Your data matches 103 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00206: Posets antichains of maximal sizeLattices
St001615: Lattices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,2)],3)
=> ([(0,1)],2)
=> 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> 1
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(3,4)],5)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> 1
([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 1
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 2
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 3
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> 2
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,4),(1,2),(1,3)],5)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 2
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 2
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> 1
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2
([(4,5)],6)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> ([(0,1)],2)
=> 1
([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6)
=> ([(0,1)],2)
=> 1
Description
The number of join prime elements of a lattice. An element $x$ of a lattice $L$ is join-prime (or coprime) if $x \leq a \vee b$ implies $x \leq a$ or $x \leq b$ for every $a, b \in L$.
Mp00206: Posets antichains of maximal sizeLattices
St001617: Lattices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,2)],3)
=> ([(0,1)],2)
=> 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> 1
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(3,4)],5)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> 1
([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 1
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 2
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 3
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> 2
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,4),(1,2),(1,3)],5)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 2
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 2
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> 1
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2
([(4,5)],6)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> ([(0,1)],2)
=> 1
([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6)
=> ([(0,1)],2)
=> 1
Description
The dimension of the space of valuations of a lattice. A valuation, or modular function, on a lattice $L$ is a function $v:L\mapsto\mathbb R$ satisfying $$ v(a\vee b) + v(a\wedge b) = v(a) + v(b). $$ It was shown by Birkhoff [1, thm. X.2], that a lattice with a positive valuation must be modular. This was sharpened by Fleischer and Traynor [2, thm. 1], which states that the modular functions on an arbitrary lattice are in bijection with the modular functions on its modular quotient [[Mp00196]]. Moreover, Birkhoff [1, thm. X.2] showed that the dimension of the space of modular functions equals the number of subsets of projective prime intervals.
Mp00206: Posets antichains of maximal sizeLattices
St001622: Lattices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,2)],3)
=> ([(0,1)],2)
=> 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> 1
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(3,4)],5)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> 1
([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 1
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 2
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 3
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> 2
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,4),(1,2),(1,3)],5)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 2
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 2
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> 1
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2
([(4,5)],6)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> ([(0,1)],2)
=> 1
([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6)
=> ([(0,1)],2)
=> 1
Description
The number of join-irreducible elements of a lattice. An element $j$ of a lattice $L$ is '''join irreducible''' if it is not the least element and if $j=x\vee y$, then $j\in\{x,y\}$ for all $x,y\in L$.
Mp00206: Posets antichains of maximal sizeLattices
Mp00193: Lattices to posetPosets
St000080: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 3
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,4),(1,2),(1,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
Description
The rank of the poset.
Mp00206: Posets antichains of maximal sizeLattices
Mp00263: Lattices join irreduciblesPosets
St000189: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 2
([(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 2
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> 2
([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 2
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2)],3)
=> 3
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 2
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,4),(1,2),(1,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 2
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(1,2)],3)
=> 3
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 2
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> 2
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 2
([(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> 1
Description
The number of elements in the poset.
Mp00206: Posets antichains of maximal sizeLattices
Mp00263: Lattices join irreduciblesPosets
St001636: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 2
([(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 2
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> 2
([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 2
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2)],3)
=> 3
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 2
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,4),(1,2),(1,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 2
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(1,2)],3)
=> 3
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 2
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> 2
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 2
([(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> ([(0,1)],2)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> 1
Description
The number of indecomposable injective modules with projective dimension at most one in the incidence algebra of the poset.
Mp00206: Posets antichains of maximal sizeLattices
Mp00193: Lattices to posetPosets
St001637: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 3
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,4),(1,2),(1,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
Description
The number of (upper) dissectors of a poset.
Mp00206: Posets antichains of maximal sizeLattices
Mp00193: Lattices to posetPosets
St001668: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 3
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,4),(1,2),(1,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
Description
The number of points of the poset minus the width of the poset.
Mp00206: Posets antichains of maximal sizeLattices
Mp00193: Lattices to posetPosets
St000528: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 4 = 3 + 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
([(0,4),(1,2),(1,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4 = 3 + 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
([(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
Description
The height of a poset. This equals the rank of the poset [[St000080]] plus one.
Mp00206: Posets antichains of maximal sizeLattices
Mp00193: Lattices to posetPosets
St000680: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 4 = 3 + 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
([(0,4),(1,2),(1,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4 = 3 + 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3 = 2 + 1
([(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
Description
The Grundy value for Hackendot on posets. Two players take turns and remove an order filter. The player who is faced with the one element poset looses. This game is a slight variation of Chomp. This statistic is the Grundy value of the poset, that is, the smallest non-negative integer which does not occur as value of a poset obtained by a single move.
The following 93 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000717The number of ordinal summands of a poset. St000906The length of the shortest maximal chain in a poset. St000912The number of maximal antichains in a poset. St000643The size of the largest orbit of antichains under Panyushev complementation. St000259The diameter of a connected graph. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000778The metric dimension of a graph. St001340The cardinality of a minimal non-edge isolating set of a graph. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001512The minimum rank of a graph. St001623The number of doubly irreducible elements of a lattice. St001820The size of the image of the pop stack sorting operator. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St001949The rigidity index of a graph. St000093The cardinality of a maximal independent set of vertices of a graph. St000147The largest part of an integer partition. St000184The size of the centralizer of any permutation of given cycle type. St000258The burning number of a graph. St000273The domination number of a graph. St000287The number of connected components of a graph. St000384The maximal part of the shifted composition of an integer partition. St000482The (zero)-forcing number of a graph. St000544The cop number of a graph. St000550The number of modular elements of a lattice. St000551The number of left modular elements of a lattice. St000553The number of blocks of a graph. St000668The least common multiple of the parts of the partition. St000708The product of the parts of an integer partition. St000774The maximal multiplicity of a Laplacian eigenvalue in a graph. St000784The maximum of the length and the largest part of the integer partition. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St000916The packing number of a graph. St001093The detour number of a graph. St001279The sum of the parts of an integer partition that are at least two. St001286The annihilation number of a graph. St001318The number of vertices of the largest induced subforest with the same number of connected components of a graph. St001321The number of vertices of the largest induced subforest of a graph. St001322The size of a minimal independent dominating set in a graph. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St001339The irredundance number of a graph. St001363The Euler characteristic of a graph according to Knill. St001373The logarithm of the number of winning configurations of the lights out game on a graph. St001389The number of partitions of the same length below the given integer partition. St001463The number of distinct columns in the nullspace of a graph. St001616The number of neutral elements in a lattice. St001626The number of maximal proper sublattices of a lattice. St001651The Frankl number of a lattice. St001720The minimal length of a chain of small intervals in a lattice. St001828The Euler characteristic of a graph. St001829The common independence number of a graph. St001846The number of elements which do not have a complement in the lattice. St000380Half of the maximal perimeter of a rectangle fitting into the diagram of an integer partition. St001619The number of non-isomorphic sublattices of a lattice. St001666The number of non-isomorphic subposets of a lattice which are lattices. St001613The binary logarithm of the size of the center of a lattice. St001881The number of factors of a lattice as a Cartesian product of lattices. St001621The number of atoms of a lattice. St001624The breadth of a lattice. St000100The number of linear extensions of a poset. St000298The order dimension or Dushnik-Miller dimension of a poset. St000307The number of rowmotion orbits of a poset. St000633The size of the automorphism group of a poset. St000640The rank of the largest boolean interval in a poset. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St000910The number of maximal chains of minimal length in a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St001268The size of the largest ordinal summand in the poset. St001399The distinguishing number of a poset. St001510The number of self-evacuating linear extensions of a finite poset. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001779The order of promotion on the set of linear extensions of a poset. St000632The jump number of the poset. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000850The number of 1/2-balanced pairs in a poset. St001343The dimension of the reduced incidence algebra of a poset. St001397Number of pairs of incomparable elements in a finite poset. St001398Number of subsets of size 3 of elements in a poset that form a "v". St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St001718The number of non-empty open intervals in a poset. St001782The order of rowmotion on the set of order ideals of a poset. St001875The number of simple modules with projective dimension at most 1. St001570The minimal number of edges to add to make a graph Hamiltonian. St000454The largest eigenvalue of a graph if it is integral. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001877Number of indecomposable injective modules with projective dimension 2. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.