Your data matches 30 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000070: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 2
([],2)
=> 4
([(0,1)],2)
=> 3
([(1,2)],3)
=> 6
([(0,1),(0,2)],3)
=> 5
([(0,2),(2,1)],3)
=> 4
([(0,2),(1,2)],3)
=> 5
([(0,2),(0,3),(3,1)],4)
=> 7
([(0,1),(0,2),(1,3),(2,3)],4)
=> 6
([(0,3),(3,1),(3,2)],4)
=> 6
([(0,3),(1,3),(3,2)],4)
=> 6
([(0,2),(0,3),(1,2),(1,3)],4)
=> 7
([(0,3),(2,1),(3,2)],4)
=> 5
([(0,3),(1,2),(2,3)],4)
=> 7
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 7
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 9
([(0,4),(1,4),(2,3),(4,2)],5)
=> 7
([(0,2),(0,4),(3,1),(4,3)],5)
=> 9
([(0,3),(3,4),(4,1),(4,2)],5)
=> 7
([(0,4),(3,2),(4,1),(4,3)],5)
=> 8
([(0,4),(2,3),(3,1),(4,2)],5)
=> 6
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 7
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 10
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 8
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 7
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 11
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 11
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 8
([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> 9
Description
The number of antichains in a poset. An antichain in a poset $P$ is a subset of elements of $P$ which are pairwise incomparable. An order ideal is a subset $I$ of $P$ such that $a\in I$ and $b \leq_P a$ implies $b \in I$. Since there is a one-to-one correspondence between antichains and order ideals, this statistic is also the number of order ideals in a poset.
Mp00198: Posets incomparability graphGraphs
Mp00111: Graphs complementGraphs
St000300: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],1)
=> 2
([],2)
=> ([(0,1)],2)
=> ([],2)
=> 4
([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 3
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 6
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 5
([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 4
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 5
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 7
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 7
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 5
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 7
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 9
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 9
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 10
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 7
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 11
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 11
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 8
([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> 9
Description
The number of independent sets of vertices of a graph. An independent set of vertices of a graph $G$ is a subset $U \subset V(G)$ such that no two vertices in $U$ are adjacent. This is also the number of vertex covers of $G$ as the map $U \mapsto V(G)\setminus U$ is a bijection between independent sets of vertices and vertex covers. The size of the largest independent set, also called independence number of $G$, is [[St000093]]
Matching statistic: St001622
Mp00195: Posets order idealsLattices
Mp00193: Lattices to posetPosets
Mp00195: Posets order idealsLattices
St001622: Lattices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 2
([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 4
([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> 6
([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 5
([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 5
([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> 7
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> 6
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> 6
([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> 6
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,7),(2,9),(3,9),(4,8),(5,8),(6,2),(6,3),(7,4),(7,5),(8,6),(9,1)],10)
=> 7
([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> 7
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> 7
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,8),(2,14),(3,12),(4,10),(5,11),(6,3),(6,11),(7,4),(7,13),(8,9),(9,5),(9,6),(10,14),(11,7),(11,12),(12,13),(13,2),(13,10),(14,1)],15)
=> 9
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,7),(2,8),(3,8),(4,5),(5,1),(6,4),(7,2),(7,3),(8,6)],9)
=> 7
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(0,8),(1,15),(3,14),(4,13),(5,12),(6,7),(6,13),(7,5),(7,10),(8,9),(9,4),(9,6),(10,12),(10,14),(11,15),(12,11),(13,3),(13,10),(14,1),(14,11),(15,2)],16)
=> 9
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> 7
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,7),(1,9),(2,10),(4,11),(5,8),(6,1),(6,10),(7,5),(8,2),(8,6),(9,11),(10,4),(10,9),(11,3)],12)
=> 8
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> 7
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(0,9),(1,13),(2,14),(4,12),(5,11),(6,1),(6,12),(7,3),(8,5),(8,15),(9,10),(10,4),(10,6),(11,14),(12,8),(12,13),(13,15),(14,7),(15,2),(15,11)],16)
=> 10
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(0,7),(2,9),(3,9),(4,1),(5,8),(6,4),(7,5),(8,2),(8,3),(9,6)],10)
=> 8
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> 7
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ([(0,10),(1,15),(2,14),(4,13),(5,12),(6,3),(7,1),(7,12),(8,4),(8,16),(9,6),(10,11),(11,5),(11,7),(12,8),(12,15),(13,14),(14,9),(15,16),(16,2),(16,13)],17)
=> 11
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ([(0,10),(1,15),(3,14),(4,13),(5,12),(6,11),(7,1),(7,12),(8,2),(9,4),(9,16),(10,6),(11,5),(11,7),(12,9),(12,15),(13,14),(14,8),(15,16),(16,3),(16,13)],17)
=> 11
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> 8
([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ([(0,9),(2,4),(3,2),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10)
=> 9
Description
The number of join-irreducible elements of a lattice. An element $j$ of a lattice $L$ is '''join irreducible''' if it is not the least element and if $j=x\vee y$, then $j\in\{x,y\}$ for all $x,y\in L$.
Matching statistic: St001279
Mp00306: Posets rowmotion cycle typeInteger partitions
St001279: Integer partitions ⟶ ℤResult quality: 97% values known / values provided: 97%distinct values known / distinct values provided: 100%
Values
([],1)
=> [2]
=> 2
([],2)
=> [2,2]
=> 4
([(0,1)],2)
=> [3]
=> 3
([(1,2)],3)
=> [6]
=> 6
([(0,1),(0,2)],3)
=> [3,2]
=> 5
([(0,2),(2,1)],3)
=> [4]
=> 4
([(0,2),(1,2)],3)
=> [3,2]
=> 5
([(0,2),(0,3),(3,1)],4)
=> [7]
=> 7
([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> 6
([(0,3),(3,1),(3,2)],4)
=> [4,2]
=> 6
([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 6
([(0,2),(0,3),(1,2),(1,3)],4)
=> [3,2,2]
=> 7
([(0,3),(2,1),(3,2)],4)
=> [5]
=> 5
([(0,3),(1,2),(2,3)],4)
=> [7]
=> 7
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> 7
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [5,4]
=> 9
([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> 7
([(0,2),(0,4),(3,1),(4,3)],5)
=> [5,4]
=> 9
([(0,3),(3,4),(4,1),(4,2)],5)
=> [5,2]
=> 7
([(0,4),(3,2),(4,1),(4,3)],5)
=> [8]
=> 8
([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 6
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> 7
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [5,5]
=> 10
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [6,2]
=> 8
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [7]
=> 7
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> [6,5]
=> 11
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [6,5]
=> 11
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [8]
=> 8
([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ?
=> ? = 9
Description
The sum of the parts of an integer partition that are at least two.
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00095: Integer partitions to binary wordBinary words
St000293: Binary words ⟶ ℤResult quality: 97% values known / values provided: 97%distinct values known / distinct values provided: 100%
Values
([],1)
=> [2]
=> 100 => 2
([],2)
=> [2,2]
=> 1100 => 4
([(0,1)],2)
=> [3]
=> 1000 => 3
([(1,2)],3)
=> [6]
=> 1000000 => 6
([(0,1),(0,2)],3)
=> [3,2]
=> 10100 => 5
([(0,2),(2,1)],3)
=> [4]
=> 10000 => 4
([(0,2),(1,2)],3)
=> [3,2]
=> 10100 => 5
([(0,2),(0,3),(3,1)],4)
=> [7]
=> 10000000 => 7
([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> 100100 => 6
([(0,3),(3,1),(3,2)],4)
=> [4,2]
=> 100100 => 6
([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 100100 => 6
([(0,2),(0,3),(1,2),(1,3)],4)
=> [3,2,2]
=> 101100 => 7
([(0,3),(2,1),(3,2)],4)
=> [5]
=> 100000 => 5
([(0,3),(1,2),(2,3)],4)
=> [7]
=> 10000000 => 7
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> 1000100 => 7
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [5,4]
=> 1010000 => 9
([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> 1000100 => 7
([(0,2),(0,4),(3,1),(4,3)],5)
=> [5,4]
=> 1010000 => 9
([(0,3),(3,4),(4,1),(4,2)],5)
=> [5,2]
=> 1000100 => 7
([(0,4),(3,2),(4,1),(4,3)],5)
=> [8]
=> 100000000 => 8
([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 1000000 => 6
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> 1000100 => 7
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [5,5]
=> 1100000 => 10
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [6,2]
=> 10000100 => 8
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [7]
=> 10000000 => 7
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> [6,5]
=> 10100000 => 11
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [6,5]
=> 10100000 => 11
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [8]
=> 100000000 => 8
([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ?
=> ? => ? = 9
Description
The number of inversions of a binary word.
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St001034: Dyck paths ⟶ ℤResult quality: 97% values known / values provided: 97%distinct values known / distinct values provided: 100%
Values
([],1)
=> [2]
=> [1,0,1,0]
=> 2
([],2)
=> [2,2]
=> [1,1,1,0,0,0]
=> 4
([(0,1)],2)
=> [3]
=> [1,0,1,0,1,0]
=> 3
([(1,2)],3)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
([(0,1),(0,2)],3)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 5
([(0,2),(2,1)],3)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 4
([(0,2),(1,2)],3)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 5
([(0,2),(0,3),(3,1)],4)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 7
([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 6
([(0,3),(3,1),(3,2)],4)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 6
([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 6
([(0,2),(0,3),(1,2),(1,3)],4)
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> 7
([(0,3),(2,1),(3,2)],4)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
([(0,3),(1,2),(2,3)],4)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 7
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 7
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> 9
([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 7
([(0,2),(0,4),(3,1),(4,3)],5)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> 9
([(0,3),(3,4),(4,1),(4,2)],5)
=> [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 7
([(0,4),(3,2),(4,1),(4,3)],5)
=> [8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 8
([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 7
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 10
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [6,2]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> 8
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 7
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> [6,5]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> 11
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [6,5]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> 11
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 8
([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ?
=> ?
=> ? = 9
Description
The area of the parallelogram polyomino associated with the Dyck path. The (bivariate) generating function is given in [1].
Matching statistic: St000290
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00095: Integer partitions to binary wordBinary words
Mp00316: Binary words inverse Foata bijectionBinary words
St000290: Binary words ⟶ ℤResult quality: 97% values known / values provided: 97%distinct values known / distinct values provided: 100%
Values
([],1)
=> [2]
=> 100 => 010 => 2
([],2)
=> [2,2]
=> 1100 => 1010 => 4
([(0,1)],2)
=> [3]
=> 1000 => 0010 => 3
([(1,2)],3)
=> [6]
=> 1000000 => 0000010 => 6
([(0,1),(0,2)],3)
=> [3,2]
=> 10100 => 10010 => 5
([(0,2),(2,1)],3)
=> [4]
=> 10000 => 00010 => 4
([(0,2),(1,2)],3)
=> [3,2]
=> 10100 => 10010 => 5
([(0,2),(0,3),(3,1)],4)
=> [7]
=> 10000000 => 00000010 => 7
([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> 100100 => 100010 => 6
([(0,3),(3,1),(3,2)],4)
=> [4,2]
=> 100100 => 100010 => 6
([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 100100 => 100010 => 6
([(0,2),(0,3),(1,2),(1,3)],4)
=> [3,2,2]
=> 101100 => 110010 => 7
([(0,3),(2,1),(3,2)],4)
=> [5]
=> 100000 => 000010 => 5
([(0,3),(1,2),(2,3)],4)
=> [7]
=> 10000000 => 00000010 => 7
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> 1000100 => 1000010 => 7
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [5,4]
=> 1010000 => 0010010 => 9
([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> 1000100 => 1000010 => 7
([(0,2),(0,4),(3,1),(4,3)],5)
=> [5,4]
=> 1010000 => 0010010 => 9
([(0,3),(3,4),(4,1),(4,2)],5)
=> [5,2]
=> 1000100 => 1000010 => 7
([(0,4),(3,2),(4,1),(4,3)],5)
=> [8]
=> 100000000 => 000000010 => 8
([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 1000000 => 0000010 => 6
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> 1000100 => 1000010 => 7
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [5,5]
=> 1100000 => 0001010 => 10
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [6,2]
=> 10000100 => 10000010 => 8
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [7]
=> 10000000 => 00000010 => 7
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> [6,5]
=> 10100000 => 00010010 => 11
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [6,5]
=> 10100000 => 00010010 => 11
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [8]
=> 100000000 => 000000010 => 8
([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ?
=> ? => ? => ? = 9
Description
The major index of a binary word. This is the sum of the positions of descents, i.e., a one followed by a zero. For words of length $n$ with $a$ zeros, the generating function for the major index is the $q$-binomial coefficient $\binom{n}{a}_q$.
Mp00195: Posets order idealsLattices
Mp00193: Lattices to posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
St000228: Integer partitions ⟶ ℤResult quality: 90% values known / values provided: 93%distinct values known / distinct values provided: 90%
Values
([],1)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 2
([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 4
([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 6
([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> 5
([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> 5
([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [5,2]
=> 7
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> 6
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [5,1]
=> 6
([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [5,1]
=> 6
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> [5,2]
=> 7
([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> [5,2]
=> 7
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> [6,1]
=> 7
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> [6,3]
=> 9
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> [6,1]
=> 7
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> [6,3]
=> 9
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> [6,1]
=> 7
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> [6,2]
=> 8
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> 6
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> [6,1]
=> 7
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> [7,3]
=> 10
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> [7,1]
=> 8
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [7]
=> 7
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> [8,3]
=> ? = 11
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> [8,3]
=> ? = 11
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> [8]
=> 8
([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> [9]
=> 9
Description
The size of a partition. This statistic is the constant statistic of the level sets.
Matching statistic: St000438
Mp00198: Posets incomparability graphGraphs
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St000438: Dyck paths ⟶ ℤResult quality: 90% values known / values provided: 93%distinct values known / distinct values provided: 90%
Values
([],1)
=> ([],1)
=> [1] => [1,0]
=> ? = 2 - 1
([],2)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 3 = 4 - 1
([(0,1)],2)
=> ([],2)
=> [2] => [1,1,0,0]
=> 2 = 3 - 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [1,1,1] => [1,0,1,0,1,0]
=> 5 = 6 - 1
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> [1,2] => [1,0,1,1,0,0]
=> 4 = 5 - 1
([(0,2),(2,1)],3)
=> ([],3)
=> [3] => [1,1,1,0,0,0]
=> 3 = 4 - 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [1,2] => [1,0,1,1,0,0]
=> 4 = 5 - 1
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> 6 = 7 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [1,3] => [1,0,1,1,1,0,0,0]
=> 5 = 6 - 1
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> [1,3] => [1,0,1,1,1,0,0,0]
=> 5 = 6 - 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [1,3] => [1,0,1,1,1,0,0,0]
=> 5 = 6 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 6 = 7 - 1
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [4] => [1,1,1,1,0,0,0,0]
=> 4 = 5 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> 6 = 7 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 6 = 7 - 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 8 = 9 - 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 6 = 7 - 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 8 = 9 - 1
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 6 = 7 - 1
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 7 = 8 - 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [5] => [1,1,1,1,1,0,0,0,0,0]
=> 5 = 6 - 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 6 = 7 - 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> 9 = 10 - 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> 7 = 8 - 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 6 = 7 - 1
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> [1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> 10 = 11 - 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> [1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> 10 = 11 - 1
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> [7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 7 = 8 - 1
([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> [8] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 9 - 1
Description
The position of the last up step in a Dyck path.
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00222: Dyck paths peaks-to-valleysDyck paths
St000395: Dyck paths ⟶ ℤResult quality: 90% values known / values provided: 90%distinct values known / distinct values provided: 100%
Values
([],1)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2
([],2)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 4
([(0,1)],2)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3
([(1,2)],3)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 6
([(0,1),(0,2)],3)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 5
([(0,2),(2,1)],3)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 4
([(0,2),(1,2)],3)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 5
([(0,2),(0,3),(3,1)],4)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 7
([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 6
([(0,3),(3,1),(3,2)],4)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 6
([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 6
([(0,2),(0,3),(1,2),(1,3)],4)
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 7
([(0,3),(2,1),(3,2)],4)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 5
([(0,3),(1,2),(2,3)],4)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 7
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 7
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 9
([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 7
([(0,2),(0,4),(3,1),(4,3)],5)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 9
([(0,3),(3,4),(4,1),(4,2)],5)
=> [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 7
([(0,4),(3,2),(4,1),(4,3)],5)
=> [8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 8
([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 6
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 7
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 10
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [6,2]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> 8
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 7
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> [6,5]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> 11
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [6,5]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> 11
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 8
([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ?
=> ?
=> ?
=> ? = 9
Description
The sum of the heights of the peaks of a Dyck path.
The following 20 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001616The number of neutral elements in a lattice. St000081The number of edges of a graph. St000479The Ramsey number of a graph. St000550The number of modular elements of a lattice. St000551The number of left modular elements of a lattice. St001614The cyclic permutation representation number of a skew partition. St001318The number of vertices of the largest induced subforest with the same number of connected components of a graph. St001321The number of vertices of the largest induced subforest of a graph. St001342The number of vertices in the center of a graph. St000987The number of positive eigenvalues of the Laplacian matrix of the graph. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St000656The number of cuts of a poset. St001717The largest size of an interval in a poset. St001300The rank of the boundary operator in degree 1 of the chain complex of the order complex of the poset. St001615The number of join prime elements of a lattice. St001617The dimension of the space of valuations of a lattice. St000189The number of elements in the poset. St001875The number of simple modules with projective dimension at most 1. St000454The largest eigenvalue of a graph if it is integral. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.