searching the database
Your data matches 41 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000228
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00198: Posets —incomparability graph⟶ Graphs
Mp00275: Graphs —to edge-partition of connected components⟶ Integer partitions
St000228: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00275: Graphs —to edge-partition of connected components⟶ Integer partitions
St000228: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> []
=> 0
([],2)
=> ([(0,1)],2)
=> [1]
=> 1
([(0,1)],2)
=> ([],2)
=> []
=> 0
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 3
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2]
=> 2
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> [1]
=> 1
([(0,2),(2,1)],3)
=> ([],3)
=> []
=> 0
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [1]
=> 1
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3]
=> 3
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> [2]
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [1]
=> 1
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [3]
=> 3
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> [1]
=> 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [1]
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3]
=> 3
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> []
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2]
=> 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> 3
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> [1]
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> 3
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> 3
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> [1]
=> 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 3
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [2,1]
=> 3
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 2
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [4]
=> 4
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [3]
=> 3
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> [2]
=> 2
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [4]
=> 4
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [2,1]
=> 3
([(1,4),(3,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4]
=> 4
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> [1]
=> 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [2]
=> 2
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [2]
=> 2
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [4]
=> 4
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> []
=> 0
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [3]
=> 3
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> [1]
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> [3]
=> 3
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(2,5),(3,4)],6)
=> [1,1]
=> 2
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> [2,1]
=> 3
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> [1,1]
=> 2
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> [4]
=> 4
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> [3]
=> 3
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> [3]
=> 3
Description
The size of a partition.
This statistic is the constant statistic of the level sets.
Matching statistic: St000384
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00198: Posets —incomparability graph⟶ Graphs
Mp00276: Graphs —to edge-partition of biconnected components⟶ Integer partitions
St000384: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00276: Graphs —to edge-partition of biconnected components⟶ Integer partitions
St000384: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> []
=> 0
([],2)
=> ([(0,1)],2)
=> [1]
=> 1
([(0,1)],2)
=> ([],2)
=> []
=> 0
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 3
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [1,1]
=> 2
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> [1]
=> 1
([(0,2),(2,1)],3)
=> ([],3)
=> []
=> 0
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [1]
=> 1
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3]
=> 3
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> [1,1]
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [1]
=> 1
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> 3
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> [1]
=> 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [1]
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3]
=> 3
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> []
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [1,1]
=> 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> 3
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> [1]
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> 3
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> 3
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> [1]
=> 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 3
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> 3
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 2
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> 4
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> 3
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> [1,1]
=> 2
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> 4
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> 3
([(1,4),(3,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> 4
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> [1]
=> 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [1,1]
=> 2
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [1,1]
=> 2
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> 4
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> []
=> 0
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> 3
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> [1]
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> [3]
=> 3
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(2,5),(3,4)],6)
=> [1,1]
=> 2
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> 3
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> [1,1]
=> 2
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> 4
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> [3]
=> 3
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> [3]
=> 3
Description
The maximal part of the shifted composition of an integer partition.
A partition $\lambda = (\lambda_1,\ldots,\lambda_k)$ is shifted into a composition by adding $i-1$ to the $i$-th part.
The statistic is then $\operatorname{max}_i\{ \lambda_i + i - 1 \}$.
See also [[St000380]].
Matching statistic: St000459
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00198: Posets —incomparability graph⟶ Graphs
Mp00276: Graphs —to edge-partition of biconnected components⟶ Integer partitions
St000459: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00276: Graphs —to edge-partition of biconnected components⟶ Integer partitions
St000459: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> []
=> 0
([],2)
=> ([(0,1)],2)
=> [1]
=> 1
([(0,1)],2)
=> ([],2)
=> []
=> 0
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 3
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [1,1]
=> 2
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> [1]
=> 1
([(0,2),(2,1)],3)
=> ([],3)
=> []
=> 0
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [1]
=> 1
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3]
=> 3
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> [1,1]
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [1]
=> 1
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> 3
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> [1]
=> 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [1]
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3]
=> 3
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> []
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [1,1]
=> 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> 3
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> [1]
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> 3
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> 3
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> [1]
=> 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 3
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> 3
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 2
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> 4
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> 3
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> [1,1]
=> 2
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> 4
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> 3
([(1,4),(3,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> 4
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> [1]
=> 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [1,1]
=> 2
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [1,1]
=> 2
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> 4
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> []
=> 0
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> 3
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> [1]
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> [3]
=> 3
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(2,5),(3,4)],6)
=> [1,1]
=> 2
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> 3
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> [1,1]
=> 2
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> 4
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> [3]
=> 3
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> [3]
=> 3
Description
The hook length of the base cell of a partition.
This is also known as the perimeter of a partition. In particular, the perimeter of the empty partition is zero.
Matching statistic: St000784
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00198: Posets —incomparability graph⟶ Graphs
Mp00276: Graphs —to edge-partition of biconnected components⟶ Integer partitions
St000784: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00276: Graphs —to edge-partition of biconnected components⟶ Integer partitions
St000784: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> []
=> 0
([],2)
=> ([(0,1)],2)
=> [1]
=> 1
([(0,1)],2)
=> ([],2)
=> []
=> 0
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 3
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [1,1]
=> 2
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> [1]
=> 1
([(0,2),(2,1)],3)
=> ([],3)
=> []
=> 0
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [1]
=> 1
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3]
=> 3
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> [1,1]
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [1]
=> 1
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> 3
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> [1]
=> 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [1]
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3]
=> 3
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> []
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [1,1]
=> 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> 3
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> [1]
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> 3
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> 3
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> [1]
=> 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 3
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> 3
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 2
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> 4
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> 3
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> [1,1]
=> 2
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> 4
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> 3
([(1,4),(3,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> 4
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> [1]
=> 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [1,1]
=> 2
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [1,1]
=> 2
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> 4
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> []
=> 0
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> 3
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> [1]
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> [3]
=> 3
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(2,5),(3,4)],6)
=> [1,1]
=> 2
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> 3
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> [1,1]
=> 2
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> 4
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> [3]
=> 3
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> [3]
=> 3
Description
The maximum of the length and the largest part of the integer partition.
This is the side length of the smallest square the Ferrers diagram of the partition fits into. It is also the minimal number of colours required to colour the cells of the Ferrers diagram such that no two cells in a column or in a row have the same colour, see [1].
See also [[St001214]].
Matching statistic: St001622
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> 0
([],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,1)],2)
=> ([],2)
=> ([],1)
=> 0
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 3
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> 1
([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> 0
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 3
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> 1
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 3
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 3
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 3
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 3
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 3
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,1)],2)
=> 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 3
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 3
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 4
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 3
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 4
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 3
([(1,4),(3,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 4
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,1)],2)
=> 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 4
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> 0
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 3
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 3
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 4
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 3
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 3
Description
The number of join-irreducible elements of a lattice.
An element $j$ of a lattice $L$ is '''join irreducible''' if it is not the least element and if $j=x\vee y$, then $j\in\{x,y\}$ for all $x,y\in L$.
Matching statistic: St000063
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00198: Posets —incomparability graph⟶ Graphs
Mp00276: Graphs —to edge-partition of biconnected components⟶ Integer partitions
St000063: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00276: Graphs —to edge-partition of biconnected components⟶ Integer partitions
St000063: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> []
=> 1 = 0 + 1
([],2)
=> ([(0,1)],2)
=> [1]
=> 2 = 1 + 1
([(0,1)],2)
=> ([],2)
=> []
=> 1 = 0 + 1
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 4 = 3 + 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [1,1]
=> 3 = 2 + 1
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> [1]
=> 2 = 1 + 1
([(0,2),(2,1)],3)
=> ([],3)
=> []
=> 1 = 0 + 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [1]
=> 2 = 1 + 1
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3]
=> 4 = 3 + 1
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> [1,1]
=> 3 = 2 + 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [1]
=> 2 = 1 + 1
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> 4 = 3 + 1
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> [1]
=> 2 = 1 + 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [1]
=> 2 = 1 + 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3]
=> 4 = 3 + 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 4 = 3 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 3 = 2 + 1
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> []
=> 1 = 0 + 1
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [1,1]
=> 3 = 2 + 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> 4 = 3 + 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> [1]
=> 2 = 1 + 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 4 = 3 + 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 3 = 2 + 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> 4 = 3 + 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 3 = 2 + 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> 4 = 3 + 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> [1]
=> 2 = 1 + 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 4 = 3 + 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> 4 = 3 + 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 3 = 2 + 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> 5 = 4 + 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> 4 = 3 + 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> [1,1]
=> 3 = 2 + 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> 5 = 4 + 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> 4 = 3 + 1
([(1,4),(3,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> 5 = 4 + 1
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> [1]
=> 2 = 1 + 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [1,1]
=> 3 = 2 + 1
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [1,1]
=> 3 = 2 + 1
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> 5 = 4 + 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> []
=> 1 = 0 + 1
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> 4 = 3 + 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> [1]
=> 2 = 1 + 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> [3]
=> 4 = 3 + 1
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(2,5),(3,4)],6)
=> [1,1]
=> 3 = 2 + 1
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> 4 = 3 + 1
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> [1,1]
=> 3 = 2 + 1
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> 5 = 4 + 1
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> [3]
=> 4 = 3 + 1
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> [3]
=> 4 = 3 + 1
Description
The number of linear extensions of a certain poset defined for an integer partition.
The poset is constructed in David Speyer's answer to Matt Fayers' question [3].
The value at the partition $\lambda$ also counts cover-inclusive Dyck tilings of $\lambda\setminus\mu$, summed over all $\mu$, as noticed by Philippe Nadeau in a comment.
This statistic arises in the homogeneous Garnir relations for the universal graded Specht modules for cyclotomic quiver Hecke algebras.
Matching statistic: St000108
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00198: Posets —incomparability graph⟶ Graphs
Mp00276: Graphs —to edge-partition of biconnected components⟶ Integer partitions
St000108: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00276: Graphs —to edge-partition of biconnected components⟶ Integer partitions
St000108: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> []
=> 1 = 0 + 1
([],2)
=> ([(0,1)],2)
=> [1]
=> 2 = 1 + 1
([(0,1)],2)
=> ([],2)
=> []
=> 1 = 0 + 1
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 4 = 3 + 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [1,1]
=> 3 = 2 + 1
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> [1]
=> 2 = 1 + 1
([(0,2),(2,1)],3)
=> ([],3)
=> []
=> 1 = 0 + 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [1]
=> 2 = 1 + 1
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3]
=> 4 = 3 + 1
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> [1,1]
=> 3 = 2 + 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [1]
=> 2 = 1 + 1
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> 4 = 3 + 1
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> [1]
=> 2 = 1 + 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [1]
=> 2 = 1 + 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3]
=> 4 = 3 + 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 4 = 3 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 3 = 2 + 1
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> []
=> 1 = 0 + 1
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [1,1]
=> 3 = 2 + 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> 4 = 3 + 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> [1]
=> 2 = 1 + 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 4 = 3 + 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 3 = 2 + 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> 4 = 3 + 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 3 = 2 + 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> 4 = 3 + 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> [1]
=> 2 = 1 + 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 4 = 3 + 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> 4 = 3 + 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 3 = 2 + 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> 5 = 4 + 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> 4 = 3 + 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> [1,1]
=> 3 = 2 + 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> 5 = 4 + 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> 4 = 3 + 1
([(1,4),(3,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> 5 = 4 + 1
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> [1]
=> 2 = 1 + 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [1,1]
=> 3 = 2 + 1
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [1,1]
=> 3 = 2 + 1
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> 5 = 4 + 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> []
=> 1 = 0 + 1
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> 4 = 3 + 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> [1]
=> 2 = 1 + 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> [3]
=> 4 = 3 + 1
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(2,5),(3,4)],6)
=> [1,1]
=> 3 = 2 + 1
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> 4 = 3 + 1
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> [1,1]
=> 3 = 2 + 1
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> 5 = 4 + 1
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> [3]
=> 4 = 3 + 1
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> [3]
=> 4 = 3 + 1
Description
The number of partitions contained in the given partition.
Matching statistic: St000532
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00198: Posets —incomparability graph⟶ Graphs
Mp00276: Graphs —to edge-partition of biconnected components⟶ Integer partitions
St000532: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00276: Graphs —to edge-partition of biconnected components⟶ Integer partitions
St000532: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> []
=> 1 = 0 + 1
([],2)
=> ([(0,1)],2)
=> [1]
=> 2 = 1 + 1
([(0,1)],2)
=> ([],2)
=> []
=> 1 = 0 + 1
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 4 = 3 + 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [1,1]
=> 3 = 2 + 1
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> [1]
=> 2 = 1 + 1
([(0,2),(2,1)],3)
=> ([],3)
=> []
=> 1 = 0 + 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [1]
=> 2 = 1 + 1
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3]
=> 4 = 3 + 1
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> [1,1]
=> 3 = 2 + 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [1]
=> 2 = 1 + 1
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> 4 = 3 + 1
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> [1]
=> 2 = 1 + 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [1]
=> 2 = 1 + 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3]
=> 4 = 3 + 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 4 = 3 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 3 = 2 + 1
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> []
=> 1 = 0 + 1
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [1,1]
=> 3 = 2 + 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> 4 = 3 + 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> [1]
=> 2 = 1 + 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 4 = 3 + 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 3 = 2 + 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> 4 = 3 + 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 3 = 2 + 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> 4 = 3 + 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> [1]
=> 2 = 1 + 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 4 = 3 + 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> 4 = 3 + 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 3 = 2 + 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> 5 = 4 + 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> 4 = 3 + 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> [1,1]
=> 3 = 2 + 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> 5 = 4 + 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> 4 = 3 + 1
([(1,4),(3,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> 5 = 4 + 1
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> [1]
=> 2 = 1 + 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [1,1]
=> 3 = 2 + 1
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [1,1]
=> 3 = 2 + 1
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> 5 = 4 + 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> []
=> 1 = 0 + 1
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> 4 = 3 + 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> [1]
=> 2 = 1 + 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> [3]
=> 4 = 3 + 1
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(2,5),(3,4)],6)
=> [1,1]
=> 3 = 2 + 1
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> 4 = 3 + 1
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> [1,1]
=> 3 = 2 + 1
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> 5 = 4 + 1
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> [3]
=> 4 = 3 + 1
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> [3]
=> 4 = 3 + 1
Description
The total number of rook placements on a Ferrers board.
Matching statistic: St001400
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00198: Posets —incomparability graph⟶ Graphs
Mp00276: Graphs —to edge-partition of biconnected components⟶ Integer partitions
St001400: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00276: Graphs —to edge-partition of biconnected components⟶ Integer partitions
St001400: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> []
=> 1 = 0 + 1
([],2)
=> ([(0,1)],2)
=> [1]
=> 2 = 1 + 1
([(0,1)],2)
=> ([],2)
=> []
=> 1 = 0 + 1
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 4 = 3 + 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [1,1]
=> 3 = 2 + 1
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> [1]
=> 2 = 1 + 1
([(0,2),(2,1)],3)
=> ([],3)
=> []
=> 1 = 0 + 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [1]
=> 2 = 1 + 1
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3]
=> 4 = 3 + 1
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> [1,1]
=> 3 = 2 + 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [1]
=> 2 = 1 + 1
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> 4 = 3 + 1
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> [1]
=> 2 = 1 + 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [1]
=> 2 = 1 + 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3]
=> 4 = 3 + 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 4 = 3 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 3 = 2 + 1
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> []
=> 1 = 0 + 1
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [1,1]
=> 3 = 2 + 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> 4 = 3 + 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> [1]
=> 2 = 1 + 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 4 = 3 + 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 3 = 2 + 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> 4 = 3 + 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 3 = 2 + 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> 4 = 3 + 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> [1]
=> 2 = 1 + 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 4 = 3 + 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> 4 = 3 + 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 3 = 2 + 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> 5 = 4 + 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> 4 = 3 + 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> [1,1]
=> 3 = 2 + 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> 5 = 4 + 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> 4 = 3 + 1
([(1,4),(3,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> 5 = 4 + 1
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> [1]
=> 2 = 1 + 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [1,1]
=> 3 = 2 + 1
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [1,1]
=> 3 = 2 + 1
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> 5 = 4 + 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> []
=> 1 = 0 + 1
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> 4 = 3 + 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> [1]
=> 2 = 1 + 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> [3]
=> 4 = 3 + 1
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(2,5),(3,4)],6)
=> [1,1]
=> 3 = 2 + 1
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> 4 = 3 + 1
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> [1,1]
=> 3 = 2 + 1
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> 5 = 4 + 1
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> [3]
=> 4 = 3 + 1
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> [3]
=> 4 = 3 + 1
Description
The total number of Littlewood-Richardson tableaux of given shape.
This is the multiplicity of the Schur function $s_\lambda$ in $\sum_{\mu, \nu} s_\mu s_\nu$, where the sum is over all partitions $\mu$ and $\nu$.
Matching statistic: St000185
Mp00198: Posets —incomparability graph⟶ Graphs
Mp00251: Graphs —clique sizes⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000185: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00251: Graphs —clique sizes⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000185: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [1]
=> [1]
=> 0
([],2)
=> ([(0,1)],2)
=> [2]
=> [1,1]
=> 1
([(0,1)],2)
=> ([],2)
=> [1,1]
=> [2]
=> 0
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 3
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> [2,2]
=> 2
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> [2,1]
=> 1
([(0,2),(2,1)],3)
=> ([],3)
=> [1,1,1]
=> [3]
=> 0
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> [2,1]
=> 1
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 3
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> [3,2]
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> 1
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [3,3]
=> 3
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 3
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [3,3]
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> [2,2]
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [1,1,1,1]
=> [4]
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> [3,2]
=> 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 3
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [4,3]
=> 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> [2,2,1]
=> [3,2]
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 3
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> [2,2,1]
=> [3,2]
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 3
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [4,3]
=> 3
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> [3,3]
=> 3
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(1,4),(2,3)],5)
=> [2,2,1]
=> [3,2]
=> 2
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [4,4]
=> 4
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [4,3]
=> 3
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [4,2]
=> 2
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> [4,4]
=> 4
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> [3,3]
=> 3
([(1,4),(3,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [4,4]
=> 4
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [4,2]
=> 2
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [4,2]
=> 2
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [4,4]
=> 4
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> [5]
=> 0
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [4,3]
=> 3
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [4,1,1]
=> 3
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [4,2]
=> 2
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> [2,2,2,1]
=> [4,3]
=> 3
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [4,2]
=> 2
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> [2,2,2,2,1]
=> [5,4]
=> 4
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [4,1,1]
=> 3
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [4,1,1]
=> 3
Description
The weighted size of a partition.
Let $\lambda = (\lambda_0\geq\lambda_1 \geq \dots\geq\lambda_m)$ be an integer partition. Then the weighted size of $\lambda$ is
$$\sum_{i=0}^m i \cdot \lambda_i.$$
This is also the sum of the leg lengths of the cells in $\lambda$, or
$$
\sum_i \binom{\lambda^{\prime}_i}{2}
$$
where $\lambda^{\prime}$ is the conjugate partition of $\lambda$.
This is the minimal number of inversions a permutation with the given shape can have, see [1, cor.2.2].
This is also the smallest possible sum of the entries of a semistandard tableau (allowing 0 as a part) of shape $\lambda=(\lambda_0,\lambda_1,\ldots,\lambda_m)$, obtained uniquely by placing $i-1$ in all the cells of the $i$th row of $\lambda$, see [2, eq.7.103].
The following 31 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000460The hook length of the last cell along the main diagonal of an integer partition. St000870The product of the hook lengths of the diagonal cells in an integer partition. St001249Sum of the odd parts of a partition. St001360The number of covering relations in Young's lattice below a partition. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001527The cyclic permutation representation number of an integer partition. St000681The Grundy value of Chomp on Ferrers diagrams. St000081The number of edges of a graph. St001397Number of pairs of incomparable elements in a finite poset. St000454The largest eigenvalue of a graph if it is integral. St001311The cyclomatic number of a graph. St001341The number of edges in the center of a graph. St000448The number of pairs of vertices of a graph with distance 2. St001646The number of edges that can be added without increasing the maximal degree of a graph. St001621The number of atoms of a lattice. St001875The number of simple modules with projective dimension at most 1. St000450The number of edges minus the number of vertices plus 2 of a graph. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St000362The size of a minimal vertex cover of a graph. St000387The matching number of a graph. St000985The number of positive eigenvalues of the adjacency matrix of the graph. St001305The number of induced cycles on four vertices in a graph. St001317The minimal number of occurrences of the forest-pattern in a linear ordering of the vertices of the graph. St001324The minimal number of occurrences of the chordal-pattern in a linear ordering of the vertices of the graph. St001326The minimal number of occurrences of the interval-pattern in a linear ordering of the vertices of the graph. St001971The number of negative eigenvalues of the adjacency matrix of the graph. St000456The monochromatic index of a connected graph. St001271The competition number of a graph. St001725The harmonious chromatic number of a graph. St001883The mutual visibility number of a graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!