Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001632
St001632: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,1)],2)
=> 1
([(0,1),(0,2)],3)
=> 2
([(0,2),(2,1)],3)
=> 1
([(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(0,3)],4)
=> 0
([(0,2),(0,3),(3,1)],4)
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(3,1),(3,2)],4)
=> 1
([(0,3),(1,3),(3,2)],4)
=> 1
([(0,3),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2),(1,3)],4)
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> 0
([(0,3),(2,1),(3,2)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> 0
([(0,2),(0,3),(0,4),(4,1)],5)
=> 0
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 0
([(0,3),(0,4),(4,1),(4,2)],5)
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> 0
([(0,4),(1,4),(2,4),(4,3)],5)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 0
([(0,4),(1,4),(2,3),(4,2)],5)
=> 1
([(0,4),(1,3),(2,3),(3,4)],5)
=> 0
([(0,4),(1,4),(2,3),(2,4)],5)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> 0
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> 0
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> 2
([(0,4),(1,2),(1,4),(4,3)],5)
=> 0
([(0,4),(1,2),(1,3),(1,4)],5)
=> 0
([(0,2),(0,4),(3,1),(4,3)],5)
=> 2
([(0,4),(1,2),(1,3),(3,4)],5)
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4)],5)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> 0
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> 0
([(0,3),(1,2),(1,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> 1
Description
The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset.