99),(95,104),(95,131),(95,155),(95,170),(95,172),(96,106),(96,107),(96,133),(96,156),(96,169),(96,170),(97,108),(97,109),(97,132),(97,157),(97,171),(97,172),(98,147),(98,173),(98,183),(99,146),(99,173),(99,184),(100,149),(100,174),(100,183),(101,148),(101,174),(101,184),(102,148),(102,175),(102,181),(103,149),(103,176),(103,181),(104,146),(104,175),(104,182),(105,147),(105,176),(105,182),(106,150),(106,173),(106,181),(107,150),(107,174),(107,182),(108,151),(108,175),(108,183),(109,151),(109,176),(109,184),(110,146),(110,177),(110,183),(111,147),(111,177),(111,184),(112,148),(112,178),(112,183),(113,149),(113,178),(113,184),(114,146),(114,179),(114,181),(115,147),(115,180),(115,181),(116,148),(116,179),(116,182),(117,149),(117,180),(117,182),(118,151),(118,178),(118,181),(119,151),(119,177),(119,182),(120,150),(120,180),(120,183),(121,150),(121,179),(121,184),(122,146),(122,159),(122,186),(123,147),(123,160),(123,186),(124,148),(124,161),(124,186),(125,149),(125,162),(125,186),(126,150),(126,163),(126,186),(127,151),(127,164),(127,186),(128,149),(128,159),(128,185),(129,148),(129,160),(129,185),(130,147),(130,161),(130,185),(131,146),(131,162),(131,185),(132,151),(132,163),(132,185),(133,150),(133,164),(133,185),(134,142),(134,173),(134,186),(135,143),(135,174),(135,186),(136,144),(136,175),(136,186),(137,145),(137,176),(137,186),(138,142),(138,178),(138,185),(139,143),(139,177),(139,185),(140,144),(140,180),(140,185),(141,145),(141,179),(141,185),(142,187),(143,187),(144,187),(145,187),(146,187),(147,187),(148,187),(149,187),(150,187),(151,187),(152,159),(152,181),(152,183),(153,160),(153,181),(153,184),(154,161),(154,182),(154,183),(155,162),(155,182),(155,184),(156,164),(156,181),(156,182),(157,163),(157,183),(157,184),(158,185),(158,186),(159,187),(160,187),(161,187),(162,187),(163,187),(164,187),(165,177),(165,181),(165,186),(166,178),(166,182),(166,186),(167,179),(167,183),(167,186),(168,180),(168,184),(168,186),(169,174),(169,181),(169,185),(170,173),(170,182),(170,185),(171,176),(171,183),(171,185),(172,175),(172,184),(172,185),(173,187),(174,187),(175,187),(176,187),(177,187),(178,187),(179,187),(180,187),(181,187),(182,187),(183,187),(184,187),(185,187),(186,187)],188)
=> ? = 4 + 1
([(0,4),(3,5),(4,3),(5,1),(5,2)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(1,16),(1,21),(1,22),(1,28),(1,47),(1,52),(1,53),(1,88),(1,89),(1,91),(2,15),(2,19),(2,20),(2,27),(2,46),(2,50),(2,51),(2,86),(2,87),(2,91),(3,18),(3,24),(3,26),(3,30),(3,49),(3,55),(3,57),(3,87),(3,89),(3,90),(4,17),(4,23),(4,25),(4,29),(4,48),(4,54),(4,56),(4,86),(4,88),(4,90),(5,15),(5,31),(5,32),(5,39),(5,47),(5,54),(5,55),(5,92),(5,93),(5,97),(6,16),(6,33),(6,34),(6,40),(6,46),(6,56),(6,57),(6,94),(6,95),(6,97),(7,17),(7,35),(7,37),(7,41),(7,49),(7,50),(7,52),(7,92),(7,94),(7,96),(8,18),(8,36),(8,38),(8,42),(8,48),(8,51),(8,53),(8,93),(8,95),(8,96),(9,19),(9,23),(9,31),(9,35),(9,44),(9,82),(9,84),(9,89),(9,95),(10,20),(10,24),(10,32),(10,36),(10,45),(10,82),(10,85),(10,88),(10,94),(11,21),(11,25),(11,33),(11,37),(11,45),(11,83),(11,84),(11,87),(11,93),(12,22),(12,26),(12,34),(12,38),(12,44),(12,83),(12,85),(12,86),(12,92),(13,29),(13,30),(13,41),(13,42),(13,43),(13,84),(13,85),(13,91),(13,97),(14,27),(14,28),(14,39),(14,40),(14,43),(14,82),(14,83),(14,90),(14,96),(15,70),(15,71),(15,78),(15,152),(15,153),(15,157),(16,72),(16,73),(16,79),(16,154),(16,155),(16,157),(17,74),(17,76),(17,80),(17,152),(17,154),(17,156),(18,75),(18,77),(18,81),(18,153),(18,155),(18,156),(19,58),(19,70),(19,99),(19,122),(19,134),(19,168),(20,59),(20,71),(20,98),(20,123),(20,134),(20,167),(21,60),(21,72),(21,101),(21,124),(21,135),(21,168),(22,61),(22,73),(22,100),(22,125),(22,135),(22,167),(23,62),(23,74),(23,104),(23,122),(23,136),(23,166),(24,63),(24,75),(24,105),(24,123),(24,137),(24,166),(25,64),(25,76),(25,102),(25,124),(25,136),(25,165),(26,65),(26,77),(26,103),(26,125),(26,137),(26,165),(27,66),(27,78),(27,106),(27,126),(27,134),(27,165),(28,67),(28,79),(28,107),(28,126),(28,135),(28,166),(29,68),(29,80),(29,108),(29,127),(29,136),(29,167),(30,69),(30,81),(30,109),(30,127),(30,137),(30,168),(31,62),(31,70),(31,113),(31,128),(31,138),(31,172),(32,63),(32,71),(32,112),(32,129),(32,138),(32,171),(33,64),(33,72),(33,111),(33,130),(33,139),(33,172),(34,65),(34,73),(34,110),(34,131),(34,139),(34,171),(35,58),(35,74),(35,117),(35,128),(35,140),(35,170),(36,59),(36,75),(36,116),(36,129),(36,141),(36,170),(37,60),(37,76),(37,115),(37,130),(37,140),(37,169),(38,61),(38,77),(38,114),(38,131),(38,141),(38,169),(39,67),(39,78),(39,118),(39,132),(39,138),(39,169),(40,66),(40,79),(40,119),(40,132),(40,139),(40,170),(41,69),(41,80),(41,120),(41,133),(41,140),(41,171),(42,68),(42,81),(42,121),(42,133),(42,141),(42,172),(43,126),(43,127),(43,132),(43,133),(43,158),(44,122),(44,125),(44,128),(44,131),(44,158),(45,123),(45,124),(45,129),(45,130),(45,158),(46,66),(46,98),(46,99),(46,110),(46,111),(46,157),(47,67),(47,100),(47,101),(47,112),(47,113),(47,157),(48,68),(48,102),(48,104),(48,114),(48,116),(48,156),(49,69),(49,103),(49,105),(49,115),(49,117),(49,156),(50,58),(50,98),(50,106),(50,115),(50,120),(50,152),(51,59),(51,99),(51,106),(51,114),(51,121),(51,153),(52,60),(52,100),(52,107),(52,117),(52,120),(52,154),(53,61),(53,101),(53,107),(53,116),(53,121),(53,155),(54,62),(54,102),(54,108),(54,112),(54,118),(54,152),(55,63),(55,103),(55,109),(55,113),(55,118),(55,153),(56,64),(56,104),(56,108),(56,110),(56,119),(56,154),(57,65),(57,105),(57,109),(57,111),(57,119),(57,155),(58,159),(58,173),(58,180),(59,160),(59,173),(59,179),(60,161),(60,174),(60,180),(61,162),(61,174),(61,179),(62,159),(62,175),(62,178),(63,160),(63,176),(63,178),(64,161),(64,175),(64,177),(65,162),(65,176),(65,177),(66,163),(66,173),(66,177),(67,163),(67,174),(67,178),(68,164),(68,175),(68,179),(69,164),(69,176),(69,180),(70,142),(70,159),(70,184),(71,142),(71,160),(71,183),(72,143),(72,161),(72,184),(73,143),(73,162),(73,183),(74,144),(74,159),(74,182),(75,145),(75,160),(75,182),(76,144),(76,161),(76,181),(77,145),(77,162),(77,181),(78,142),(78,163),(78,181),(79,143),(79,163),(79,182),(80,144),(80,164),(80,183),(81,145),(81,164),(81,184),(82,134),(82,138),(82,158),(82,166),(82,170),(83,135),(83,139),(83,158),(83,165),(83,169),(84,136),(84,140),(84,158),(84,168),(84,172),(85,137),(85,141),(85,158),(85,167),(85,171),(86,110),(86,114),(86,122),(86,152),(86,165),(86,167),(87,111),(87,115),(87,123),(87,153),(87,165),(87,168),(88,112),(88,116),(88,124),(88,154),(88,166),(88,167),(89,113),(89,117),(89,125),(89,155),(89,166),(89,168),(90,118),(90,119),(90,127),(90,156),(90,165),(90,166),(91,120),(91,121),(91,126),(91,157),(91,167),(91,168),(92,100),(92,103),(92,128),(92,152),(92,169),(92,171),(93,101),(93,102),(93,129),(93,153),(93,169),(93,172),(94,98),(94,105),(94,130),(94,154),(94,170),(94,171),(95,99),(95,104),(95,131),(95,155),(95,170),(95,172),(96,106),(96,107),(96,133),(96,156),(96,169),(96,170),(97,108),(97,109),(97,132),(97,157),(97,171),(97,172),(98,147),(98,173),(98,183),(99,146),(99,173),(99,184),(100,149),(100,174),(100,183),(101,148),(101,174),(101,184),(102,148),(102,175),(102,181),(103,149),(103,176),(103,181),(104,146),(104,175),(104,182),(105,147),(105,176),(105,182),(106,150),(106,173),(106,181),(107,150),(107,174),(107,182),(108,151),(108,175),(108,183),(109,151),(109,176),(109,184),(110,146),(110,177),(110,183),(111,147),(111,177),(111,184),(112,148),(112,178),(112,183),(113,149),(113,178),(113,184),(114,146),(114,179),(114,181),(115,147),(115,180),(115,181),(116,148),(116,179),(116,182),(117,149),(117,180),(117,182),(118,151),(118,178),(118,181),(119,151),(119,177),(119,182),(120,150),(120,180),(120,183),(121,150),(121,179),(121,184),(122,146),(122,159),(122,186),(123,147),(123,160),(123,186),(124,148),(124,161),(124,186),(125,149),(125,162),(125,186),(126,150),(126,163),(126,186),(127,151),(127,164),(127,186),(128,149),(128,159),(128,185),(129,148),(129,160),(129,185),(130,147),(130,161),(130,185),(131,146),(131,162),(131,185),(132,151),(132,163),(132,185),(133,150),(133,164),(133,185),(134,142),(134,173),(134,186),(135,143),(135,174),(135,186),(136,144),(136,175),(136,186),(137,145),(137,176),(137,186),(138,142),(138,178),(138,185),(139,143),(139,177),(139,185),(140,144),(140,180),(140,185),(141,145),(141,179),(141,185),(142,187),(143,187),(144,187),(145,187),(146,187),(147,187),(148,187),(149,187),(150,187),(151,187),(152,159),(152,181),(152,183),(153,160),(153,181),(153,184),(154,161),(154,182),(154,183),(155,162),(155,182),(155,184),(156,164),(156,181),(156,182),(157,163),(157,183),(157,184),(158,185),(158,186),(159,187),(160,187),(161,187),(162,187),(163,187),(164,187),(165,177),(165,181),(165,186),(166,178),(166,182),(166,186),(167,179),(167,183),(167,186),(168,180),(168,184),(168,186),(169,174),(169,181),(169,185),(170,173),(170,182),(170,185),(171,176),(171,183),(171,185),(172,175),(172,184),(172,185),(173,187),(174,187),(175,187),(176,187),(177,187),(178,187),(179,187),(180,187),(181,187),(182,187),(183,187),(184,187),(185,187),(186,187)],188)
=> ? = 4 + 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(1,16),(1,21),(1,22),(1,28),(1,47),(1,52),(1,53),(1,88),(1,89),(1,91),(2,15),(2,19),(2,20),(2,27),(2,46),(2,50),(2,51),(2,86),(2,87),(2,91),(3,18),(3,24),(3,26),(3,30),(3,49),(3,55),(3,57),(3,87),(3,89),(3,90),(4,17),(4,23),(4,25),(4,29),(4,48),(4,54),(4,56),(4,86),(4,88),(4,90),(5,15),(5,31),(5,32),(5,39),(5,47),(5,54),(5,55),(5,92),(5,93),(5,97),(6,16),(6,33),(6,34),(6,40),(6,46),(6,56),(6,57),(6,94),(6,95),(6,97),(7,17),(7,35),(7,37),(7,41),(7,49),(7,50),(7,52),(7,92),(7,94),(7,96),(8,18),(8,36),(8,38),(8,42),(8,48),(8,51),(8,53),(8,93),(8,95),(8,96),(9,19),(9,23),(9,31),(9,35),(9,44),(9,82),(9,84),(9,89),(9,95),(10,20),(10,24),(10,32),(10,36),(10,45),(10,82),(10,85),(10,88),(10,94),(11,21),(11,25),(11,33),(11,37),(11,45),(11,83),(11,84),(11,87),(11,93),(12,22),(12,26),(12,34),(12,38),(12,44),(12,83),(12,85),(12,86),(12,92),(13,29),(13,30),(13,41),(13,42),(13,43),(13,84),(13,85),(13,91),(13,97),(14,27),(14,28),(14,39),(14,40),(14,43),(14,82),(14,83),(14,90),(14,96),(15,70),(15,71),(15,78),(15,152),(15,153),(15,157),(16,72),(16,73),(16,79),(16,154),(16,155),(16,157),(17,74),(17,76),(17,80),(17,152),(17,154),(17,156),(18,75),(18,77),(18,81),(18,153),(18,155),(18,156),(19,58),(19,70),(19,99),(19,122),(19,134),(19,168),(20,59),(20,71),(20,98),(20,123),(20,134),(20,167),(21,60),(21,72),(21,101),(21,124),(21,135),(21,168),(22,61),(22,73),(22,100),(22,125),(22,135),(22,167),(23,62),(23,74),(23,104),(23,122),(23,136),(23,166),(24,63),(24,75),(24,105),(24,123),(24,137),(24,166),(25,64),(25,76),(25,102),(25,124),(25,136),(25,165),(26,65),(26,77),(26,103),(26,125),(26,137),(26,165),(27,66),(27,78),(27,106),(27,126),(27,134),(27,165),(28,67),(28,79),(28,107),(28,126),(28,135),(28,166),(29,68),(29,80),(29,108),(29,127),(29,136),(29,167),(30,69),(30,81),(30,109),(30,127),(30,137),(30,168),(31,62),(31,70),(31,113),(31,128),(31,138),(31,172),(32,63),(32,71),(32,112),(32,129),(32,138),(32,171),(33,64),(33,72),(33,111),(33,130),(33,139),(33,172),(34,65),(34,73),(34,110),(34,131),(34,139),(34,171),(35,58),(35,74),(35,117),(35,128),(35,140),(35,170),(36,59),(36,75),(36,116),(36,129),(36,141),(36,170),(37,60),(37,76),(37,115),(37,130),(37,140),(37,169),(38,61),(38,77),(38,114),(38,131),(38,141),(38,169),(39,67),(39,78),(39,118),(39,132),(39,138),(39,169),(40,66),(40,79),(40,119),(40,132),(40,139),(40,170),(41,69),(41,80),(41,120),(41,133),(41,140),(41,171),(42,68),(42,81),(42,121),(42,133),(42,141),(42,172),(43,126),(43,127),(43,132),(43,133),(43,158),(44,122),(44,125),(44,128),(44,131),(44,158),(45,123),(45,124),(45,129),(45,130),(45,158),(46,66),(46,98),(46,99),(46,110),(46,111),(46,157),(47,67),(47,100),(47,101),(47,112),(47,113),(47,157),(48,68),(48,102),(48,104),(48,114),(48,116),(48,156),(49,69),(49,103),(49,105),(49,115),(49,117),(49,156),(50,58),(50,98),(50,106),(50,115),(50,120),(50,152),(51,59),(51,99),(51,106),(51,114),(51,121),(51,153),(52,60),(52,100),(52,107),(52,117),(52,120),(52,154),(53,61),(53,101),(53,107),(53,116),(53,121),(53,155),(54,62),(54,102),(54,108),(54,112),(54,118),(54,152),(55,63),(55,103),(55,109),(55,113),(55,118),(55,153),(56,64),(56,104),(56,108),(56,110),(56,119),(56,154),(57,65),(57,105),(57,109),(57,111),(57,119),(57,155),(58,159),(58,173),(58,180),(59,160),(59,173),(59,179),(60,161),(60,174),(60,180),(61,162),(61,174),(61,179),(62,159),(62,175),(62,178),(63,160),(63,176),(63,178),(64,161),(64,175),(64,177),(65,162),(65,176),(65,177),(66,163),(66,173),(66,177),(67,163),(67,174),(67,178),(68,164),(68,175),(68,179),(69,164),(69,176),(69,180),(70,142),(70,159),(70,184),(71,142),(71,160),(71,183),(72,143),(72,161),(72,184),(73,143),(73,162),(73,183),(74,144),(74,159),(74,182),(75,145),(75,160),(75,182),(76,144),(76,161),(76,181),(77,145),(77,162),(77,181),(78,142),(78,163),(78,181),(79,143),(79,163),(79,182),(80,144),(80,164),(80,183),(81,145),(81,164),(81,184),(82,134),(82,138),(82,158),(82,166),(82,170),(83,135),(83,139),(83,158),(83,165),(83,169),(84,136),(84,140),(84,158),(84,168),(84,172),(85,137),(85,141),(85,158),(85,167),(85,171),(86,110),(86,114),(86,122),(86,152),(86,165),(86,167),(87,111),(87,115),(87,123),(87,153),(87,165),(87,168),(88,112),(88,116),(88,124),(88,154),(88,166),(88,167),(89,113),(89,117),(89,125),(89,155),(89,166),(89,168),(90,118),(90,119),(90,127),(90,156),(90,165),(90,166),(91,120),(91,121),(91,126),(91,157),(91,167),(91,168),(92,100),(92,103),(92,128),(92,152),(92,169),(92,171),(93,101),(93,102),(93,129),(93,153),(93,169),(93,172),(94,98),(94,105),(94,130),(94,154),(94,170),(94,171),(95,99),(95,104),(95,131),(95,155),(95,170),(95,172),(96,106),(96,107),(96,133),(96,156),(96,169),(96,170),(97,108),(97,109),(97,132),(97,157),(97,171),(97,172),(98,147),(98,173),(98,183),(99,146),(99,173),(99,184),(100,149),(100,174),(100,183),(101,148),(101,174),(101,184),(102,148),(102,175),(102,181),(103,149),(103,176),(103,181),(104,146),(104,175),(104,182),(105,147),(105,176),(105,182),(106,150),(106,173),(106,181),(107,150),(107,174),(107,182),(108,151),(108,175),(108,183),(109,151),(109,176),(109,184),(110,146),(110,177),(110,183),(111,147),(111,177),(111,184),(112,148),(112,178),(112,183),(113,149),(113,178),(113,184),(114,146),(114,179),(114,181),(115,147),(115,180),(115,181),(116,148),(116,179),(116,182),(117,149),(117,180),(117,182),(118,151),(118,178),(118,181),(119,151),(119,177),(119,182),(120,150),(120,180),(120,183),(121,150),(121,179),(121,184),(122,146),(122,159),(122,186),(123,147),(123,160),(123,186),(124,148),(124,161),(124,186),(125,149),(125,162),(125,186),(126,150),(126,163),(126,186),(127,151),(127,164),(127,186),(128,149),(128,159),(128,185),(129,148),(129,160),(129,185),(130,147),(130,161),(130,185),(131,146),(131,162),(131,185),(132,151),(132,163),(132,185),(133,150),(133,164),(133,185),(134,142),(134,173),(134,186),(135,143),(135,174),(135,186),(136,144),(136,175),(136,186),(137,145),(137,176),(137,186),(138,142),(138,178),(138,185),(139,143),(139,177),(139,185),(140,144),(140,180),(140,185),(141,145),(141,179),(141,185),(142,187),(143,187),(144,187),(145,187),(146,187),(147,187),(148,187),(149,187),(150,187),(151,187),(152,159),(152,181),(152,183),(153,160),(153,181),(153,184),(154,161),(154,182),(154,183),(155,162),(155,182),(155,184),(156,164),(156,181),(156,182),(157,163),(157,183),(157,184),(158,185),(158,186),(159,187),(160,187),(161,187),(162,187),(163,187),(164,187),(165,177),(165,181),(165,186),(166,178),(166,182),(166,186),(167,179),(167,183),(167,186),(168,180),(168,184),(168,186),(169,174),(169,181),(169,185),(170,173),(170,182),(170,185),(171,176),(171,183),(171,185),(172,175),(172,184),(172,185),(173,187),(174,187),(175,187),(176,187),(177,187),(178,187),(179,187),(180,187),(181,187),(182,187),(183,187),(184,187),(185,187),(186,187)],188)
=> ? = 4 + 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(1,40),(1,41),(1,42),(1,43),(1,44),(1,45),(1,82),(1,83),(1,84),(1,85),(2,18),(2,19),(2,25),(2,30),(2,31),(2,37),(2,78),(2,79),(2,81),(2,83),(3,16),(3,17),(3,24),(3,28),(3,29),(3,36),(3,76),(3,77),(3,81),(3,82),(4,21),(4,23),(4,27),(4,33),(4,35),(4,39),(4,77),(4,79),(4,80),(4,85),(5,20),(5,22),(5,26),(5,32),(5,34),(5,38),(5,76),(5,78),(5,80),(5,84),(6,22),(6,23),(6,24),(6,46),(6,47),(6,54),(6,83),(6,86),(6,87),(6,91),(7,20),(7,21),(7,25),(7,48),(7,49),(7,55),(7,82),(7,88),(7,89),(7,91),(8,17),(8,19),(8,26),(8,50),(8,52),(8,56),(8,85),(8,86),(8,88),(8,90),(9,16),(9,18),(9,27),(9,51),(9,53),(9,57),(9,84),(9,87),(9,89),(9,90),(10,28),(10,32),(10,43),(10,48),(10,51),(10,59),(10,79),(10,86),(10,92),(10,94),(11,29),(11,33),(11,42),(11,49),(11,50),(11,60),(11,78),(11,87),(11,92),(11,95),(12,30),(12,34),(12,41),(12,46),(12,53),(12,60),(12,77),(12,88),(12,93),(12,94),(13,31),(13,35),(13,40),(13,47),(13,52),(13,59),(13,76),(13,89),(13,93),(13,95),(14,38),(14,39),(14,45),(14,56),(14,57),(14,58),(14,81),(14,91),(14,94),(14,95),(15,36),(15,37),(15,44),(15,54),(15,55),(15,58),(15,80),(15,90),(15,92),(15,93),(16,61),(16,107),(16,112),(16,126),(16,134),(16,170),(17,62),(17,106),(17,113),(17,127),(17,134),(17,171),(18,63),(18,109),(18,112),(18,129),(18,135),(18,172),(19,64),(19,108),(19,113),(19,128),(19,135),(19,173),(20,65),(20,104),(20,110),(20,132),(20,136),(20,170),(21,66),(21,105),(21,110),(21,133),(21,137),(21,171),(22,67),(22,102),(22,111),(22,130),(22,136),(22,172),(23,68),(23,103),(23,111),(23,131),(23,137),(23,173),(24,69),(24,102),(24,103),(24,126),(24,127),(24,175),(25,70),(25,104),(25,105),(25,128),(25,129),(25,175),(26,71),(26,106),(26,108),(26,130),(26,132),(26,174),(27,72),(27,107),(27,109),(27,131),(27,133),(27,174),(28,61),(28,96),(28,114),(28,127),(28,138),(28,169),(29,62),(29,97),(29,115),(29,126),(29,138),(29,168),(30,63),(30,98),(30,117),(30,128),(30,139),(30,169),(31,64),(31,99),(31,116),(31,129),(31,139),(31,168),(32,65),(32,96),(32,118),(32,130),(32,140),(32,167),(33,66),(33,97),(33,119),(33,131),(33,141),(33,167),(34,67),(34,98),(34,120),(34,132),(34,140),(34,166),(35,68),(35,99),(35,121),(35,133),(35,141),(35,166),(36,69),(36,100),(36,122),(36,134),(36,138),(36,166),(37,70),(37,100),(37,123),(37,135),(37,139),(37,167),(38,71),(38,101),(38,124),(38,136),(38,140),(38,168),(39,72),(39,101),(39,125),(39,137),(39,141),(39,169),(40,73),(40,116),(40,121),(40,142),(40,144),(40,170),(41,74),(41,117),(41,120),(41,142),(41,145),(41,171),(42,74),(42,115),(42,119),(42,143),(42,144),(42,172),(43,73),(43,114),(43,118),(43,143),(43,145),(43,173),(44,75),(44,122),(44,123),(44,142),(44,143),(44,174),(45,75),(45,124),(45,125),(45,144),(45,145),(45,175),(46,67),(46,103),(46,117),(46,148),(46,152),(46,178),(47,68),(47,102),(47,116),(47,149),(47,152),(47,179),(48,65),(48,105),(48,114),(48,146),(48,153),(48,178),(49,66),(49,104),(49,115),(49,147),(49,153),(49,179),(50,62),(50,108),(50,119),(50,147),(50,154),(50,176),(51,61),(51,109),(51,118),(51,146),(51,155),(51,176),(52,64),(52,106),(52,121),(52,149),(52,154),(52,177),(53,63),(53,107),(53,120),(53,148),(53,155),(53,177),(54,69),(54,111),(54,123),(54,150),(54,152),(54,176),(55,70),(55,110),(55,122),(55,150),(55,153),(55,177),(56,71),(56,113),(56,125),(56,151),(56,154),(56,178),(57,72),(57,112),(57,124),(57,151),(57,155),(57,179),(58,75),(58,100),(58,101),(58,150),(58,151),(58,180),(59,73),(59,96),(59,99),(59,146),(59,149),(59,180),(60,74),(60,97),(60,98),(60,147),(60,148),(60,180),(61,181),(61,189),(61,190),(62,181),(62,188),(62,191),(63,182),(63,189),(63,192),(64,182),(64,188),(64,193),(65,183),(65,187),(65,190),(66,184),(66,187),(66,191),(67,183),(67,186),(67,192),(68,184),(68,186),(68,193),(69,181),(69,186),(69,194),(70,182),(70,187),(70,194),(71,183),(71,188),(71,195),(72,184),(72,189),(72,195),(73,185),(73,190),(73,193),(74,185),(74,191),(74,192),(75,185),(75,194),(75,195),(76,96),(76,102),(76,106),(76,166),(76,168),(76,170),(77,97),(77,103),(77,107),(77,166),(77,169),(77,171),(78,98),(78,104),(78,108),(78,167),(78,168),(78,172),(79,99),(79,105),(79,109),(79,167),(79,169),(79,173),(80,101),(80,110),(80,111),(80,166),(80,167),(80,174),(81,100),(81,112),(81,113),(81,168),(81,169),(81,175),(82,114),(82,115),(82,122),(82,170),(82,171),(82,175),(83,116),(83,117),(83,123),(83,172),(83,173),(83,175),(84,118),(84,120),(84,124),(84,170),(84,172),(84,174),(85,119),(85,121),(85,125),(85,171),(85,173),(85,174),(86,127),(86,130),(86,149),(86,173),(86,176),(86,178),(87,126),(87,131),(87,148),(87,172),(87,176),(87,179),(88,128),(88,132),(88,147),(88,171),(88,177),(88,178),(89,129),(89,133),(89,146),(89,170),(89,177),(89,179),(90,134),(90,135),(90,151),(90,174),(90,176),(90,177),(91,136),(91,137),(91,150),(91,175),(91,178),(91,179),(92,138),(92,143),(92,153),(92,167),(92,176),(92,180),(93,139),(93,142),(93,152),(93,166),(93,177),(93,180),(94,140),(94,145),(94,155),(94,169),(94,178),(94,180),(95,141),(95,144),(95,154),(95,168),(95,179),(95,180),(96,156),(96,190),(96,197),(97,157),(97,191),(97,197),(98,158),(98,192),(98,197),(99,159),(99,193),(99,197),(100,160),(100,194),(100,197),(101,161),(101,195),(101,197),(102,156),(102,186),(102,200),(103,157),(103,186),(103,201),(104,158),(104,187),(104,200),(105,159),(105,187),(105,201),(106,156),(106,188),(106,198),(107,157),(107,189),(107,198),(108,158),(108,188),(108,199),(109,159),(109,189),(109,199),(110,161),(110,187),(110,198),(111,161),(111,186),(111,199),(112,160),(112,189),(112,200),(113,160),(113,188),(113,201),(114,162),(114,190),(114,201),(115,162),(115,191),(115,200),(116,163),(116,193),(116,200),(117,163),(117,192),(117,201),(118,164),(118,190),(118,199),(119,165),(119,191),(119,199),(120,164),(120,192),(120,198),(121,165),(121,193),(121,198),(122,162),(122,194),(122,198),(123,163),(123,194),(123,199),(124,164),(124,195),(124,200),(125,165),(125,195),(125,201),(126,157),(126,181),(126,200),(127,156),(127,181),(127,201),(128,158),(128,182),(128,201),(129,159),(129,182),(129,200),(130,156),(130,183),(130,199),(131,157),(131,184),(131,199),(132,158),(132,183),(132,198),(133,159),(133,184),(133,198),(134,160),(134,181),(134,198),(135,160),(135,182),(135,199),(136,161),(136,183),(136,200),(137,161),(137,184),(137,201),(138,162),(138,181),(138,197),(139,163),(139,182),(139,197),(140,164),(140,183),(140,197),(141,165),(141,184),(141,197),(142,163),(142,185),(142,198),(143,162),(143,185),(143,199),(144,165),(144,185),(144,200),(145,164),(145,185),(145,201),(146,159),(146,190),(146,196),(147,158),(147,191),(147,196),(148,157),(148,192),(148,196),(149,156),(149,193),(149,196),(150,161),(150,194),(150,196),(151,160),(151,195),(151,196),(152,163),(152,186),(152,196),(153,162),(153,187),(153,196),(154,165),(154,188),(154,196),(155,164),(155,189),(155,196),(156,202),(157,202),(158,202),(159,202),(160,202),(161,202),(162,202),(163,202),(164,202),(165,202),(166,186),(166,197),(166,198),(167,187),(167,197),(167,199),(168,188),(168,197),(168,200),(169,189),(169,197),(169,201),(170,190),(170,198),(170,200),(171,191),(171,198),(171,201),(172,192),(172,199),(172,200),(173,193),(173,199),(173,201),(174,195),(174,198),(174,199),(175,194),(175,200),(175,201),(176,181),(176,196),(176,199),(177,182),(177,196),(177,198),(178,183),(178,196),(178,201),(179,184),(179,196),(179,200),(180,185),(180,196),(180,197),(181,202),(182,202),(183,202),(184,202),(185,202),(186,202),(187,202),(188,202),(189,202),(190,202),(191,202),(192,202),(193,202),(194,202),(195,202),(196,202),(197,202),(198,202),(199,202),(200,202),(201,202)],203)
=> ? = 0 + 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(1,16),(1,21),(1,22),(1,28),(1,47),(1,52),(1,53),(1,88),(1,89),(1,91),(2,15),(2,19),(2,20),(2,27),(2,46),(2,50),(2,51),(2,86),(2,87),(2,91),(3,18),(3,24),(3,26),(3,30),(3,49),(3,55),(3,57),(3,87),(3,89),(3,90),(4,17),(4,23),(4,25),(4,29),(4,48),(4,54),(4,56),(4,86),(4,88),(4,90),(5,15),(5,31),(5,32),(5,39),(5,47),(5,54),(5,55),(5,92),(5,93),(5,97),(6,16),(6,33),(6,34),(6,40),(6,46),(6,56),(6,57),(6,94),(6,95),(6,97),(7,17),(7,35),(7,37),(7,41),(7,49),(7,50),(7,52),(7,92),(7,94),(7,96),(8,18),(8,36),(8,38),(8,42),(8,48),(8,51),(8,53),(8,93),(8,95),(8,96),(9,19),(9,23),(9,31),(9,35),(9,44),(9,82),(9,84),(9,89),(9,95),(10,20),(10,24),(10,32),(10,36),(10,45),(10,82),(10,85),(10,88),(10,94),(11,21),(11,25),(11,33),(11,37),(11,45),(11,83),(11,84),(11,87),(11,93),(12,22),(12,26),(12,34),(12,38),(12,44),(12,83),(12,85),(12,86),(12,92),(13,29),(13,30),(13,41),(13,42),(13,43),(13,84),(13,85),(13,91),(13,97),(14,27),(14,28),(14,39),(14,40),(14,43),(14,82),(14,83),(14,90),(14,96),(15,70),(15,71),(15,78),(15,152),(15,153),(15,157),(16,72),(16,73),(16,79),(16,154),(16,155),(16,157),(17,74),(17,76),(17,80),(17,152),(17,154),(17,156),(18,75),(18,77),(18,81),(18,153),(18,155),(18,156),(19,58),(19,70),(19,99),(19,122),(19,134),(19,168),(20,59),(20,71),(20,98),(20,123),(20,134),(20,167),(21,60),(21,72),(21,101),(21,124),(21,135),(21,168),(22,61),(22,73),(22,100),(22,125),(22,135),(22,167),(23,62),(23,74),(23,104),(23,122),(23,136),(23,166),(24,63),(24,75),(24,105),(24,123),(24,137),(24,166),(25,64),(25,76),(25,102),(25,124),(25,136),(25,165),(26,65),(26,77),(26,103),(26,125),(26,137),(26,165),(27,66),(27,78),(27,106),(27,126),(27,134),(27,165),(28,67),(28,79),(28,107),(28,126),(28,135),(28,166),(29,68),(29,80),(29,108),(29,127),(29,136),(29,167),(30,69),(30,81),(30,109),(30,127),(30,137),(30,168),(31,62),(31,70),(31,113),(31,128),(31,138),(31,172),(32,63),(32,71),(32,112),(32,129),(32,138),(32,171),(33,64),(33,72),(33,111),(33,130),(33,139),(33,172),(34,65),(34,73),(34,110),(34,131),(34,139),(34,171),(35,58),(35,74),(35,117),(35,128),(35,140),(35,170),(36,59),(36,75),(36,116),(36,129),(36,141),(36,170),(37,60),(37,76),(37,115),(37,130),(37,140),(37,169),(38,61),(38,77),(38,114),(38,131),(38,141),(38,169),(39,67),(39,78),(39,118),(39,132),(39,138),(39,169),(40,66),(40,79),(40,119),(40,132),(40,139),(40,170),(41,69),(41,80),(41,120),(41,133),(41,140),(41,171),(42,68),(42,81),(42,121),(42,133),(42,141),(42,172),(43,126),(43,127),(43,132),(43,133),(43,158),(44,122),(44,125),(44,128),(44,131),(44,158),(45,123),(45,124),(45,129),(45,130),(45,158),(46,66),(46,98),(46,99),(46,110),(46,111),(46,157),(47,67),(47,100),(47,101),(47,112),(47,113),(47,157),(48,68),(48,102),(48,104),(48,114),(48,116),(48,156),(49,69),(49,103),(49,105),(49,115),(49,117),(49,156),(50,58),(50,98),(50,106),(50,115),(50,120),(50,152),(51,59),(51,99),(51,106),(51,114),(51,121),(51,153),(52,60),(52,100),(52,107),(52,117),(52,120),(52,154),(53,61),(53,101),(53,107),(53,116),(53,121),(53,155),(54,62),(54,102),(54,108),(54,112),(54,118),(54,152),(55,63),(55,103),(55,109),(55,113),(55,118),(55,153),(56,64),(56,104),(56,108),(56,110),(56,119),(56,154),(57,65),(57,105),(57,109),(57,111),(57,119),(57,155),(58,159),(58,173),(58,180),(59,160),(59,173),(59,179),(60,161),(60,174),(60,180),(61,162),(61,174),(61,179),(62,159),(62,175),(62,178),(63,160),(63,176),(63,178),(64,161),(64,175),(64,177),(65,162),(65,176),(65,177),(66,163),(66,173),(66,177),(67,163),(67,174),(67,178),(68,164),(68,175),(68,179),(69,164),(69,176),(69,180),(70,142),(70,159),(70,184),(71,142),(71,160),(71,183),(72,143),(72,161),(72,184),(73,143),(73,162),(73,183),(74,144),(74,159),(74,182),(75,145),(75,160),(75,182),(76,144),(76,161),(76,181),(77,145),(77,162),(77,181),(78,142),(78,163),(78,181),(79,143),(79,163),(79,182),(80,144),(80,164),(80,183),(81,145),(81,164),(81,184),(82,134),(82,138),(82,158),(82,166),(82,170),(83,135),(83,139),(83,158),(83,165),(83,169),(84,136),(84,140),(84,158),(84,168),(84,172),(85,137),(85,141),(85,158),(85,167),(85,171),(86,110),(86,114),(86,122),(86,152),(86,165),(86,167),(87,111),(87,115),(87,123),(87,153),(87,165),(87,168),(88,112),(88,116),(88,124),(88,154),(88,166),(88,167),(89,113),(89,117),(89,125),(89,155),(89,166),(89,168),(90,118),(90,119),(90,127),(90,156),(90,165),(90,166),(91,120),(91,121),(91,126),(91,157),(91,167),(91,168),(92,100),(92,103),(92,128),(92,152),(92,169),(92,171),(93,101),(93,102),(93,129),(93,153),(93,169),(93,172),(94,98),(94,105),(94,130),(94,154),(94,170),(94,171),(95,99),(95,104),(95,131),(95,155),(95,170),(95,172),(96,106),(96,107),(96,133),(96,156),(96,169),(96,170),(97,108),(97,109),(97,132),(97,157),(97,171),(97,172),(98,147),(98,173),(98,183),(99,146),(99,173),(99,184),(100,149),(100,174),(100,183),(101,148),(101,174),(101,184),(102,148),(102,175),(102,181),(103,149),(103,176),(103,181),(104,146),(104,175),(104,182),(105,147),(105,176),(105,182),(106,150),(106,173),(106,181),(107,150),(107,174),(107,182),(108,151),(108,175),(108,183),(109,151),(109,176),(109,184),(110,146),(110,177),(110,183),(111,147),(111,177),(111,184),(112,148),(112,178),(112,183),(113,149),(113,178),(113,184),(114,146),(114,179),(114,181),(115,147),(115,180),(115,181),(116,148),(116,179),(116,182),(117,149),(117,180),(117,182),(118,151),(118,178),(118,181),(119,151),(119,177),(119,182),(120,150),(120,180),(120,183),(121,150),(121,179),(121,184),(122,146),(122,159),(122,186),(123,147),(123,160),(123,186),(124,148),(124,161),(124,186),(125,149),(125,162),(125,186),(126,150),(126,163),(126,186),(127,151),(127,164),(127,186),(128,149),(128,159),(128,185),(129,148),(129,160),(129,185),(130,147),(130,161),(130,185),(131,146),(131,162),(131,185),(132,151),(132,163),(132,185),(133,150),(133,164),(133,185),(134,142),(134,173),(134,186),(135,143),(135,174),(135,186),(136,144),(136,175),(136,186),(137,145),(137,176),(137,186),(138,142),(138,178),(138,185),(139,143),(139,177),(139,185),(140,144),(140,180),(140,185),(141,145),(141,179),(141,185),(142,187),(143,187),(144,187),(145,187),(146,187),(147,187),(148,187),(149,187),(150,187),(151,187),(152,159),(152,181),(152,183),(153,160),(153,181),(153,184),(154,161),(154,182),(154,183),(155,162),(155,182),(155,184),(156,164),(156,181),(156,182),(157,163),(157,183),(157,184),(158,185),(158,186),(159,187),(160,187),(161,187),(162,187),(163,187),(164,187),(165,177),(165,181),(165,186),(166,178),(166,182),(166,186),(167,179),(167,183),(167,186),(168,180),(168,184),(168,186),(169,174),(169,181),(169,185),(170,173),(170,182),(170,185),(171,176),(171,183),(171,185),(172,175),(172,184),(172,185),(173,187),(174,187),(175,187),(176,187),(177,187),(178,187),(179,187),(180,187),(181,187),(182,187),(183,187),(184,187),(185,187),(186,187)],188)
=> ? = 4 + 1
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 0 + 1
Description
The number of factors of a lattice as a Cartesian product of lattices. Since the cardinality of a lattice is the product of the cardinalities of its factors, this statistic is one whenever the cardinality of the lattice is prime.
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00030: Dyck paths zeta mapDyck paths
St001232: Dyck paths ⟶ ℤResult quality: 20% values known / values provided: 26%distinct values known / distinct values provided: 20%
Values
([],1)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([],2)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? = 0
([(0,1)],2)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
([],3)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ? = 0
([(1,2)],3)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
([(0,1),(0,2)],3)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> ? = 1
([(0,2),(2,1)],3)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
([(0,2),(1,2)],3)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> ? = 1
([(0,2),(0,3),(3,1)],4)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 0
([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ? = 2
([(1,2),(2,3)],4)
=> [4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? = 0
([(0,3),(3,1),(3,2)],4)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ? = 2
([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ? = 2
([(0,3),(1,2),(1,3)],4)
=> [5,3]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ? = 2
([(0,3),(2,1),(3,2)],4)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 0
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 4
([(0,4),(1,4),(4,2),(4,3)],5)
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 4
([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 3
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 4
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 0
([(0,3),(3,4),(4,1),(4,2)],5)
=> [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 3
([(0,4),(1,2),(2,4),(4,3)],5)
=> [8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 0
([(0,4),(3,2),(4,1),(4,3)],5)
=> [8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 0
([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 3
([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 4
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [6,2]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 4
([(0,4),(3,5),(4,3),(5,1),(5,2)],6)
=> [6,2]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 4
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [6,2]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 4
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 0
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [6,2]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 4
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 0
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Mp00195: Posets order idealsLattices
Mp00193: Lattices to posetPosets
St001964: Posets ⟶ ℤResult quality: 23% values known / values provided: 23%distinct values known / distinct values provided: 40%
Values
([],1)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? = 0
([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 0
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ? = 2
([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 2
([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? = 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ? = 2
([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 0
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ? = 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ? = 4
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ? = 4
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 3
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> ? = 4
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 0
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ? = 3
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 0
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 0
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ? = 3
([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 4
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 4
([(0,4),(3,5),(4,3),(5,1),(5,2)],6)
=> ([(0,5),(1,7),(2,7),(3,4),(4,6),(5,3),(6,1),(6,2)],8)
=> ([(0,5),(1,7),(2,7),(3,4),(4,6),(5,3),(6,1),(6,2)],8)
=> ? = 4
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 4
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 0
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> ? = 4
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 0
Description
The interval resolution global dimension of a poset. This is the cardinality of the longest chain of right minimal approximations by interval modules of an indecomposable module over the incidence algebra.
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00179: Integer partitions to skew partitionSkew partitions
St001488: Skew partitions ⟶ ℤResult quality: 20% values known / values provided: 20%distinct values known / distinct values provided: 40%
Values
([],1)
=> [2]
=> [[2],[]]
=> 2 = 0 + 2
([],2)
=> [2,2]
=> [[2,2],[]]
=> 2 = 0 + 2
([(0,1)],2)
=> [3]
=> [[3],[]]
=> 2 = 0 + 2
([],3)
=> [2,2,2,2]
=> [[2,2,2,2],[]]
=> ? = 0 + 2
([(1,2)],3)
=> [6]
=> [[6],[]]
=> ? = 0 + 2
([(0,1),(0,2)],3)
=> [3,2]
=> [[3,2],[]]
=> 3 = 1 + 2
([(0,2),(2,1)],3)
=> [4]
=> [[4],[]]
=> 2 = 0 + 2
([(0,2),(1,2)],3)
=> [3,2]
=> [[3,2],[]]
=> 3 = 1 + 2
([(0,2),(0,3),(3,1)],4)
=> [7]
=> [[7],[]]
=> ? = 0 + 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> [[4,2],[]]
=> ? = 2 + 2
([(1,2),(2,3)],4)
=> [4,4]
=> [[4,4],[]]
=> ? = 0 + 2
([(0,3),(3,1),(3,2)],4)
=> [4,2]
=> [[4,2],[]]
=> ? = 2 + 2
([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> [[4,2],[]]
=> ? = 2 + 2
([(0,3),(1,2),(1,3)],4)
=> [5,3]
=> [[5,3],[]]
=> ? = 2 + 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [3,2,2]
=> [[3,2,2],[]]
=> ? = 2 + 2
([(0,3),(2,1),(3,2)],4)
=> [5]
=> [[5],[]]
=> 2 = 0 + 2
([(0,3),(1,2),(2,3)],4)
=> [7]
=> [[7],[]]
=> ? = 0 + 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> [[5,2],[]]
=> ? = 3 + 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [4,2,2]
=> [[4,2,2],[]]
=> ? = 4 + 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> [4,2,2]
=> [[4,2,2],[]]
=> ? = 4 + 2
([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> [[5,2],[]]
=> ? = 3 + 2
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [4,2,2]
=> [[4,2,2],[]]
=> ? = 4 + 2
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [8]
=> [[8],[]]
=> ? = 0 + 2
([(0,3),(3,4),(4,1),(4,2)],5)
=> [5,2]
=> [[5,2],[]]
=> ? = 3 + 2
([(0,4),(1,2),(2,4),(4,3)],5)
=> [8]
=> [[8],[]]
=> ? = 0 + 2
([(0,4),(3,2),(4,1),(4,3)],5)
=> [8]
=> [[8],[]]
=> ? = 0 + 2
([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> [[6],[]]
=> ? = 0 + 2
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> [[5,2],[]]
=> ? = 3 + 2
([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> [[6,2],[]]
=> ? = 4 + 2
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [6,2]
=> [[6,2],[]]
=> ? = 4 + 2
([(0,4),(3,5),(4,3),(5,1),(5,2)],6)
=> [6,2]
=> [[6,2],[]]
=> ? = 4 + 2
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [6,2]
=> [[6,2],[]]
=> ? = 4 + 2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [7]
=> [[7],[]]
=> ? = 0 + 2
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [6,2]
=> [[6,2],[]]
=> ? = 4 + 2
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [8]
=> [[8],[]]
=> ? = 0 + 2
Description
The number of corners of a skew partition. This is also known as the number of removable cells of the skew partition.
Matching statistic: St000455
Mp00198: Posets incomparability graphGraphs
Mp00274: Graphs block-cut treeGraphs
Mp00157: Graphs connected complementGraphs
St000455: Graphs ⟶ ℤResult quality: 20% values known / values provided: 20%distinct values known / distinct values provided: 20%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 0
([],2)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? = 0
([(0,1)],2)
=> ([],2)
=> ([],2)
=> ([],2)
=> ? = 0
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ? = 0
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ([],2)
=> ([],2)
=> ? = 1
([(0,2),(2,1)],3)
=> ([],3)
=> ([],3)
=> ([],3)
=> ? = 0
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([],2)
=> ([],2)
=> ? = 1
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([],3)
=> ([],3)
=> ? = 2
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> ([],3)
=> ([],3)
=> ? = 2
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([],3)
=> ([],3)
=> ? = 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([],2)
=> ([],2)
=> ? = 2
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],4)
=> ([],4)
=> ? = 0
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([],4)
=> ([],4)
=> ? = 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> ([],3)
=> ([],3)
=> ? = 4
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> ([],3)
=> ([],3)
=> ? = 4
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([],4)
=> ([],4)
=> ? = 3
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(1,4),(2,3)],5)
=> ([],3)
=> ([],3)
=> ? = 4
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> ([],4)
=> ([],4)
=> ? = 3
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],5)
=> ([],5)
=> ? = 0
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ([],4)
=> ([],4)
=> ? = 3
([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([],5)
=> ([],5)
=> ? = 4
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> ([],5)
=> ([],5)
=> ? = 4
([(0,4),(3,5),(4,3),(5,1),(5,2)],6)
=> ([(4,5)],6)
=> ([],5)
=> ([],5)
=> ? = 4
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ([],5)
=> ([],5)
=> ? = 4
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],6)
=> ([],6)
=> ? = 0
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> ([],5)
=> ([],5)
=> ? = 4
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> ([],7)
=> ([],7)
=> ? = 0
Description
The second largest eigenvalue of a graph if it is integral. This statistic is undefined if the second largest eigenvalue of the graph is not integral. Chapter 4 of [1] provides lots of context.
Matching statistic: St001435
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00179: Integer partitions to skew partitionSkew partitions
Mp00189: Skew partitions rotateSkew partitions
St001435: Skew partitions ⟶ ℤResult quality: 20% values known / values provided: 20%distinct values known / distinct values provided: 40%
Values
([],1)
=> [2]
=> [[2],[]]
=> [[2],[]]
=> 0
([],2)
=> [2,2]
=> [[2,2],[]]
=> [[2,2],[]]
=> 0
([(0,1)],2)
=> [3]
=> [[3],[]]
=> [[3],[]]
=> 0
([],3)
=> [2,2,2,2]
=> [[2,2,2,2],[]]
=> [[2,2,2,2],[]]
=> ? = 0
([(1,2)],3)
=> [6]
=> [[6],[]]
=> [[6],[]]
=> ? = 0
([(0,1),(0,2)],3)
=> [3,2]
=> [[3,2],[]]
=> [[3,3],[1]]
=> 1
([(0,2),(2,1)],3)
=> [4]
=> [[4],[]]
=> [[4],[]]
=> 0
([(0,2),(1,2)],3)
=> [3,2]
=> [[3,2],[]]
=> [[3,3],[1]]
=> 1
([(0,2),(0,3),(3,1)],4)
=> [7]
=> [[7],[]]
=> [[7],[]]
=> ? = 0
([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> [[4,2],[]]
=> [[4,4],[2]]
=> ? = 2
([(1,2),(2,3)],4)
=> [4,4]
=> [[4,4],[]]
=> [[4,4],[]]
=> ? = 0
([(0,3),(3,1),(3,2)],4)
=> [4,2]
=> [[4,2],[]]
=> [[4,4],[2]]
=> ? = 2
([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> [[4,2],[]]
=> [[4,4],[2]]
=> ? = 2
([(0,3),(1,2),(1,3)],4)
=> [5,3]
=> [[5,3],[]]
=> [[5,5],[2]]
=> ? = 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [3,2,2]
=> [[3,2,2],[]]
=> [[3,3,3],[1,1]]
=> ? = 2
([(0,3),(2,1),(3,2)],4)
=> [5]
=> [[5],[]]
=> [[5],[]]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [7]
=> [[7],[]]
=> [[7],[]]
=> ? = 0
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> [[5,2],[]]
=> [[5,5],[3]]
=> ? = 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [4,2,2]
=> [[4,2,2],[]]
=> [[4,4,4],[2,2]]
=> ? = 4
([(0,4),(1,4),(4,2),(4,3)],5)
=> [4,2,2]
=> [[4,2,2],[]]
=> [[4,4,4],[2,2]]
=> ? = 4
([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> [[5,2],[]]
=> [[5,5],[3]]
=> ? = 3
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [4,2,2]
=> [[4,2,2],[]]
=> [[4,4,4],[2,2]]
=> ? = 4
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [8]
=> [[8],[]]
=> [[8],[]]
=> ? = 0
([(0,3),(3,4),(4,1),(4,2)],5)
=> [5,2]
=> [[5,2],[]]
=> [[5,5],[3]]
=> ? = 3
([(0,4),(1,2),(2,4),(4,3)],5)
=> [8]
=> [[8],[]]
=> [[8],[]]
=> ? = 0
([(0,4),(3,2),(4,1),(4,3)],5)
=> [8]
=> [[8],[]]
=> [[8],[]]
=> ? = 0
([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> [[6],[]]
=> [[6],[]]
=> ? = 0
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> [[5,2],[]]
=> [[5,5],[3]]
=> ? = 3
([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> [[6,2],[]]
=> [[6,6],[4]]
=> ? = 4
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [6,2]
=> [[6,2],[]]
=> [[6,6],[4]]
=> ? = 4
([(0,4),(3,5),(4,3),(5,1),(5,2)],6)
=> [6,2]
=> [[6,2],[]]
=> [[6,6],[4]]
=> ? = 4
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [6,2]
=> [[6,2],[]]
=> [[6,6],[4]]
=> ? = 4
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [7]
=> [[7],[]]
=> [[7],[]]
=> ? = 0
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [6,2]
=> [[6,2],[]]
=> [[6,6],[4]]
=> ? = 4
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [8]
=> [[8],[]]
=> [[8],[]]
=> ? = 0
Description
The number of missing boxes in the first row.
The following 62 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001438The number of missing boxes of a skew partition. St001487The number of inner corners of a skew partition. St000259The diameter of a connected graph. St000260The radius of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St000741The Colin de Verdière graph invariant. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000225Difference between largest and smallest parts in a partition. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St000944The 3-degree of an integer partition. St001175The size of a partition minus the hook length of the base cell. St001178Twelve times the variance of the major index among all standard Young tableaux of a partition. St001248Sum of the even parts of a partition. St001279The sum of the parts of an integer partition that are at least two. St001280The number of parts of an integer partition that are at least two. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001541The Gini index of an integer partition. St001586The number of odd parts smaller than the largest even part in an integer partition. St001587Half of the largest even part of an integer partition. St001657The number of twos in an integer partition. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St000207Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000618The number of self-evacuating tableaux of given shape. St000667The greatest common divisor of the parts of the partition. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St000781The number of proper colouring schemes of a Ferrers diagram. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001364The number of permutations whose cube equals a fixed permutation of given cycle type. St001389The number of partitions of the same length below the given integer partition. St001432The order dimension of the partition. St001527The cyclic permutation representation number of an integer partition. St001571The Cartan determinant of the integer partition. St001599The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on rooted trees. St001602The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on endofunctions. St001609The number of coloured trees such that the multiplicities of colours are given by a partition. St001627The number of coloured connected graphs such that the multiplicities of colours are given by a partition. St001763The Hurwitz number of an integer partition. St001780The order of promotion on the set of standard tableaux of given shape. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001924The number of cells in an integer partition whose arm and leg length coincide. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St001936The number of transitive factorisations of a permutation of given cycle type into star transpositions. St001938The number of transitive monotone factorizations of genus zero of a permutation of given cycle type. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000456The monochromatic index of a connected graph.