Your data matches 373 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00276: Graphs —to edge-partition of biconnected components⟶ Integer partitions
St000010: Integer partitions ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
([],1)
=> []
=> 0
([],2)
=> []
=> 0
([(0,1)],2)
=> [1]
=> 1
([],3)
=> []
=> 0
([(1,2)],3)
=> [1]
=> 1
([(0,2),(1,2)],3)
=> [1,1]
=> 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1
([],4)
=> []
=> 0
([(2,3)],4)
=> [1]
=> 1
([(1,3),(2,3)],4)
=> [1,1]
=> 2
([(0,3),(1,2)],4)
=> [1,1]
=> 2
([(1,2),(1,3),(2,3)],4)
=> [3]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> 1
([],5)
=> []
=> 0
([(3,4)],5)
=> [1]
=> 1
([(2,4),(3,4)],5)
=> [1,1]
=> 2
([(1,4),(2,3)],5)
=> [1,1]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3]
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> 1
([],6)
=> []
=> 0
([(4,5)],6)
=> [1]
=> 1
([(3,5),(4,5)],6)
=> [1,1]
=> 2
([(2,5),(3,4)],6)
=> [1,1]
=> 2
([(3,4),(3,5),(4,5)],6)
=> [3]
=> 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> 2
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4]
=> 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5]
=> 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> 1
([],7)
=> []
=> 0
([(5,6)],7)
=> [1]
=> 1
([(4,6),(5,6)],7)
=> [1,1]
=> 2
([(3,6),(4,5)],7)
=> [1,1]
=> 2
([(4,5),(4,6),(5,6)],7)
=> [3]
=> 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> [3,1]
=> 2
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4]
=> 1
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5]
=> 1
([(2,3),(4,5),(4,6),(5,6)],7)
=> [3,1]
=> 2
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6]
=> 1
Description
The length of the partition.
Mp00117: Graphs —Ore closure⟶ Graphs
St001512: Graphs ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> 0
([],2)
=> ([],2)
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> 1
([],3)
=> ([],3)
=> 0
([(1,2)],3)
=> ([(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([],4)
=> ([],4)
=> 0
([(2,3)],4)
=> ([(2,3)],4)
=> 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([],5)
=> ([],5)
=> 0
([(3,4)],5)
=> ([(3,4)],5)
=> 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 2
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 2
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([],6)
=> ([],6)
=> 0
([(4,5)],6)
=> ([(4,5)],6)
=> 1
([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> 2
([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> 2
([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([],7)
=> ([],7)
=> 0
([(5,6)],7)
=> ([(5,6)],7)
=> 1
([(4,6),(5,6)],7)
=> ([(4,6),(5,6)],7)
=> 2
([(3,6),(4,5)],7)
=> ([(3,6),(4,5)],7)
=> 2
([(4,5),(4,6),(5,6)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,5),(4,6),(5,6)],7)
=> 2
([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(4,5),(4,6),(5,6)],7)
=> 2
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
Description
The minimum rank of a graph. The minimum rank of a simple graph G is the smallest possible rank over all symmetric real matrices whose entry in row $i$ and column $j$ (for $i\neq j$) is nonzero whenever $\{i, j\}$ is an edge in $G$, and zero otherwise.
Mp00276: Graphs —to edge-partition of biconnected components⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St000013: Dyck paths ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
([],1)
=> []
=> []
=> 0
([],2)
=> []
=> []
=> 0
([(0,1)],2)
=> [1]
=> [1,0]
=> 1
([],3)
=> []
=> []
=> 0
([(1,2)],3)
=> [1]
=> [1,0]
=> 1
([(0,2),(1,2)],3)
=> [1,1]
=> [1,1,0,0]
=> 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> 1
([],4)
=> []
=> []
=> 0
([(2,3)],4)
=> [1]
=> [1,0]
=> 1
([(1,3),(2,3)],4)
=> [1,1]
=> [1,1,0,0]
=> 2
([(0,3),(1,2)],4)
=> [1,1]
=> [1,1,0,0]
=> 2
([(1,2),(1,3),(2,3)],4)
=> [3]
=> [1,0,1,0,1,0]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
([],5)
=> []
=> []
=> 0
([(3,4)],5)
=> [1]
=> [1,0]
=> 1
([(2,4),(3,4)],5)
=> [1,1]
=> [1,1,0,0]
=> 2
([(1,4),(2,3)],5)
=> [1,1]
=> [1,1,0,0]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3]
=> [1,0,1,0,1,0]
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
([],6)
=> []
=> []
=> 0
([(4,5)],6)
=> [1]
=> [1,0]
=> 1
([(3,5),(4,5)],6)
=> [1,1]
=> [1,1,0,0]
=> 2
([(2,5),(3,4)],6)
=> [1,1]
=> [1,1,0,0]
=> 2
([(3,4),(3,5),(4,5)],6)
=> [3]
=> [1,0,1,0,1,0]
=> 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 2
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
([],7)
=> []
=> []
=> 0
([(5,6)],7)
=> [1]
=> [1,0]
=> 1
([(4,6),(5,6)],7)
=> [1,1]
=> [1,1,0,0]
=> 2
([(3,6),(4,5)],7)
=> [1,1]
=> [1,1,0,0]
=> 2
([(4,5),(4,6),(5,6)],7)
=> [3]
=> [1,0,1,0,1,0]
=> 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 2
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 1
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
([(2,3),(4,5),(4,6),(5,6)],7)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 2
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
Description
The height of a Dyck path. The height of a Dyck path $D$ of semilength $n$ is defined as the maximal height of a peak of $D$. The height of $D$ at position $i$ is the number of up-steps minus the number of down-steps before position $i$.
Mp00276: Graphs —to edge-partition of biconnected components⟶ Integer partitions
Mp00322: Integer partitions —Loehr-Warrington⟶ Integer partitions
St000147: Integer partitions ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
([],1)
=> []
=> []
=> 0
([],2)
=> []
=> []
=> 0
([(0,1)],2)
=> [1]
=> [1]
=> 1
([],3)
=> []
=> []
=> 0
([(1,2)],3)
=> [1]
=> [1]
=> 1
([(0,2),(1,2)],3)
=> [1,1]
=> [2]
=> 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 1
([],4)
=> []
=> []
=> 0
([(2,3)],4)
=> [1]
=> [1]
=> 1
([(1,3),(2,3)],4)
=> [1,1]
=> [2]
=> 2
([(0,3),(1,2)],4)
=> [1,1]
=> [2]
=> 2
([(1,2),(1,3),(2,3)],4)
=> [3]
=> [1,1,1]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,1,1,1]
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> [1,1,1,1,1]
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> [1,1,1,1,1,1]
=> 1
([],5)
=> []
=> []
=> 0
([(3,4)],5)
=> [1]
=> [1]
=> 1
([(2,4),(3,4)],5)
=> [1,1]
=> [2]
=> 2
([(1,4),(2,3)],5)
=> [1,1]
=> [2]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3]
=> [1,1,1]
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [2,1,1]
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> [1,1,1,1]
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [2,1,1]
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1]
=> 1
([],6)
=> []
=> []
=> 0
([(4,5)],6)
=> [1]
=> [1]
=> 1
([(3,5),(4,5)],6)
=> [1,1]
=> [2]
=> 2
([(2,5),(3,4)],6)
=> [1,1]
=> [2]
=> 2
([(3,4),(3,5),(4,5)],6)
=> [3]
=> [1,1,1]
=> 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [2,1,1]
=> 2
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4]
=> [1,1,1,1]
=> 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5]
=> [1,1,1,1,1]
=> 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [2,1,1]
=> 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1]
=> 1
([],7)
=> []
=> []
=> 0
([(5,6)],7)
=> [1]
=> [1]
=> 1
([(4,6),(5,6)],7)
=> [1,1]
=> [2]
=> 2
([(3,6),(4,5)],7)
=> [1,1]
=> [2]
=> 2
([(4,5),(4,6),(5,6)],7)
=> [3]
=> [1,1,1]
=> 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> [3,1]
=> [2,1,1]
=> 2
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4]
=> [1,1,1,1]
=> 1
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5]
=> [1,1,1,1,1]
=> 1
([(2,3),(4,5),(4,6),(5,6)],7)
=> [3,1]
=> [2,1,1]
=> 2
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6]
=> [1,1,1,1,1,1]
=> 1
Description
The largest part of an integer partition.
Mp00276: Graphs —to edge-partition of biconnected components⟶ Integer partitions
Mp00322: Integer partitions —Loehr-Warrington⟶ Integer partitions
St000378: Integer partitions ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
([],1)
=> []
=> []
=> 0
([],2)
=> []
=> []
=> 0
([(0,1)],2)
=> [1]
=> [1]
=> 1
([],3)
=> []
=> []
=> 0
([(1,2)],3)
=> [1]
=> [1]
=> 1
([(0,2),(1,2)],3)
=> [1,1]
=> [2]
=> 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 1
([],4)
=> []
=> []
=> 0
([(2,3)],4)
=> [1]
=> [1]
=> 1
([(1,3),(2,3)],4)
=> [1,1]
=> [2]
=> 2
([(0,3),(1,2)],4)
=> [1,1]
=> [2]
=> 2
([(1,2),(1,3),(2,3)],4)
=> [3]
=> [1,1,1]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,1,1,1]
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> [1,1,1,1,1]
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> [1,1,1,1,1,1]
=> 1
([],5)
=> []
=> []
=> 0
([(3,4)],5)
=> [1]
=> [1]
=> 1
([(2,4),(3,4)],5)
=> [1,1]
=> [2]
=> 2
([(1,4),(2,3)],5)
=> [1,1]
=> [2]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3]
=> [1,1,1]
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [2,1,1]
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> [1,1,1,1]
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [2,1,1]
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1]
=> 1
([],6)
=> []
=> []
=> 0
([(4,5)],6)
=> [1]
=> [1]
=> 1
([(3,5),(4,5)],6)
=> [1,1]
=> [2]
=> 2
([(2,5),(3,4)],6)
=> [1,1]
=> [2]
=> 2
([(3,4),(3,5),(4,5)],6)
=> [3]
=> [1,1,1]
=> 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [2,1,1]
=> 2
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4]
=> [1,1,1,1]
=> 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5]
=> [1,1,1,1,1]
=> 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [2,1,1]
=> 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1]
=> 1
([],7)
=> []
=> []
=> 0
([(5,6)],7)
=> [1]
=> [1]
=> 1
([(4,6),(5,6)],7)
=> [1,1]
=> [2]
=> 2
([(3,6),(4,5)],7)
=> [1,1]
=> [2]
=> 2
([(4,5),(4,6),(5,6)],7)
=> [3]
=> [1,1,1]
=> 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> [3,1]
=> [2,1,1]
=> 2
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4]
=> [1,1,1,1]
=> 1
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5]
=> [1,1,1,1,1]
=> 1
([(2,3),(4,5),(4,6),(5,6)],7)
=> [3,1]
=> [2,1,1]
=> 2
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6]
=> [1,1,1,1,1,1]
=> 1
Description
The diagonal inversion number of an integer partition. The dinv of a partition is the number of cells $c$ in the diagram of an integer partition $\lambda$ for which $\operatorname{arm}(c)-\operatorname{leg}(c) \in \{0,1\}$. See also exercise 3.19 of [2]. This statistic is equidistributed with the length of the partition, see [3].
Matching statistic: St000745
Mp00276: Graphs —to edge-partition of biconnected components⟶ Integer partitions
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
St000745: Standard tableaux ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
([],1)
=> []
=> []
=> 0
([],2)
=> []
=> []
=> 0
([(0,1)],2)
=> [1]
=> [[1]]
=> 1
([],3)
=> []
=> []
=> 0
([(1,2)],3)
=> [1]
=> [[1]]
=> 1
([(0,2),(1,2)],3)
=> [1,1]
=> [[1],[2]]
=> 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [[1,2,3]]
=> 1
([],4)
=> []
=> []
=> 0
([(2,3)],4)
=> [1]
=> [[1]]
=> 1
([(1,3),(2,3)],4)
=> [1,1]
=> [[1],[2]]
=> 2
([(0,3),(1,2)],4)
=> [1,1]
=> [[1],[2]]
=> 2
([(1,2),(1,3),(2,3)],4)
=> [3]
=> [[1,2,3]]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [[1,3,4],[2]]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> [[1,2,3,4,5,6]]
=> 1
([],5)
=> []
=> []
=> 0
([(3,4)],5)
=> [1]
=> [[1]]
=> 1
([(2,4),(3,4)],5)
=> [1,1]
=> [[1],[2]]
=> 2
([(1,4),(2,3)],5)
=> [1,1]
=> [[1],[2]]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3]
=> [[1,2,3]]
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [[1,3,4],[2]]
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> [[1,2,3,4]]
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [[1,3,4],[2]]
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> [[1,2,3,4,5,6]]
=> 1
([],6)
=> []
=> []
=> 0
([(4,5)],6)
=> [1]
=> [[1]]
=> 1
([(3,5),(4,5)],6)
=> [1,1]
=> [[1],[2]]
=> 2
([(2,5),(3,4)],6)
=> [1,1]
=> [[1],[2]]
=> 2
([(3,4),(3,5),(4,5)],6)
=> [3]
=> [[1,2,3]]
=> 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [[1,3,4],[2]]
=> 2
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4]
=> [[1,2,3,4]]
=> 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [[1,3,4],[2]]
=> 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> [[1,2,3,4,5,6]]
=> 1
([],7)
=> []
=> []
=> 0
([(5,6)],7)
=> [1]
=> [[1]]
=> 1
([(4,6),(5,6)],7)
=> [1,1]
=> [[1],[2]]
=> 2
([(3,6),(4,5)],7)
=> [1,1]
=> [[1],[2]]
=> 2
([(4,5),(4,6),(5,6)],7)
=> [3]
=> [[1,2,3]]
=> 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> [3,1]
=> [[1,3,4],[2]]
=> 2
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4]
=> [[1,2,3,4]]
=> 1
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(2,3),(4,5),(4,6),(5,6)],7)
=> [3,1]
=> [[1,3,4],[2]]
=> 2
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6]
=> [[1,2,3,4,5,6]]
=> 1
Description
The index of the last row whose first entry is the row number in a standard Young tableau.
Mp00117: Graphs —Ore closure⟶ Graphs
Mp00251: Graphs —clique sizes⟶ Integer partitions
St001280: Integer partitions ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [1]
=> 0
([],2)
=> ([],2)
=> [1,1]
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 1
([],3)
=> ([],3)
=> [1,1,1]
=> 0
([(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1
([],4)
=> ([],4)
=> [1,1,1,1]
=> 0
([(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> 2
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> 2
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([],5)
=> ([],5)
=> [1,1,1,1,1]
=> 0
([(3,4)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> 2
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> [2,2,1]
=> 2
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1
([],6)
=> ([],6)
=> [1,1,1,1,1,1]
=> 0
([(4,5)],6)
=> ([(4,5)],6)
=> [2,1,1,1,1]
=> 1
([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> [2,2,1,1,1]
=> 2
([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> [2,2,1,1]
=> 2
([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,2,1,1]
=> 2
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> 1
([],7)
=> ([],7)
=> [1,1,1,1,1,1,1]
=> 0
([(5,6)],7)
=> ([(5,6)],7)
=> [2,1,1,1,1,1]
=> 1
([(4,6),(5,6)],7)
=> ([(4,6),(5,6)],7)
=> [2,2,1,1,1,1]
=> 2
([(3,6),(4,5)],7)
=> ([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> 2
([(4,5),(4,6),(5,6)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,5),(4,6),(5,6)],7)
=> [3,2,1,1,1]
=> 2
([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> 1
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> 1
([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(4,5),(4,6),(5,6)],7)
=> [3,2,1,1]
=> 2
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> 1
Description
The number of parts of an integer partition that are at least two.
Mp00266: Graphs —connected vertex partitions⟶ Lattices
Mp00197: Lattices —lattice of congruences⟶ Lattices
St001613: Lattices ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],1)
=> 0
([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([],3)
=> ([],1)
=> ([],1)
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([],4)
=> ([],1)
=> ([],1)
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ([(0,1)],2)
=> 1
([],5)
=> ([],1)
=> ([],1)
=> 0
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ([(0,1)],2)
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ([(0,1)],2)
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ([(0,1)],2)
=> 1
([],6)
=> ([],1)
=> ([],1)
=> 0
([(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ([(0,1)],2)
=> 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ([(0,1)],2)
=> 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ([(0,1)],2)
=> 1
([],7)
=> ([],1)
=> ([],1)
=> 0
([(5,6)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ([(0,1)],2)
=> 1
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ([(0,1)],2)
=> 1
([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ([(0,1)],2)
=> 1
Description
The binary logarithm of the size of the center of a lattice. An element of a lattice is central if it is neutral and has a complement. The subposet induced by central elements is a Boolean lattice.
Matching statistic: St001615
Mp00266: Graphs —connected vertex partitions⟶ Lattices
Mp00197: Lattices —lattice of congruences⟶ Lattices
St001615: Lattices ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],1)
=> 0
([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([],3)
=> ([],1)
=> ([],1)
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([],4)
=> ([],1)
=> ([],1)
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ([(0,1)],2)
=> 1
([],5)
=> ([],1)
=> ([],1)
=> 0
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ([(0,1)],2)
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ([(0,1)],2)
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ([(0,1)],2)
=> 1
([],6)
=> ([],1)
=> ([],1)
=> 0
([(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ([(0,1)],2)
=> 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ([(0,1)],2)
=> 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ([(0,1)],2)
=> 1
([],7)
=> ([],1)
=> ([],1)
=> 0
([(5,6)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ([(0,1)],2)
=> 1
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ([(0,1)],2)
=> 1
([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ([(0,1)],2)
=> 1
Description
The number of join prime elements of a lattice. An element $x$ of a lattice $L$ is join-prime (or coprime) if $x \leq a \vee b$ implies $x \leq a$ or $x \leq b$ for every $a, b \in L$.
Mp00266: Graphs —connected vertex partitions⟶ Lattices
Mp00197: Lattices —lattice of congruences⟶ Lattices
St001617: Lattices ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],1)
=> 0
([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([],3)
=> ([],1)
=> ([],1)
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([],4)
=> ([],1)
=> ([],1)
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ([(0,1)],2)
=> 1
([],5)
=> ([],1)
=> ([],1)
=> 0
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ([(0,1)],2)
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ([(0,1)],2)
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ([(0,1)],2)
=> 1
([],6)
=> ([],1)
=> ([],1)
=> 0
([(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ([(0,1)],2)
=> 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ([(0,1)],2)
=> 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ([(0,1)],2)
=> 1
([],7)
=> ([],1)
=> ([],1)
=> 0
([(5,6)],7)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ([(0,1)],2)
=> 1
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ([(0,1)],2)
=> 1
([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ([(0,1)],2)
=> 1
Description
The dimension of the space of valuations of a lattice. A valuation, or modular function, on a lattice $L$ is a function $v:L\mapsto\mathbb R$ satisfying $$ v(a\vee b) + v(a\wedge b) = v(a) + v(b). $$ It was shown by Birkhoff [1, thm. X.2], that a lattice with a positive valuation must be modular. This was sharpened by Fleischer and Traynor [2, thm. 1], which states that the modular functions on an arbitrary lattice are in bijection with the modular functions on its modular quotient [[Mp00196]]. Moreover, Birkhoff [1, thm. X.2] showed that the dimension of the space of modular functions equals the number of subsets of projective prime intervals.
The following 363 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001621The number of atoms of a lattice. St001622The number of join-irreducible elements of a lattice. St000011The number of touch points (or returns) of a Dyck path. St000025The number of initial rises of a Dyck path. St000507The number of ascents of a standard tableau. St000676The number of odd rises of a Dyck path. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St001176The size of a partition minus its first part. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001961The sum of the greatest common divisors of all pairs of parts. St000032The number of elements smaller than the given Dyck path in the Tamari Order. St000038The product of the heights of the descending steps of a Dyck path. St000063The number of linear extensions of a certain poset defined for an integer partition. St000108The number of partitions contained in the given partition. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000288The number of ones in a binary word. St000296The length of the symmetric border of a binary word. St000318The number of addable cells of the Ferrers diagram of an integer partition. St000335The difference of lower and upper interactions. St000393The number of strictly increasing runs in a binary word. St000443The number of long tunnels of a Dyck path. St000511The number of invariant subsets when acting with a permutation of given cycle type. St000532The total number of rook placements on a Ferrers board. St000627The exponent of a binary word. St000631The number of distinct palindromic decompositions of a binary word. St000733The row containing the largest entry of a standard tableau. St000738The first entry in the last row of a standard tableau. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St000759The smallest missing part in an integer partition. St000876The number of factors in the Catalan decomposition of a binary word. St000885The number of critical steps in the Catalan decomposition of a binary word. St000922The minimal number such that all substrings of this length are unique. St000982The length of the longest constant subword. St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001017Number of indecomposable injective modules with projective dimension equal to the codominant dimension in the Nakayama algebra corresponding to the Dyck path. St001088Number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001267The length of the Lyndon factorization of the binary word. St001389The number of partitions of the same length below the given integer partition. St001400The total number of Littlewood-Richardson tableaux of given shape. St001415The length of the longest palindromic prefix of a binary word. St001416The length of a longest palindromic factor of a binary word. St001417The length of a longest palindromic subword of a binary word. St001437The flex of a binary word. St001814The number of partitions interlacing the given partition. St001884The number of borders of a binary word. St000012The area of a Dyck path. St000148The number of odd parts of a partition. St000159The number of distinct parts of the integer partition. St000160The multiplicity of the smallest part of a partition. St000183The side length of the Durfee square of an integer partition. St000228The size of a partition. St000294The number of distinct factors of a binary word. St000295The length of the border of a binary word. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St000340The number of non-final maximal constant sub-paths of length greater than one. St000384The maximal part of the shifted composition of an integer partition. St000394The sum of the heights of the peaks of a Dyck path minus the number of peaks. St000459The hook length of the base cell of a partition. St000475The number of parts equal to 1 in a partition. St000518The number of distinct subsequences in a binary word. St000519The largest length of a factor maximising the subword complexity. St000533The minimum of the number of parts and the size of the first part of an integer partition. St000548The number of different non-empty partial sums of an integer partition. St000549The number of odd partial sums of an integer partition. St000658The number of rises of length 2 of a Dyck path. St000783The side length of the largest staircase partition fitting into a partition. St000784The maximum of the length and the largest part of the integer partition. St000835The minimal difference in size when partitioning the integer partition into two subpartitions. St000867The sum of the hook lengths in the first row of an integer partition. St000869The sum of the hook lengths of an integer partition. St000897The number of different multiplicities of parts of an integer partition. St000992The alternating sum of the parts of an integer partition. St001055The Grundy value for the game of removing cells of a row in an integer partition. St001127The sum of the squares of the parts of a partition. St001189The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path. St001194The injective dimension of $A/AfA$ in the corresponding Nakayama algebra $A$ when $Af$ is the minimal faithful projective-injective left $A$-module St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St001265The maximal i such that the i-th simple module has projective dimension equal to the global dimension in the corresponding Nakayama algebra. St001295Gives the vector space dimension of the homomorphism space between J^2 and J^2. St001413Half the length of the longest even length palindromic prefix of a binary word. St001424The number of distinct squares in a binary word. St001484The number of singletons of an integer partition. St001508The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary. St001524The degree of symmetry of a binary word. St001587Half of the largest even part of an integer partition. St001657The number of twos in an integer partition. St001697The shifted natural comajor index of a standard Young tableau. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St001873For a Nakayama algebra corresponding to a Dyck path, we define the matrix C with entries the Hom-spaces between $e_i J$ and $e_j J$ (the radical of the indecomposable projective modules). St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St001930The weak major index of a binary word. St000015The number of peaks of a Dyck path. St000026The position of the first return of a Dyck path. St000293The number of inversions of a binary word. St000392The length of the longest run of ones in a binary word. St000476The sum of the semi-lengths of tunnels before a valley of a Dyck path. St000678The number of up steps after the last double rise of a Dyck path. St000684The global dimension of the LNakayama algebra associated to a Dyck path. St000686The finitistic dominant dimension of a Dyck path. St000734The last entry in the first row of a standard tableau. St000753The Grundy value for the game of Kayles on a binary word. St000930The k-Gorenstein degree of the corresponding Nakayama algebra with linear quiver. St000984The number of boxes below precisely one peak. St001009Number of indecomposable injective modules with projective dimension g when g is the global dimension of the Nakayama algebra corresponding to the Dyck path. St001014Number of indecomposable injective modules with codominant dimension equal to the dominant dimension of the Nakayama algebra corresponding to the Dyck path. St001024Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001068Number of torsionless simple modules in the corresponding Nakayama algebra. St001135The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path. St001161The major index north count of a Dyck path. St001165Number of simple modules with even projective dimension in the corresponding Nakayama algebra. St001201The grade of the simple module $S_0$ in the special CNakayama algebra corresponding to the Dyck path. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{nāˆ’1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n-1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a Dyck path as follows: St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St001257The dominant dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001299The product of all non-zero projective dimensions of simple modules of the corresponding Nakayama algebra. St001372The length of a longest cyclic run of ones of a binary word. St001419The length of the longest palindromic factor beginning with a one of a binary word. St001462The number of factors of a standard tableaux under concatenation. St001471The magnitude of a Dyck path. St001481The minimal height of a peak of a Dyck path. St001499The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. St001530The depth of a Dyck path. St001733The number of weak left to right maxima of a Dyck path. St001809The index of the step at the first peak of maximal height in a Dyck path. St000005The bounce statistic of a Dyck path. St000006The dinv of a Dyck path. St000016The number of attacking pairs of a standard tableau. St000053The number of valleys of the Dyck path. St000120The number of left tunnels of a Dyck path. St000306The bounce count of a Dyck path. St000331The number of upper interactions of a Dyck path. St000376The bounce deficit of a Dyck path. St000439The position of the first down step of a Dyck path. St000791The number of pairs of left tunnels, one strictly containing the other, of a Dyck path. St000877The depth of the binary word interpreted as a path. St000921The number of internal inversions of a binary word. St000954Number of times the corresponding LNakayama algebra has $Ext^i(D(A),A)=0$ for $i>0$. St000969We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) $[c_0,c_1,...,c_{n-1}]$ by adding $c_0$ to $c_{n-1}$. St001011Number of simple modules of projective dimension 2 in the Nakayama algebra corresponding to the Dyck path. St001026The maximum of the projective dimensions of the indecomposable non-projective injective modules minus the minimum in the Nakayama algebra corresponding to the Dyck path. St001028Number of simple modules with injective dimension equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001035The convexity degree of the parallelogram polyomino associated with the Dyck path. St001036The number of inner corners of the parallelogram polyomino associated with the Dyck path. St001037The number of inner corners of the upper path of the parallelogram polyomino associated with the Dyck path. St001067The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra. St001125The number of simple modules that satisfy the 2-regular condition in the corresponding Nakayama algebra. St001142The projective dimension of the socle of the regular module as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001188The number of simple modules $S$ with grade $\inf \{ i \geq 0 | Ext^i(S,A) \neq 0 \}$ at least two in the Nakayama algebra $A$ corresponding to the Dyck path. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001197The global dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001205The number of non-simple indecomposable projective-injective modules of the algebra $eAe$ in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001215Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St001222Number of simple modules in the corresponding LNakayama algebra that have a unique 2-extension with the regular module. St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless. St001225The vector space dimension of the first extension group between J and itself when J is the Jacobson radical of the corresponding Nakayama algebra. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St001230The number of simple modules with injective dimension equal to the dominant dimension equal to one and the dual property. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St001274The number of indecomposable injective modules with projective dimension equal to two. St001276The number of 2-regular indecomposable modules in the corresponding Nakayama algebra. St001278The number of indecomposable modules that are fixed by $\tau \Omega^1$ composed with its inverse in the corresponding Nakayama algebra. St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St001296The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001504The sum of all indegrees of vertices with indegree at least two in the resolution quiver of a Nakayama algebra corresponding to the Dyck path. St001505The number of elements generated by the Dyck path as a map in the full transformation monoid. St001506Half the projective dimension of the unique simple module with even projective dimension in a magnitude 1 Nakayama algebra. St001507The sum of projective dimension of simple modules with even projective dimension divided by 2 in the LNakayama algebra corresponding to Dyck paths. St001509The degree of the standard monomial associated to a Dyck path relative to the trivial lower boundary. St001730The number of times the path corresponding to a binary word crosses the base line. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St000999Number of indecomposable projective module with injective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001480The number of simple summands of the module J^2/J^3. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St000952Gives the number of irreducible factors of the Coxeter polynomial of the Dyck path over the rational numbers. St001240The number of indecomposable modules e_i J^2 that have injective dimension at most one in the corresponding Nakayama algebra St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St000418The number of Dyck paths that are weakly below a Dyck path. St000444The length of the maximal rise of a Dyck path. St000668The least common multiple of the parts of the partition. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St001531Number of partial orders contained in the poset determined by the Dyck path. St001568The smallest positive integer that does not appear twice in the partition. St001959The product of the heights of the peaks of a Dyck path. St000421The number of Dyck paths that are weakly below a Dyck path, except for the path itself. St000442The maximal area to the right of an up step of a Dyck path. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000659The number of rises of length at least 2 of a Dyck path. St000683The number of points below the Dyck path such that the diagonal to the north-east hits the path between two down steps, and the diagonal to the north-west hits the path between two up steps. St000693The modular (standard) major index of a standard tableau. St000934The 2-degree of an integer partition. St001031The height of the bicoloured Motzkin path associated with the Dyck path. St001139The number of occurrences of hills of size 2 in a Dyck path. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St000420The number of Dyck paths that are weakly above a Dyck path. St001500The global dimension of magnitude 1 Nakayama algebras. St001808The box weight or horizontal decoration of a Dyck path. St000419The number of Dyck paths that are weakly above the Dyck path, except for the path itself. St000790The number of pairs of centered tunnels, one strictly containing the other, of a Dyck path. St000874The position of the last double rise in a Dyck path. St000932The number of occurrences of the pattern UDU in a Dyck path. St000946The sum of the skew hook positions in a Dyck path. St000947The major index east count of a Dyck path. St000976The sum of the positions of double up-steps of a Dyck path. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{nāˆ’1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001498The normalised height of a Nakayama algebra with magnitude 1. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St000640The rank of the largest boolean interval in a poset. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000046The largest eigenvalue of the random to random operator acting on the simple module corresponding to the given partition. St000137The Grundy value of an integer partition. St000207Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000460The hook length of the last cell along the main diagonal of an integer partition. St000618The number of self-evacuating tableaux of given shape. St000667The greatest common divisor of the parts of the partition. St000781The number of proper colouring schemes of a Ferrers diagram. St000870The product of the hook lengths of the diagonal cells in an integer partition. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St001249Sum of the odd parts of a partition. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001262The dimension of the maximal parabolic seaweed algebra corresponding to the partition. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001360The number of covering relations in Young's lattice below a partition. St001364The number of permutations whose cube equals a fixed permutation of given cycle type. St001378The product of the cohook lengths of the integer partition. St001380The number of monomer-dimer tilings of a Ferrers diagram. St001383The BG-rank of an integer partition. St001432The order dimension of the partition. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001525The number of symmetric hooks on the diagonal of a partition. St001527The cyclic permutation representation number of an integer partition. St001529The number of monomials in the expansion of the nabla operator applied to the power-sum symmetric function indexed by the partition. St001561The value of the elementary symmetric function evaluated at 1. St001562The value of the complete homogeneous symmetric function evaluated at 1. St001563The value of the power-sum symmetric function evaluated at 1. St001564The value of the forgotten symmetric functions when all variables set to 1. St001571The Cartan determinant of the integer partition. St001593This is the number of standard Young tableaux of the given shifted shape. St001599The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on rooted trees. St001600The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple graphs. St001601The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on trees. St001602The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on endofunctions. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001607The number of coloured graphs such that the multiplicities of colours are given by a partition. St001608The number of coloured rooted trees such that the multiplicities of colours are given by a partition. St001609The number of coloured trees such that the multiplicities of colours are given by a partition. St001610The number of coloured endofunctions such that the multiplicities of colours are given by a partition. St001611The number of multiset partitions such that the multiplicities of elements are given by a partition. St001627The number of coloured connected graphs such that the multiplicities of colours are given by a partition. St001628The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple connected graphs. St001763The Hurwitz number of an integer partition. St001780The order of promotion on the set of standard tableaux of given shape. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001875The number of simple modules with projective dimension at most 1. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St001924The number of cells in an integer partition whose arm and leg length coincide. St001933The largest multiplicity of a part in an integer partition. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St001936The number of transitive factorisations of a permutation of given cycle type into star transpositions. St001938The number of transitive monotone factorizations of genus zero of a permutation of given cycle type. St001939The number of parts that are equal to their multiplicity in the integer partition. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St001943The sum of the squares of the hook lengths of an integer partition. St000145The Dyson rank of a partition. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000225Difference between largest and smallest parts in a partition. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St000944The 3-degree of an integer partition. St001175The size of a partition minus the hook length of the base cell. St001177Twice the mean value of the major index among all standard Young tableaux of a partition. St001178Twelve times the variance of the major index among all standard Young tableaux of a partition. St001248Sum of the even parts of a partition. St001279The sum of the parts of an integer partition that are at least two. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001541The Gini index of an integer partition. St001586The number of odd parts smaller than the largest even part in an integer partition. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St000474Dyson's crank of a partition. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St000260The radius of a connected graph. St000264The girth of a graph, which is not a tree. St001645The pebbling number of a connected graph. St001118The acyclic chromatic index of a graph. St000455The second largest eigenvalue of a graph if it is integral. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St001592The maximal number of simple paths between any two different vertices of a graph. St000379The number of Hamiltonian cycles in a graph. St000454The largest eigenvalue of a graph if it is integral. St000259The diameter of a connected graph. St000464The Schultz index of a connected graph. St001545The second Elser number of a connected graph. St000456The monochromatic index of a connected graph. St001281The normalized isoperimetric number of a graph. St001060The distinguishing index of a graph. St000699The toughness times the least common multiple of 1,. St001570The minimal number of edges to add to make a graph Hamiltonian. St001651The Frankl number of a lattice. St000706The product of the factorials of the multiplicities of an integer partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St000993The multiplicity of the largest part of an integer partition. St000928The sum of the coefficients of the character polynomial of an integer partition. St000929The constant term of the character polynomial of an integer partition. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001330The hat guessing number of a graph. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001845The number of join irreducibles minus the rank of a lattice. St000284The Plancherel distribution on integer partitions. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000901The cube of the number of standard Young tableaux with shape given by the partition. St001128The exponens consonantiae of a partition. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition.