searching the database
Your data matches 10 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001460
St001460: Plane partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> 1
[[1],[1]]
=> 1
[[2]]
=> 1
[[1,1]]
=> 2
[[1],[1],[1]]
=> 1
[[2],[1]]
=> 1
[[1,1],[1]]
=> 2
[[3]]
=> 1
[[2,1]]
=> 2
[[1,1,1]]
=> 3
[[1],[1],[1],[1]]
=> 1
[[2],[1],[1]]
=> 1
[[2],[2]]
=> 1
[[1,1],[1],[1]]
=> 2
[[1,1],[1,1]]
=> 2
[[3],[1]]
=> 1
[[2,1],[1]]
=> 2
[[1,1,1],[1]]
=> 3
[[4]]
=> 1
[[3,1]]
=> 2
[[2,2]]
=> 2
[[2,1,1]]
=> 3
[[1,1,1,1]]
=> 4
[[1],[1],[1],[1],[1]]
=> 1
[[2],[1],[1],[1]]
=> 1
[[2],[2],[1]]
=> 1
[[1,1],[1],[1],[1]]
=> 2
[[1,1],[1,1],[1]]
=> 2
[[3],[1],[1]]
=> 1
[[3],[2]]
=> 1
[[2,1],[1],[1]]
=> 2
[[2,1],[2]]
=> 2
[[2,1],[1,1]]
=> 2
[[1,1,1],[1],[1]]
=> 3
[[1,1,1],[1,1]]
=> 3
[[4],[1]]
=> 1
[[3,1],[1]]
=> 2
[[2,2],[1]]
=> 2
[[2,1,1],[1]]
=> 3
[[1,1,1,1],[1]]
=> 4
[[5]]
=> 1
[[4,1]]
=> 2
[[3,2]]
=> 2
[[3,1,1]]
=> 3
[[2,2,1]]
=> 3
[[2,1,1,1]]
=> 4
[[1,1,1,1,1]]
=> 5
[[1],[1],[1],[1],[1],[1]]
=> 1
[[2],[1],[1],[1],[1]]
=> 1
[[2],[2],[1],[1]]
=> 1
Description
Number of columns of a plane partition.
Matching statistic: St001446
Mp00177: Plane partitions —transpose⟶ Plane partitions
St001446: Plane partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001446: Plane partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> 1
[[1],[1]]
=> [[1,1]]
=> 1
[[2]]
=> [[2]]
=> 1
[[1,1]]
=> [[1],[1]]
=> 2
[[1],[1],[1]]
=> [[1,1,1]]
=> 1
[[2],[1]]
=> [[2,1]]
=> 1
[[1,1],[1]]
=> [[1,1],[1]]
=> 2
[[3]]
=> [[3]]
=> 1
[[2,1]]
=> [[2],[1]]
=> 2
[[1,1,1]]
=> [[1],[1],[1]]
=> 3
[[1],[1],[1],[1]]
=> [[1,1,1,1]]
=> 1
[[2],[1],[1]]
=> [[2,1,1]]
=> 1
[[2],[2]]
=> [[2,2]]
=> 1
[[1,1],[1],[1]]
=> [[1,1,1],[1]]
=> 2
[[1,1],[1,1]]
=> [[1,1],[1,1]]
=> 2
[[3],[1]]
=> [[3,1]]
=> 1
[[2,1],[1]]
=> [[2,1],[1]]
=> 2
[[1,1,1],[1]]
=> [[1,1],[1],[1]]
=> 3
[[4]]
=> [[4]]
=> 1
[[3,1]]
=> [[3],[1]]
=> 2
[[2,2]]
=> [[2],[2]]
=> 2
[[2,1,1]]
=> [[2],[1],[1]]
=> 3
[[1,1,1,1]]
=> [[1],[1],[1],[1]]
=> 4
[[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1]]
=> 1
[[2],[1],[1],[1]]
=> [[2,1,1,1]]
=> 1
[[2],[2],[1]]
=> [[2,2,1]]
=> 1
[[1,1],[1],[1],[1]]
=> [[1,1,1,1],[1]]
=> 2
[[1,1],[1,1],[1]]
=> [[1,1,1],[1,1]]
=> 2
[[3],[1],[1]]
=> [[3,1,1]]
=> 1
[[3],[2]]
=> [[3,2]]
=> 1
[[2,1],[1],[1]]
=> [[2,1,1],[1]]
=> 2
[[2,1],[2]]
=> [[2,2],[1]]
=> 2
[[2,1],[1,1]]
=> [[2,1],[1,1]]
=> 2
[[1,1,1],[1],[1]]
=> [[1,1,1],[1],[1]]
=> 3
[[1,1,1],[1,1]]
=> [[1,1],[1,1],[1]]
=> 3
[[4],[1]]
=> [[4,1]]
=> 1
[[3,1],[1]]
=> [[3,1],[1]]
=> 2
[[2,2],[1]]
=> [[2,1],[2]]
=> 2
[[2,1,1],[1]]
=> [[2,1],[1],[1]]
=> 3
[[1,1,1,1],[1]]
=> [[1,1],[1],[1],[1]]
=> 4
[[5]]
=> [[5]]
=> 1
[[4,1]]
=> [[4],[1]]
=> 2
[[3,2]]
=> [[3],[2]]
=> 2
[[3,1,1]]
=> [[3],[1],[1]]
=> 3
[[2,2,1]]
=> [[2],[2],[1]]
=> 3
[[2,1,1,1]]
=> [[2],[1],[1],[1]]
=> 4
[[1,1,1,1,1]]
=> [[1],[1],[1],[1],[1]]
=> 5
[[1],[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1,1]]
=> 1
[[2],[1],[1],[1],[1]]
=> [[2,1,1,1,1]]
=> 1
[[2],[2],[1],[1]]
=> [[2,2,1,1]]
=> 1
Description
Number of rows in the plane partition.
Matching statistic: St000010
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00177: Plane partitions —transpose⟶ Plane partitions
Mp00311: Plane partitions —to partition⟶ Integer partitions
St000010: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00311: Plane partitions —to partition⟶ Integer partitions
St000010: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1]
=> 1
[[1],[1]]
=> [[1,1]]
=> [2]
=> 1
[[2]]
=> [[2]]
=> [2]
=> 1
[[1,1]]
=> [[1],[1]]
=> [1,1]
=> 2
[[1],[1],[1]]
=> [[1,1,1]]
=> [3]
=> 1
[[2],[1]]
=> [[2,1]]
=> [3]
=> 1
[[1,1],[1]]
=> [[1,1],[1]]
=> [2,1]
=> 2
[[3]]
=> [[3]]
=> [3]
=> 1
[[2,1]]
=> [[2],[1]]
=> [2,1]
=> 2
[[1,1,1]]
=> [[1],[1],[1]]
=> [1,1,1]
=> 3
[[1],[1],[1],[1]]
=> [[1,1,1,1]]
=> [4]
=> 1
[[2],[1],[1]]
=> [[2,1,1]]
=> [4]
=> 1
[[2],[2]]
=> [[2,2]]
=> [4]
=> 1
[[1,1],[1],[1]]
=> [[1,1,1],[1]]
=> [3,1]
=> 2
[[1,1],[1,1]]
=> [[1,1],[1,1]]
=> [2,2]
=> 2
[[3],[1]]
=> [[3,1]]
=> [4]
=> 1
[[2,1],[1]]
=> [[2,1],[1]]
=> [3,1]
=> 2
[[1,1,1],[1]]
=> [[1,1],[1],[1]]
=> [2,1,1]
=> 3
[[4]]
=> [[4]]
=> [4]
=> 1
[[3,1]]
=> [[3],[1]]
=> [3,1]
=> 2
[[2,2]]
=> [[2],[2]]
=> [2,2]
=> 2
[[2,1,1]]
=> [[2],[1],[1]]
=> [2,1,1]
=> 3
[[1,1,1,1]]
=> [[1],[1],[1],[1]]
=> [1,1,1,1]
=> 4
[[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1]]
=> [5]
=> 1
[[2],[1],[1],[1]]
=> [[2,1,1,1]]
=> [5]
=> 1
[[2],[2],[1]]
=> [[2,2,1]]
=> [5]
=> 1
[[1,1],[1],[1],[1]]
=> [[1,1,1,1],[1]]
=> [4,1]
=> 2
[[1,1],[1,1],[1]]
=> [[1,1,1],[1,1]]
=> [3,2]
=> 2
[[3],[1],[1]]
=> [[3,1,1]]
=> [5]
=> 1
[[3],[2]]
=> [[3,2]]
=> [5]
=> 1
[[2,1],[1],[1]]
=> [[2,1,1],[1]]
=> [4,1]
=> 2
[[2,1],[2]]
=> [[2,2],[1]]
=> [4,1]
=> 2
[[2,1],[1,1]]
=> [[2,1],[1,1]]
=> [3,2]
=> 2
[[1,1,1],[1],[1]]
=> [[1,1,1],[1],[1]]
=> [3,1,1]
=> 3
[[1,1,1],[1,1]]
=> [[1,1],[1,1],[1]]
=> [2,2,1]
=> 3
[[4],[1]]
=> [[4,1]]
=> [5]
=> 1
[[3,1],[1]]
=> [[3,1],[1]]
=> [4,1]
=> 2
[[2,2],[1]]
=> [[2,1],[2]]
=> [3,2]
=> 2
[[2,1,1],[1]]
=> [[2,1],[1],[1]]
=> [3,1,1]
=> 3
[[1,1,1,1],[1]]
=> [[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> 4
[[5]]
=> [[5]]
=> [5]
=> 1
[[4,1]]
=> [[4],[1]]
=> [4,1]
=> 2
[[3,2]]
=> [[3],[2]]
=> [3,2]
=> 2
[[3,1,1]]
=> [[3],[1],[1]]
=> [3,1,1]
=> 3
[[2,2,1]]
=> [[2],[2],[1]]
=> [2,2,1]
=> 3
[[2,1,1,1]]
=> [[2],[1],[1],[1]]
=> [2,1,1,1]
=> 4
[[1,1,1,1,1]]
=> [[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> 5
[[1],[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1,1]]
=> [6]
=> 1
[[2],[1],[1],[1],[1]]
=> [[2,1,1,1,1]]
=> [6]
=> 1
[[2],[2],[1],[1]]
=> [[2,2,1,1]]
=> [6]
=> 1
Description
The length of the partition.
Matching statistic: St000147
Mp00177: Plane partitions —transpose⟶ Plane partitions
Mp00311: Plane partitions —to partition⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000147: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00311: Plane partitions —to partition⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000147: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1]
=> [1]
=> 1
[[1],[1]]
=> [[1,1]]
=> [2]
=> [1,1]
=> 1
[[2]]
=> [[2]]
=> [2]
=> [1,1]
=> 1
[[1,1]]
=> [[1],[1]]
=> [1,1]
=> [2]
=> 2
[[1],[1],[1]]
=> [[1,1,1]]
=> [3]
=> [1,1,1]
=> 1
[[2],[1]]
=> [[2,1]]
=> [3]
=> [1,1,1]
=> 1
[[1,1],[1]]
=> [[1,1],[1]]
=> [2,1]
=> [2,1]
=> 2
[[3]]
=> [[3]]
=> [3]
=> [1,1,1]
=> 1
[[2,1]]
=> [[2],[1]]
=> [2,1]
=> [2,1]
=> 2
[[1,1,1]]
=> [[1],[1],[1]]
=> [1,1,1]
=> [3]
=> 3
[[1],[1],[1],[1]]
=> [[1,1,1,1]]
=> [4]
=> [1,1,1,1]
=> 1
[[2],[1],[1]]
=> [[2,1,1]]
=> [4]
=> [1,1,1,1]
=> 1
[[2],[2]]
=> [[2,2]]
=> [4]
=> [1,1,1,1]
=> 1
[[1,1],[1],[1]]
=> [[1,1,1],[1]]
=> [3,1]
=> [2,1,1]
=> 2
[[1,1],[1,1]]
=> [[1,1],[1,1]]
=> [2,2]
=> [2,2]
=> 2
[[3],[1]]
=> [[3,1]]
=> [4]
=> [1,1,1,1]
=> 1
[[2,1],[1]]
=> [[2,1],[1]]
=> [3,1]
=> [2,1,1]
=> 2
[[1,1,1],[1]]
=> [[1,1],[1],[1]]
=> [2,1,1]
=> [3,1]
=> 3
[[4]]
=> [[4]]
=> [4]
=> [1,1,1,1]
=> 1
[[3,1]]
=> [[3],[1]]
=> [3,1]
=> [2,1,1]
=> 2
[[2,2]]
=> [[2],[2]]
=> [2,2]
=> [2,2]
=> 2
[[2,1,1]]
=> [[2],[1],[1]]
=> [2,1,1]
=> [3,1]
=> 3
[[1,1,1,1]]
=> [[1],[1],[1],[1]]
=> [1,1,1,1]
=> [4]
=> 4
[[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[2],[1],[1],[1]]
=> [[2,1,1,1]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[2],[2],[1]]
=> [[2,2,1]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[1,1],[1],[1],[1]]
=> [[1,1,1,1],[1]]
=> [4,1]
=> [2,1,1,1]
=> 2
[[1,1],[1,1],[1]]
=> [[1,1,1],[1,1]]
=> [3,2]
=> [2,2,1]
=> 2
[[3],[1],[1]]
=> [[3,1,1]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[3],[2]]
=> [[3,2]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[2,1],[1],[1]]
=> [[2,1,1],[1]]
=> [4,1]
=> [2,1,1,1]
=> 2
[[2,1],[2]]
=> [[2,2],[1]]
=> [4,1]
=> [2,1,1,1]
=> 2
[[2,1],[1,1]]
=> [[2,1],[1,1]]
=> [3,2]
=> [2,2,1]
=> 2
[[1,1,1],[1],[1]]
=> [[1,1,1],[1],[1]]
=> [3,1,1]
=> [3,1,1]
=> 3
[[1,1,1],[1,1]]
=> [[1,1],[1,1],[1]]
=> [2,2,1]
=> [3,2]
=> 3
[[4],[1]]
=> [[4,1]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[3,1],[1]]
=> [[3,1],[1]]
=> [4,1]
=> [2,1,1,1]
=> 2
[[2,2],[1]]
=> [[2,1],[2]]
=> [3,2]
=> [2,2,1]
=> 2
[[2,1,1],[1]]
=> [[2,1],[1],[1]]
=> [3,1,1]
=> [3,1,1]
=> 3
[[1,1,1,1],[1]]
=> [[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [4,1]
=> 4
[[5]]
=> [[5]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[4,1]]
=> [[4],[1]]
=> [4,1]
=> [2,1,1,1]
=> 2
[[3,2]]
=> [[3],[2]]
=> [3,2]
=> [2,2,1]
=> 2
[[3,1,1]]
=> [[3],[1],[1]]
=> [3,1,1]
=> [3,1,1]
=> 3
[[2,2,1]]
=> [[2],[2],[1]]
=> [2,2,1]
=> [3,2]
=> 3
[[2,1,1,1]]
=> [[2],[1],[1],[1]]
=> [2,1,1,1]
=> [4,1]
=> 4
[[1,1,1,1,1]]
=> [[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [5]
=> 5
[[1],[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1,1]]
=> [6]
=> [1,1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1]]
=> [[2,1,1,1,1]]
=> [6]
=> [1,1,1,1,1,1]
=> 1
[[2],[2],[1],[1]]
=> [[2,2,1,1]]
=> [6]
=> [1,1,1,1,1,1]
=> 1
Description
The largest part of an integer partition.
Matching statistic: St000288
Mp00177: Plane partitions —transpose⟶ Plane partitions
Mp00311: Plane partitions —to partition⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
St000288: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00311: Plane partitions —to partition⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
St000288: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1]
=> 10 => 1
[[1],[1]]
=> [[1,1]]
=> [2]
=> 100 => 1
[[2]]
=> [[2]]
=> [2]
=> 100 => 1
[[1,1]]
=> [[1],[1]]
=> [1,1]
=> 110 => 2
[[1],[1],[1]]
=> [[1,1,1]]
=> [3]
=> 1000 => 1
[[2],[1]]
=> [[2,1]]
=> [3]
=> 1000 => 1
[[1,1],[1]]
=> [[1,1],[1]]
=> [2,1]
=> 1010 => 2
[[3]]
=> [[3]]
=> [3]
=> 1000 => 1
[[2,1]]
=> [[2],[1]]
=> [2,1]
=> 1010 => 2
[[1,1,1]]
=> [[1],[1],[1]]
=> [1,1,1]
=> 1110 => 3
[[1],[1],[1],[1]]
=> [[1,1,1,1]]
=> [4]
=> 10000 => 1
[[2],[1],[1]]
=> [[2,1,1]]
=> [4]
=> 10000 => 1
[[2],[2]]
=> [[2,2]]
=> [4]
=> 10000 => 1
[[1,1],[1],[1]]
=> [[1,1,1],[1]]
=> [3,1]
=> 10010 => 2
[[1,1],[1,1]]
=> [[1,1],[1,1]]
=> [2,2]
=> 1100 => 2
[[3],[1]]
=> [[3,1]]
=> [4]
=> 10000 => 1
[[2,1],[1]]
=> [[2,1],[1]]
=> [3,1]
=> 10010 => 2
[[1,1,1],[1]]
=> [[1,1],[1],[1]]
=> [2,1,1]
=> 10110 => 3
[[4]]
=> [[4]]
=> [4]
=> 10000 => 1
[[3,1]]
=> [[3],[1]]
=> [3,1]
=> 10010 => 2
[[2,2]]
=> [[2],[2]]
=> [2,2]
=> 1100 => 2
[[2,1,1]]
=> [[2],[1],[1]]
=> [2,1,1]
=> 10110 => 3
[[1,1,1,1]]
=> [[1],[1],[1],[1]]
=> [1,1,1,1]
=> 11110 => 4
[[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1]]
=> [5]
=> 100000 => 1
[[2],[1],[1],[1]]
=> [[2,1,1,1]]
=> [5]
=> 100000 => 1
[[2],[2],[1]]
=> [[2,2,1]]
=> [5]
=> 100000 => 1
[[1,1],[1],[1],[1]]
=> [[1,1,1,1],[1]]
=> [4,1]
=> 100010 => 2
[[1,1],[1,1],[1]]
=> [[1,1,1],[1,1]]
=> [3,2]
=> 10100 => 2
[[3],[1],[1]]
=> [[3,1,1]]
=> [5]
=> 100000 => 1
[[3],[2]]
=> [[3,2]]
=> [5]
=> 100000 => 1
[[2,1],[1],[1]]
=> [[2,1,1],[1]]
=> [4,1]
=> 100010 => 2
[[2,1],[2]]
=> [[2,2],[1]]
=> [4,1]
=> 100010 => 2
[[2,1],[1,1]]
=> [[2,1],[1,1]]
=> [3,2]
=> 10100 => 2
[[1,1,1],[1],[1]]
=> [[1,1,1],[1],[1]]
=> [3,1,1]
=> 100110 => 3
[[1,1,1],[1,1]]
=> [[1,1],[1,1],[1]]
=> [2,2,1]
=> 11010 => 3
[[4],[1]]
=> [[4,1]]
=> [5]
=> 100000 => 1
[[3,1],[1]]
=> [[3,1],[1]]
=> [4,1]
=> 100010 => 2
[[2,2],[1]]
=> [[2,1],[2]]
=> [3,2]
=> 10100 => 2
[[2,1,1],[1]]
=> [[2,1],[1],[1]]
=> [3,1,1]
=> 100110 => 3
[[1,1,1,1],[1]]
=> [[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> 101110 => 4
[[5]]
=> [[5]]
=> [5]
=> 100000 => 1
[[4,1]]
=> [[4],[1]]
=> [4,1]
=> 100010 => 2
[[3,2]]
=> [[3],[2]]
=> [3,2]
=> 10100 => 2
[[3,1,1]]
=> [[3],[1],[1]]
=> [3,1,1]
=> 100110 => 3
[[2,2,1]]
=> [[2],[2],[1]]
=> [2,2,1]
=> 11010 => 3
[[2,1,1,1]]
=> [[2],[1],[1],[1]]
=> [2,1,1,1]
=> 101110 => 4
[[1,1,1,1,1]]
=> [[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> 111110 => 5
[[1],[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1,1]]
=> [6]
=> 1000000 => 1
[[2],[1],[1],[1],[1]]
=> [[2,1,1,1,1]]
=> [6]
=> 1000000 => 1
[[2],[2],[1],[1]]
=> [[2,2,1,1]]
=> [6]
=> 1000000 => 1
Description
The number of ones in a binary word.
This is also known as the Hamming weight of the word.
Matching statistic: St000378
Mp00177: Plane partitions —transpose⟶ Plane partitions
Mp00311: Plane partitions —to partition⟶ Integer partitions
Mp00322: Integer partitions —Loehr-Warrington⟶ Integer partitions
St000378: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00311: Plane partitions —to partition⟶ Integer partitions
Mp00322: Integer partitions —Loehr-Warrington⟶ Integer partitions
St000378: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1]
=> [1]
=> 1
[[1],[1]]
=> [[1,1]]
=> [2]
=> [1,1]
=> 1
[[2]]
=> [[2]]
=> [2]
=> [1,1]
=> 1
[[1,1]]
=> [[1],[1]]
=> [1,1]
=> [2]
=> 2
[[1],[1],[1]]
=> [[1,1,1]]
=> [3]
=> [1,1,1]
=> 1
[[2],[1]]
=> [[2,1]]
=> [3]
=> [1,1,1]
=> 1
[[1,1],[1]]
=> [[1,1],[1]]
=> [2,1]
=> [3]
=> 2
[[3]]
=> [[3]]
=> [3]
=> [1,1,1]
=> 1
[[2,1]]
=> [[2],[1]]
=> [2,1]
=> [3]
=> 2
[[1,1,1]]
=> [[1],[1],[1]]
=> [1,1,1]
=> [2,1]
=> 3
[[1],[1],[1],[1]]
=> [[1,1,1,1]]
=> [4]
=> [1,1,1,1]
=> 1
[[2],[1],[1]]
=> [[2,1,1]]
=> [4]
=> [1,1,1,1]
=> 1
[[2],[2]]
=> [[2,2]]
=> [4]
=> [1,1,1,1]
=> 1
[[1,1],[1],[1]]
=> [[1,1,1],[1]]
=> [3,1]
=> [2,1,1]
=> 2
[[1,1],[1,1]]
=> [[1,1],[1,1]]
=> [2,2]
=> [4]
=> 2
[[3],[1]]
=> [[3,1]]
=> [4]
=> [1,1,1,1]
=> 1
[[2,1],[1]]
=> [[2,1],[1]]
=> [3,1]
=> [2,1,1]
=> 2
[[1,1,1],[1]]
=> [[1,1],[1],[1]]
=> [2,1,1]
=> [2,2]
=> 3
[[4]]
=> [[4]]
=> [4]
=> [1,1,1,1]
=> 1
[[3,1]]
=> [[3],[1]]
=> [3,1]
=> [2,1,1]
=> 2
[[2,2]]
=> [[2],[2]]
=> [2,2]
=> [4]
=> 2
[[2,1,1]]
=> [[2],[1],[1]]
=> [2,1,1]
=> [2,2]
=> 3
[[1,1,1,1]]
=> [[1],[1],[1],[1]]
=> [1,1,1,1]
=> [3,1]
=> 4
[[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[2],[1],[1],[1]]
=> [[2,1,1,1]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[2],[2],[1]]
=> [[2,2,1]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[1,1],[1],[1],[1]]
=> [[1,1,1,1],[1]]
=> [4,1]
=> [2,1,1,1]
=> 2
[[1,1],[1,1],[1]]
=> [[1,1,1],[1,1]]
=> [3,2]
=> [5]
=> 2
[[3],[1],[1]]
=> [[3,1,1]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[3],[2]]
=> [[3,2]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[2,1],[1],[1]]
=> [[2,1,1],[1]]
=> [4,1]
=> [2,1,1,1]
=> 2
[[2,1],[2]]
=> [[2,2],[1]]
=> [4,1]
=> [2,1,1,1]
=> 2
[[2,1],[1,1]]
=> [[2,1],[1,1]]
=> [3,2]
=> [5]
=> 2
[[1,1,1],[1],[1]]
=> [[1,1,1],[1],[1]]
=> [3,1,1]
=> [4,1]
=> 3
[[1,1,1],[1,1]]
=> [[1,1],[1,1],[1]]
=> [2,2,1]
=> [2,2,1]
=> 3
[[4],[1]]
=> [[4,1]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[3,1],[1]]
=> [[3,1],[1]]
=> [4,1]
=> [2,1,1,1]
=> 2
[[2,2],[1]]
=> [[2,1],[2]]
=> [3,2]
=> [5]
=> 2
[[2,1,1],[1]]
=> [[2,1],[1],[1]]
=> [3,1,1]
=> [4,1]
=> 3
[[1,1,1,1],[1]]
=> [[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [3,1,1]
=> 4
[[5]]
=> [[5]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[4,1]]
=> [[4],[1]]
=> [4,1]
=> [2,1,1,1]
=> 2
[[3,2]]
=> [[3],[2]]
=> [3,2]
=> [5]
=> 2
[[3,1,1]]
=> [[3],[1],[1]]
=> [3,1,1]
=> [4,1]
=> 3
[[2,2,1]]
=> [[2],[2],[1]]
=> [2,2,1]
=> [2,2,1]
=> 3
[[2,1,1,1]]
=> [[2],[1],[1],[1]]
=> [2,1,1,1]
=> [3,1,1]
=> 4
[[1,1,1,1,1]]
=> [[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [3,2]
=> 5
[[1],[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1,1]]
=> [6]
=> [1,1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1]]
=> [[2,1,1,1,1]]
=> [6]
=> [1,1,1,1,1,1]
=> 1
[[2],[2],[1],[1]]
=> [[2,2,1,1]]
=> [6]
=> [1,1,1,1,1,1]
=> 1
Description
The diagonal inversion number of an integer partition.
The dinv of a partition is the number of cells $c$ in the diagram of an integer partition $\lambda$ for which $\operatorname{arm}(c)-\operatorname{leg}(c) \in \{0,1\}$.
See also exercise 3.19 of [2].
This statistic is equidistributed with the length of the partition, see [3].
Matching statistic: St000733
Mp00177: Plane partitions —transpose⟶ Plane partitions
Mp00311: Plane partitions —to partition⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
St000733: Standard tableaux ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00311: Plane partitions —to partition⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
St000733: Standard tableaux ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1]
=> [[1]]
=> 1
[[1],[1]]
=> [[1,1]]
=> [2]
=> [[1,2]]
=> 1
[[2]]
=> [[2]]
=> [2]
=> [[1,2]]
=> 1
[[1,1]]
=> [[1],[1]]
=> [1,1]
=> [[1],[2]]
=> 2
[[1],[1],[1]]
=> [[1,1,1]]
=> [3]
=> [[1,2,3]]
=> 1
[[2],[1]]
=> [[2,1]]
=> [3]
=> [[1,2,3]]
=> 1
[[1,1],[1]]
=> [[1,1],[1]]
=> [2,1]
=> [[1,2],[3]]
=> 2
[[3]]
=> [[3]]
=> [3]
=> [[1,2,3]]
=> 1
[[2,1]]
=> [[2],[1]]
=> [2,1]
=> [[1,2],[3]]
=> 2
[[1,1,1]]
=> [[1],[1],[1]]
=> [1,1,1]
=> [[1],[2],[3]]
=> 3
[[1],[1],[1],[1]]
=> [[1,1,1,1]]
=> [4]
=> [[1,2,3,4]]
=> 1
[[2],[1],[1]]
=> [[2,1,1]]
=> [4]
=> [[1,2,3,4]]
=> 1
[[2],[2]]
=> [[2,2]]
=> [4]
=> [[1,2,3,4]]
=> 1
[[1,1],[1],[1]]
=> [[1,1,1],[1]]
=> [3,1]
=> [[1,2,3],[4]]
=> 2
[[1,1],[1,1]]
=> [[1,1],[1,1]]
=> [2,2]
=> [[1,2],[3,4]]
=> 2
[[3],[1]]
=> [[3,1]]
=> [4]
=> [[1,2,3,4]]
=> 1
[[2,1],[1]]
=> [[2,1],[1]]
=> [3,1]
=> [[1,2,3],[4]]
=> 2
[[1,1,1],[1]]
=> [[1,1],[1],[1]]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 3
[[4]]
=> [[4]]
=> [4]
=> [[1,2,3,4]]
=> 1
[[3,1]]
=> [[3],[1]]
=> [3,1]
=> [[1,2,3],[4]]
=> 2
[[2,2]]
=> [[2],[2]]
=> [2,2]
=> [[1,2],[3,4]]
=> 2
[[2,1,1]]
=> [[2],[1],[1]]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 3
[[1,1,1,1]]
=> [[1],[1],[1],[1]]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 4
[[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1]]
=> [5]
=> [[1,2,3,4,5]]
=> 1
[[2],[1],[1],[1]]
=> [[2,1,1,1]]
=> [5]
=> [[1,2,3,4,5]]
=> 1
[[2],[2],[1]]
=> [[2,2,1]]
=> [5]
=> [[1,2,3,4,5]]
=> 1
[[1,1],[1],[1],[1]]
=> [[1,1,1,1],[1]]
=> [4,1]
=> [[1,2,3,4],[5]]
=> 2
[[1,1],[1,1],[1]]
=> [[1,1,1],[1,1]]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 2
[[3],[1],[1]]
=> [[3,1,1]]
=> [5]
=> [[1,2,3,4,5]]
=> 1
[[3],[2]]
=> [[3,2]]
=> [5]
=> [[1,2,3,4,5]]
=> 1
[[2,1],[1],[1]]
=> [[2,1,1],[1]]
=> [4,1]
=> [[1,2,3,4],[5]]
=> 2
[[2,1],[2]]
=> [[2,2],[1]]
=> [4,1]
=> [[1,2,3,4],[5]]
=> 2
[[2,1],[1,1]]
=> [[2,1],[1,1]]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 2
[[1,1,1],[1],[1]]
=> [[1,1,1],[1],[1]]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
[[1,1,1],[1,1]]
=> [[1,1],[1,1],[1]]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 3
[[4],[1]]
=> [[4,1]]
=> [5]
=> [[1,2,3,4,5]]
=> 1
[[3,1],[1]]
=> [[3,1],[1]]
=> [4,1]
=> [[1,2,3,4],[5]]
=> 2
[[2,2],[1]]
=> [[2,1],[2]]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 2
[[2,1,1],[1]]
=> [[2,1],[1],[1]]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
[[1,1,1,1],[1]]
=> [[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 4
[[5]]
=> [[5]]
=> [5]
=> [[1,2,3,4,5]]
=> 1
[[4,1]]
=> [[4],[1]]
=> [4,1]
=> [[1,2,3,4],[5]]
=> 2
[[3,2]]
=> [[3],[2]]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 2
[[3,1,1]]
=> [[3],[1],[1]]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
[[2,2,1]]
=> [[2],[2],[1]]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 3
[[2,1,1,1]]
=> [[2],[1],[1],[1]]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 4
[[1,1,1,1,1]]
=> [[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 5
[[1],[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1,1]]
=> [6]
=> [[1,2,3,4,5,6]]
=> 1
[[2],[1],[1],[1],[1]]
=> [[2,1,1,1,1]]
=> [6]
=> [[1,2,3,4,5,6]]
=> 1
[[2],[2],[1],[1]]
=> [[2,2,1,1]]
=> [6]
=> [[1,2,3,4,5,6]]
=> 1
Description
The row containing the largest entry of a standard tableau.
Matching statistic: St000157
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00177: Plane partitions —transpose⟶ Plane partitions
Mp00311: Plane partitions —to partition⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
St000157: Standard tableaux ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00311: Plane partitions —to partition⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
St000157: Standard tableaux ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1]
=> [[1]]
=> 0 = 1 - 1
[[1],[1]]
=> [[1,1]]
=> [2]
=> [[1,2]]
=> 0 = 1 - 1
[[2]]
=> [[2]]
=> [2]
=> [[1,2]]
=> 0 = 1 - 1
[[1,1]]
=> [[1],[1]]
=> [1,1]
=> [[1],[2]]
=> 1 = 2 - 1
[[1],[1],[1]]
=> [[1,1,1]]
=> [3]
=> [[1,2,3]]
=> 0 = 1 - 1
[[2],[1]]
=> [[2,1]]
=> [3]
=> [[1,2,3]]
=> 0 = 1 - 1
[[1,1],[1]]
=> [[1,1],[1]]
=> [2,1]
=> [[1,2],[3]]
=> 1 = 2 - 1
[[3]]
=> [[3]]
=> [3]
=> [[1,2,3]]
=> 0 = 1 - 1
[[2,1]]
=> [[2],[1]]
=> [2,1]
=> [[1,2],[3]]
=> 1 = 2 - 1
[[1,1,1]]
=> [[1],[1],[1]]
=> [1,1,1]
=> [[1],[2],[3]]
=> 2 = 3 - 1
[[1],[1],[1],[1]]
=> [[1,1,1,1]]
=> [4]
=> [[1,2,3,4]]
=> 0 = 1 - 1
[[2],[1],[1]]
=> [[2,1,1]]
=> [4]
=> [[1,2,3,4]]
=> 0 = 1 - 1
[[2],[2]]
=> [[2,2]]
=> [4]
=> [[1,2,3,4]]
=> 0 = 1 - 1
[[1,1],[1],[1]]
=> [[1,1,1],[1]]
=> [3,1]
=> [[1,2,3],[4]]
=> 1 = 2 - 1
[[1,1],[1,1]]
=> [[1,1],[1,1]]
=> [2,2]
=> [[1,2],[3,4]]
=> 1 = 2 - 1
[[3],[1]]
=> [[3,1]]
=> [4]
=> [[1,2,3,4]]
=> 0 = 1 - 1
[[2,1],[1]]
=> [[2,1],[1]]
=> [3,1]
=> [[1,2,3],[4]]
=> 1 = 2 - 1
[[1,1,1],[1]]
=> [[1,1],[1],[1]]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 2 = 3 - 1
[[4]]
=> [[4]]
=> [4]
=> [[1,2,3,4]]
=> 0 = 1 - 1
[[3,1]]
=> [[3],[1]]
=> [3,1]
=> [[1,2,3],[4]]
=> 1 = 2 - 1
[[2,2]]
=> [[2],[2]]
=> [2,2]
=> [[1,2],[3,4]]
=> 1 = 2 - 1
[[2,1,1]]
=> [[2],[1],[1]]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 2 = 3 - 1
[[1,1,1,1]]
=> [[1],[1],[1],[1]]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 3 = 4 - 1
[[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1]]
=> [5]
=> [[1,2,3,4,5]]
=> 0 = 1 - 1
[[2],[1],[1],[1]]
=> [[2,1,1,1]]
=> [5]
=> [[1,2,3,4,5]]
=> 0 = 1 - 1
[[2],[2],[1]]
=> [[2,2,1]]
=> [5]
=> [[1,2,3,4,5]]
=> 0 = 1 - 1
[[1,1],[1],[1],[1]]
=> [[1,1,1,1],[1]]
=> [4,1]
=> [[1,2,3,4],[5]]
=> 1 = 2 - 1
[[1,1],[1,1],[1]]
=> [[1,1,1],[1,1]]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 1 = 2 - 1
[[3],[1],[1]]
=> [[3,1,1]]
=> [5]
=> [[1,2,3,4,5]]
=> 0 = 1 - 1
[[3],[2]]
=> [[3,2]]
=> [5]
=> [[1,2,3,4,5]]
=> 0 = 1 - 1
[[2,1],[1],[1]]
=> [[2,1,1],[1]]
=> [4,1]
=> [[1,2,3,4],[5]]
=> 1 = 2 - 1
[[2,1],[2]]
=> [[2,2],[1]]
=> [4,1]
=> [[1,2,3,4],[5]]
=> 1 = 2 - 1
[[2,1],[1,1]]
=> [[2,1],[1,1]]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 1 = 2 - 1
[[1,1,1],[1],[1]]
=> [[1,1,1],[1],[1]]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 2 = 3 - 1
[[1,1,1],[1,1]]
=> [[1,1],[1,1],[1]]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 2 = 3 - 1
[[4],[1]]
=> [[4,1]]
=> [5]
=> [[1,2,3,4,5]]
=> 0 = 1 - 1
[[3,1],[1]]
=> [[3,1],[1]]
=> [4,1]
=> [[1,2,3,4],[5]]
=> 1 = 2 - 1
[[2,2],[1]]
=> [[2,1],[2]]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 1 = 2 - 1
[[2,1,1],[1]]
=> [[2,1],[1],[1]]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 2 = 3 - 1
[[1,1,1,1],[1]]
=> [[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 3 = 4 - 1
[[5]]
=> [[5]]
=> [5]
=> [[1,2,3,4,5]]
=> 0 = 1 - 1
[[4,1]]
=> [[4],[1]]
=> [4,1]
=> [[1,2,3,4],[5]]
=> 1 = 2 - 1
[[3,2]]
=> [[3],[2]]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 1 = 2 - 1
[[3,1,1]]
=> [[3],[1],[1]]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 2 = 3 - 1
[[2,2,1]]
=> [[2],[2],[1]]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 2 = 3 - 1
[[2,1,1,1]]
=> [[2],[1],[1],[1]]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 3 = 4 - 1
[[1,1,1,1,1]]
=> [[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 4 = 5 - 1
[[1],[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1,1]]
=> [6]
=> [[1,2,3,4,5,6]]
=> 0 = 1 - 1
[[2],[1],[1],[1],[1]]
=> [[2,1,1,1,1]]
=> [6]
=> [[1,2,3,4,5,6]]
=> 0 = 1 - 1
[[2],[2],[1],[1]]
=> [[2,2,1,1]]
=> [6]
=> [[1,2,3,4,5,6]]
=> 0 = 1 - 1
Description
The number of descents of a standard tableau.
Entry $i$ of a standard Young tableau is a descent if $i+1$ appears in a row below the row of $i$.
Matching statistic: St001227
Mp00177: Plane partitions —transpose⟶ Plane partitions
Mp00311: Plane partitions —to partition⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001227: Dyck paths ⟶ ℤResult quality: 42% ●values known / values provided: 42%●distinct values known / distinct values provided: 50%
Mp00311: Plane partitions —to partition⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001227: Dyck paths ⟶ ℤResult quality: 42% ●values known / values provided: 42%●distinct values known / distinct values provided: 50%
Values
[[1]]
=> [[1]]
=> [1]
=> [1,0,1,0]
=> 1
[[1],[1]]
=> [[1,1]]
=> [2]
=> [1,1,0,0,1,0]
=> 1
[[2]]
=> [[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 1
[[1,1]]
=> [[1],[1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[[1],[1],[1]]
=> [[1,1,1]]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1
[[2],[1]]
=> [[2,1]]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1
[[1,1],[1]]
=> [[1,1],[1]]
=> [2,1]
=> [1,0,1,0,1,0]
=> 2
[[3]]
=> [[3]]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1
[[2,1]]
=> [[2],[1]]
=> [2,1]
=> [1,0,1,0,1,0]
=> 2
[[1,1,1]]
=> [[1],[1],[1]]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 3
[[1],[1],[1],[1]]
=> [[1,1,1,1]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[[2],[1],[1]]
=> [[2,1,1]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[[2],[2]]
=> [[2,2]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[[1,1],[1],[1]]
=> [[1,1,1],[1]]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 2
[[1,1],[1,1]]
=> [[1,1],[1,1]]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
[[3],[1]]
=> [[3,1]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[[2,1],[1]]
=> [[2,1],[1]]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 2
[[1,1,1],[1]]
=> [[1,1],[1],[1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 3
[[4]]
=> [[4]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[[3,1]]
=> [[3],[1]]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 2
[[2,2]]
=> [[2],[2]]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
[[2,1,1]]
=> [[2],[1],[1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 3
[[1,1,1,1]]
=> [[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 4
[[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1]]
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
[[2],[1],[1],[1]]
=> [[2,1,1,1]]
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
[[2],[2],[1]]
=> [[2,2,1]]
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
[[1,1],[1],[1],[1]]
=> [[1,1,1,1],[1]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
[[1,1],[1,1],[1]]
=> [[1,1,1],[1,1]]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 2
[[3],[1],[1]]
=> [[3,1,1]]
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
[[3],[2]]
=> [[3,2]]
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
[[2,1],[1],[1]]
=> [[2,1,1],[1]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
[[2,1],[2]]
=> [[2,2],[1]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
[[2,1],[1,1]]
=> [[2,1],[1,1]]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 2
[[1,1,1],[1],[1]]
=> [[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3
[[1,1,1],[1,1]]
=> [[1,1],[1,1],[1]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 3
[[4],[1]]
=> [[4,1]]
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
[[3,1],[1]]
=> [[3,1],[1]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
[[2,2],[1]]
=> [[2,1],[2]]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 2
[[2,1,1],[1]]
=> [[2,1],[1],[1]]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3
[[1,1,1,1],[1]]
=> [[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 4
[[5]]
=> [[5]]
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
[[4,1]]
=> [[4],[1]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
[[3,2]]
=> [[3],[2]]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 2
[[3,1,1]]
=> [[3],[1],[1]]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3
[[2,2,1]]
=> [[2],[2],[1]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 3
[[2,1,1,1]]
=> [[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 4
[[1,1,1,1,1]]
=> [[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 5
[[1],[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1,1]]
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1
[[2],[1],[1],[1],[1]]
=> [[2,1,1,1,1]]
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1
[[2],[2],[1],[1]]
=> [[2,2,1,1]]
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1
[[2],[2],[2]]
=> [[2,2,2]]
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1
[[1,1],[1],[1],[1],[1]]
=> [[1,1,1,1,1],[1]]
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 2
[[1,1],[1,1],[1],[1]]
=> [[1,1,1,1],[1,1]]
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2
[[1,1],[1,1],[1,1]]
=> [[1,1,1],[1,1,1]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
[[3],[1],[1],[1]]
=> [[3,1,1,1]]
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1
[[3],[2],[1]]
=> [[3,2,1]]
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1
[[3],[3]]
=> [[3,3]]
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1
[[4],[1],[1]]
=> [[4,1,1]]
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1
[[4],[2]]
=> [[4,2]]
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1
[[5],[1]]
=> [[5,1]]
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1
[[6]]
=> [[6]]
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1
[[1,1,1,1,1,1]]
=> [[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 6
[[1],[1],[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1,1,1]]
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[2],[1],[1],[1],[1],[1]]
=> [[2,1,1,1,1,1]]
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[2],[2],[1],[1],[1]]
=> [[2,2,1,1,1]]
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[2],[2],[2],[1]]
=> [[2,2,2,1]]
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[1,1],[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1,1],[1]]
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 2
[[3],[1],[1],[1],[1]]
=> [[3,1,1,1,1]]
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[3],[2],[1],[1]]
=> [[3,2,1,1]]
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[3],[2],[2]]
=> [[3,2,2]]
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[3],[3],[1]]
=> [[3,3,1]]
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[2,1],[1],[1],[1],[1]]
=> [[2,1,1,1,1],[1]]
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 2
[[2,1],[2],[1],[1]]
=> [[2,2,1,1],[1]]
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 2
[[2,1],[2],[2]]
=> [[2,2,2],[1]]
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 2
[[4],[1],[1],[1]]
=> [[4,1,1,1]]
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[4],[2],[1]]
=> [[4,2,1]]
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[4],[3]]
=> [[4,3]]
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[3,1],[1],[1],[1]]
=> [[3,1,1,1],[1]]
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 2
[[3,1],[2],[1]]
=> [[3,2,1],[1]]
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 2
[[3,1],[3]]
=> [[3,3],[1]]
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 2
[[5],[1],[1]]
=> [[5,1,1]]
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[5],[2]]
=> [[5,2]]
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[4,1],[1],[1]]
=> [[4,1,1],[1]]
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 2
[[4,1],[2]]
=> [[4,2],[1]]
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 2
[[6],[1]]
=> [[6,1]]
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[5,1],[1]]
=> [[5,1],[1]]
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 2
[[1,1,1,1,1,1],[1]]
=> [[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 6
[[7]]
=> [[7]]
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[6,1]]
=> [[6],[1]]
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 2
[[2,1,1,1,1,1]]
=> [[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 6
[[1,1,1,1,1,1,1]]
=> [[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 7
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1,1,1,1]]
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[2],[1],[1],[1],[1],[1],[1]]
=> [[2,1,1,1,1,1,1]]
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[2],[2],[1],[1],[1],[1]]
=> [[2,2,1,1,1,1]]
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[2],[2],[2],[1],[1]]
=> [[2,2,2,1,1]]
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[2],[2],[2],[2]]
=> [[2,2,2,2]]
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[1,1],[1],[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1,1,1],[1]]
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> ? = 2
[[1,1],[1,1],[1],[1],[1],[1]]
=> [[1,1,1,1,1,1],[1,1]]
=> [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> ? = 2
[[3],[1],[1],[1],[1],[1]]
=> [[3,1,1,1,1,1]]
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[3],[2],[1],[1],[1]]
=> [[3,2,1,1,1]]
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
Description
The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra.
Matching statistic: St000329
Mp00177: Plane partitions —transpose⟶ Plane partitions
Mp00311: Plane partitions —to partition⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St000329: Dyck paths ⟶ ℤResult quality: 23% ●values known / values provided: 23%●distinct values known / distinct values provided: 60%
Mp00311: Plane partitions —to partition⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St000329: Dyck paths ⟶ ℤResult quality: 23% ●values known / values provided: 23%●distinct values known / distinct values provided: 60%
Values
[[1]]
=> [[1]]
=> [1]
=> [1,0]
=> 0 = 1 - 1
[[1],[1]]
=> [[1,1]]
=> [2]
=> [1,0,1,0]
=> 0 = 1 - 1
[[2]]
=> [[2]]
=> [2]
=> [1,0,1,0]
=> 0 = 1 - 1
[[1,1]]
=> [[1],[1]]
=> [1,1]
=> [1,1,0,0]
=> 1 = 2 - 1
[[1],[1],[1]]
=> [[1,1,1]]
=> [3]
=> [1,0,1,0,1,0]
=> 0 = 1 - 1
[[2],[1]]
=> [[2,1]]
=> [3]
=> [1,0,1,0,1,0]
=> 0 = 1 - 1
[[1,1],[1]]
=> [[1,1],[1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1 = 2 - 1
[[3]]
=> [[3]]
=> [3]
=> [1,0,1,0,1,0]
=> 0 = 1 - 1
[[2,1]]
=> [[2],[1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1 = 2 - 1
[[1,1,1]]
=> [[1],[1],[1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2 = 3 - 1
[[1],[1],[1],[1]]
=> [[1,1,1,1]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[[2],[1],[1]]
=> [[2,1,1]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[[2],[2]]
=> [[2,2]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[[1,1],[1],[1]]
=> [[1,1,1],[1]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[[1,1],[1,1]]
=> [[1,1],[1,1]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 1 = 2 - 1
[[3],[1]]
=> [[3,1]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[[2,1],[1]]
=> [[2,1],[1]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[[1,1,1],[1]]
=> [[1,1],[1],[1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2 = 3 - 1
[[4]]
=> [[4]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[[3,1]]
=> [[3],[1]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[[2,2]]
=> [[2],[2]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 1 = 2 - 1
[[2,1,1]]
=> [[2],[1],[1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2 = 3 - 1
[[1,1,1,1]]
=> [[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 3 = 4 - 1
[[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1]]
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[[2],[1],[1],[1]]
=> [[2,1,1,1]]
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[[2],[2],[1]]
=> [[2,2,1]]
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[[1,1],[1],[1],[1]]
=> [[1,1,1,1],[1]]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[[1,1],[1,1],[1]]
=> [[1,1,1],[1,1]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[[3],[1],[1]]
=> [[3,1,1]]
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[[3],[2]]
=> [[3,2]]
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[[2,1],[1],[1]]
=> [[2,1,1],[1]]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[[2,1],[2]]
=> [[2,2],[1]]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[[2,1],[1,1]]
=> [[2,1],[1,1]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[[1,1,1],[1],[1]]
=> [[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2 = 3 - 1
[[1,1,1],[1,1]]
=> [[1,1],[1,1],[1]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[[4],[1]]
=> [[4,1]]
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[[3,1],[1]]
=> [[3,1],[1]]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[[2,2],[1]]
=> [[2,1],[2]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[[2,1,1],[1]]
=> [[2,1],[1],[1]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2 = 3 - 1
[[1,1,1,1],[1]]
=> [[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3 = 4 - 1
[[5]]
=> [[5]]
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[[4,1]]
=> [[4],[1]]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[[3,2]]
=> [[3],[2]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[[3,1,1]]
=> [[3],[1],[1]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2 = 3 - 1
[[2,2,1]]
=> [[2],[2],[1]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[[2,1,1,1]]
=> [[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3 = 4 - 1
[[1,1,1,1,1]]
=> [[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4 = 5 - 1
[[1],[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1,1]]
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[[2],[1],[1],[1],[1]]
=> [[2,1,1,1,1]]
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[[2],[2],[1],[1]]
=> [[2,2,1,1]]
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[[1],[1],[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1,1,1]]
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[2],[1],[1],[1],[1],[1]]
=> [[2,1,1,1,1,1]]
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[2],[2],[1],[1],[1]]
=> [[2,2,1,1,1]]
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[2],[2],[2],[1]]
=> [[2,2,2,1]]
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[1,1],[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1,1],[1]]
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 - 1
[[3],[1],[1],[1],[1]]
=> [[3,1,1,1,1]]
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[3],[2],[1],[1]]
=> [[3,2,1,1]]
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[3],[2],[2]]
=> [[3,2,2]]
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[3],[3],[1]]
=> [[3,3,1]]
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[2,1],[1],[1],[1],[1]]
=> [[2,1,1,1,1],[1]]
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 - 1
[[2,1],[2],[1],[1]]
=> [[2,2,1,1],[1]]
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 - 1
[[2,1],[2],[2]]
=> [[2,2,2],[1]]
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 - 1
[[1,1,1],[1],[1],[1],[1]]
=> [[1,1,1,1,1],[1],[1]]
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3 - 1
[[4],[1],[1],[1]]
=> [[4,1,1,1]]
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[4],[2],[1]]
=> [[4,2,1]]
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[4],[3]]
=> [[4,3]]
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[3,1],[1],[1],[1]]
=> [[3,1,1,1],[1]]
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 - 1
[[3,1],[2],[1]]
=> [[3,2,1],[1]]
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 - 1
[[3,1],[3]]
=> [[3,3],[1]]
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 - 1
[[2,1,1],[1],[1],[1]]
=> [[2,1,1,1],[1],[1]]
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3 - 1
[[2,1,1],[2],[1]]
=> [[2,2,1],[1],[1]]
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3 - 1
[[1,1,1,1],[1],[1],[1]]
=> [[1,1,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 4 - 1
[[5],[1],[1]]
=> [[5,1,1]]
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[5],[2]]
=> [[5,2]]
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[4,1],[1],[1]]
=> [[4,1,1],[1]]
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 - 1
[[4,1],[2]]
=> [[4,2],[1]]
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 - 1
[[3,1,1],[1],[1]]
=> [[3,1,1],[1],[1]]
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3 - 1
[[3,1,1],[2]]
=> [[3,2],[1],[1]]
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3 - 1
[[2,1,1,1],[1],[1]]
=> [[2,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 4 - 1
[[2,1,1,1],[2]]
=> [[2,2],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 4 - 1
[[1,1,1,1,1],[1],[1]]
=> [[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 5 - 1
[[6],[1]]
=> [[6,1]]
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[5,1],[1]]
=> [[5,1],[1]]
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 - 1
[[4,1,1],[1]]
=> [[4,1],[1],[1]]
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3 - 1
[[3,1,1,1],[1]]
=> [[3,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 4 - 1
[[2,1,1,1,1],[1]]
=> [[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 5 - 1
[[1,1,1,1,1,1],[1]]
=> [[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 6 - 1
[[7]]
=> [[7]]
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[6,1]]
=> [[6],[1]]
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 - 1
[[5,1,1]]
=> [[5],[1],[1]]
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3 - 1
[[4,1,1,1]]
=> [[4],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 4 - 1
[[3,1,1,1,1]]
=> [[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 5 - 1
[[2,1,1,1,1,1]]
=> [[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 6 - 1
[[1,1,1,1,1,1,1]]
=> [[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 7 - 1
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1,1,1,1]]
=> [8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[2],[1],[1],[1],[1],[1],[1]]
=> [[2,1,1,1,1,1,1]]
=> [8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[2],[2],[1],[1],[1],[1]]
=> [[2,2,1,1,1,1]]
=> [8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[2],[2],[2],[1],[1]]
=> [[2,2,2,1,1]]
=> [8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[2],[2],[2],[2]]
=> [[2,2,2,2]]
=> [8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[1,1],[1],[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1,1,1],[1]]
=> [7,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 - 1
Description
The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!