Your data matches 10 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001460
St001460: Plane partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> 1
[[1],[1]]
=> 1
[[2]]
=> 1
[[1,1]]
=> 2
[[1],[1],[1]]
=> 1
[[2],[1]]
=> 1
[[1,1],[1]]
=> 2
[[3]]
=> 1
[[2,1]]
=> 2
[[1,1,1]]
=> 3
[[1],[1],[1],[1]]
=> 1
[[2],[1],[1]]
=> 1
[[2],[2]]
=> 1
[[1,1],[1],[1]]
=> 2
[[1,1],[1,1]]
=> 2
[[3],[1]]
=> 1
[[2,1],[1]]
=> 2
[[1,1,1],[1]]
=> 3
[[4]]
=> 1
[[3,1]]
=> 2
[[2,2]]
=> 2
[[2,1,1]]
=> 3
[[1,1,1,1]]
=> 4
[[1],[1],[1],[1],[1]]
=> 1
[[2],[1],[1],[1]]
=> 1
[[2],[2],[1]]
=> 1
[[1,1],[1],[1],[1]]
=> 2
[[1,1],[1,1],[1]]
=> 2
[[3],[1],[1]]
=> 1
[[3],[2]]
=> 1
[[2,1],[1],[1]]
=> 2
[[2,1],[2]]
=> 2
[[2,1],[1,1]]
=> 2
[[1,1,1],[1],[1]]
=> 3
[[1,1,1],[1,1]]
=> 3
[[4],[1]]
=> 1
[[3,1],[1]]
=> 2
[[2,2],[1]]
=> 2
[[2,1,1],[1]]
=> 3
[[1,1,1,1],[1]]
=> 4
[[5]]
=> 1
[[4,1]]
=> 2
[[3,2]]
=> 2
[[3,1,1]]
=> 3
[[2,2,1]]
=> 3
[[2,1,1,1]]
=> 4
[[1,1,1,1,1]]
=> 5
[[1],[1],[1],[1],[1],[1]]
=> 1
[[2],[1],[1],[1],[1]]
=> 1
[[2],[2],[1],[1]]
=> 1
Description
Number of columns of a plane partition.
Matching statistic: St001446
Mp00177: Plane partitions transposePlane partitions
St001446: Plane partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> 1
[[1],[1]]
=> [[1,1]]
=> 1
[[2]]
=> [[2]]
=> 1
[[1,1]]
=> [[1],[1]]
=> 2
[[1],[1],[1]]
=> [[1,1,1]]
=> 1
[[2],[1]]
=> [[2,1]]
=> 1
[[1,1],[1]]
=> [[1,1],[1]]
=> 2
[[3]]
=> [[3]]
=> 1
[[2,1]]
=> [[2],[1]]
=> 2
[[1,1,1]]
=> [[1],[1],[1]]
=> 3
[[1],[1],[1],[1]]
=> [[1,1,1,1]]
=> 1
[[2],[1],[1]]
=> [[2,1,1]]
=> 1
[[2],[2]]
=> [[2,2]]
=> 1
[[1,1],[1],[1]]
=> [[1,1,1],[1]]
=> 2
[[1,1],[1,1]]
=> [[1,1],[1,1]]
=> 2
[[3],[1]]
=> [[3,1]]
=> 1
[[2,1],[1]]
=> [[2,1],[1]]
=> 2
[[1,1,1],[1]]
=> [[1,1],[1],[1]]
=> 3
[[4]]
=> [[4]]
=> 1
[[3,1]]
=> [[3],[1]]
=> 2
[[2,2]]
=> [[2],[2]]
=> 2
[[2,1,1]]
=> [[2],[1],[1]]
=> 3
[[1,1,1,1]]
=> [[1],[1],[1],[1]]
=> 4
[[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1]]
=> 1
[[2],[1],[1],[1]]
=> [[2,1,1,1]]
=> 1
[[2],[2],[1]]
=> [[2,2,1]]
=> 1
[[1,1],[1],[1],[1]]
=> [[1,1,1,1],[1]]
=> 2
[[1,1],[1,1],[1]]
=> [[1,1,1],[1,1]]
=> 2
[[3],[1],[1]]
=> [[3,1,1]]
=> 1
[[3],[2]]
=> [[3,2]]
=> 1
[[2,1],[1],[1]]
=> [[2,1,1],[1]]
=> 2
[[2,1],[2]]
=> [[2,2],[1]]
=> 2
[[2,1],[1,1]]
=> [[2,1],[1,1]]
=> 2
[[1,1,1],[1],[1]]
=> [[1,1,1],[1],[1]]
=> 3
[[1,1,1],[1,1]]
=> [[1,1],[1,1],[1]]
=> 3
[[4],[1]]
=> [[4,1]]
=> 1
[[3,1],[1]]
=> [[3,1],[1]]
=> 2
[[2,2],[1]]
=> [[2,1],[2]]
=> 2
[[2,1,1],[1]]
=> [[2,1],[1],[1]]
=> 3
[[1,1,1,1],[1]]
=> [[1,1],[1],[1],[1]]
=> 4
[[5]]
=> [[5]]
=> 1
[[4,1]]
=> [[4],[1]]
=> 2
[[3,2]]
=> [[3],[2]]
=> 2
[[3,1,1]]
=> [[3],[1],[1]]
=> 3
[[2,2,1]]
=> [[2],[2],[1]]
=> 3
[[2,1,1,1]]
=> [[2],[1],[1],[1]]
=> 4
[[1,1,1,1,1]]
=> [[1],[1],[1],[1],[1]]
=> 5
[[1],[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1,1]]
=> 1
[[2],[1],[1],[1],[1]]
=> [[2,1,1,1,1]]
=> 1
[[2],[2],[1],[1]]
=> [[2,2,1,1]]
=> 1
Description
Number of rows in the plane partition.
Mp00177: Plane partitions transposePlane partitions
Mp00311: Plane partitions to partitionInteger partitions
St000010: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1]
=> 1
[[1],[1]]
=> [[1,1]]
=> [2]
=> 1
[[2]]
=> [[2]]
=> [2]
=> 1
[[1,1]]
=> [[1],[1]]
=> [1,1]
=> 2
[[1],[1],[1]]
=> [[1,1,1]]
=> [3]
=> 1
[[2],[1]]
=> [[2,1]]
=> [3]
=> 1
[[1,1],[1]]
=> [[1,1],[1]]
=> [2,1]
=> 2
[[3]]
=> [[3]]
=> [3]
=> 1
[[2,1]]
=> [[2],[1]]
=> [2,1]
=> 2
[[1,1,1]]
=> [[1],[1],[1]]
=> [1,1,1]
=> 3
[[1],[1],[1],[1]]
=> [[1,1,1,1]]
=> [4]
=> 1
[[2],[1],[1]]
=> [[2,1,1]]
=> [4]
=> 1
[[2],[2]]
=> [[2,2]]
=> [4]
=> 1
[[1,1],[1],[1]]
=> [[1,1,1],[1]]
=> [3,1]
=> 2
[[1,1],[1,1]]
=> [[1,1],[1,1]]
=> [2,2]
=> 2
[[3],[1]]
=> [[3,1]]
=> [4]
=> 1
[[2,1],[1]]
=> [[2,1],[1]]
=> [3,1]
=> 2
[[1,1,1],[1]]
=> [[1,1],[1],[1]]
=> [2,1,1]
=> 3
[[4]]
=> [[4]]
=> [4]
=> 1
[[3,1]]
=> [[3],[1]]
=> [3,1]
=> 2
[[2,2]]
=> [[2],[2]]
=> [2,2]
=> 2
[[2,1,1]]
=> [[2],[1],[1]]
=> [2,1,1]
=> 3
[[1,1,1,1]]
=> [[1],[1],[1],[1]]
=> [1,1,1,1]
=> 4
[[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1]]
=> [5]
=> 1
[[2],[1],[1],[1]]
=> [[2,1,1,1]]
=> [5]
=> 1
[[2],[2],[1]]
=> [[2,2,1]]
=> [5]
=> 1
[[1,1],[1],[1],[1]]
=> [[1,1,1,1],[1]]
=> [4,1]
=> 2
[[1,1],[1,1],[1]]
=> [[1,1,1],[1,1]]
=> [3,2]
=> 2
[[3],[1],[1]]
=> [[3,1,1]]
=> [5]
=> 1
[[3],[2]]
=> [[3,2]]
=> [5]
=> 1
[[2,1],[1],[1]]
=> [[2,1,1],[1]]
=> [4,1]
=> 2
[[2,1],[2]]
=> [[2,2],[1]]
=> [4,1]
=> 2
[[2,1],[1,1]]
=> [[2,1],[1,1]]
=> [3,2]
=> 2
[[1,1,1],[1],[1]]
=> [[1,1,1],[1],[1]]
=> [3,1,1]
=> 3
[[1,1,1],[1,1]]
=> [[1,1],[1,1],[1]]
=> [2,2,1]
=> 3
[[4],[1]]
=> [[4,1]]
=> [5]
=> 1
[[3,1],[1]]
=> [[3,1],[1]]
=> [4,1]
=> 2
[[2,2],[1]]
=> [[2,1],[2]]
=> [3,2]
=> 2
[[2,1,1],[1]]
=> [[2,1],[1],[1]]
=> [3,1,1]
=> 3
[[1,1,1,1],[1]]
=> [[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> 4
[[5]]
=> [[5]]
=> [5]
=> 1
[[4,1]]
=> [[4],[1]]
=> [4,1]
=> 2
[[3,2]]
=> [[3],[2]]
=> [3,2]
=> 2
[[3,1,1]]
=> [[3],[1],[1]]
=> [3,1,1]
=> 3
[[2,2,1]]
=> [[2],[2],[1]]
=> [2,2,1]
=> 3
[[2,1,1,1]]
=> [[2],[1],[1],[1]]
=> [2,1,1,1]
=> 4
[[1,1,1,1,1]]
=> [[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> 5
[[1],[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1,1]]
=> [6]
=> 1
[[2],[1],[1],[1],[1]]
=> [[2,1,1,1,1]]
=> [6]
=> 1
[[2],[2],[1],[1]]
=> [[2,2,1,1]]
=> [6]
=> 1
Description
The length of the partition.
Matching statistic: St000147
Mp00177: Plane partitions transposePlane partitions
Mp00311: Plane partitions to partitionInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000147: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1]
=> [1]
=> 1
[[1],[1]]
=> [[1,1]]
=> [2]
=> [1,1]
=> 1
[[2]]
=> [[2]]
=> [2]
=> [1,1]
=> 1
[[1,1]]
=> [[1],[1]]
=> [1,1]
=> [2]
=> 2
[[1],[1],[1]]
=> [[1,1,1]]
=> [3]
=> [1,1,1]
=> 1
[[2],[1]]
=> [[2,1]]
=> [3]
=> [1,1,1]
=> 1
[[1,1],[1]]
=> [[1,1],[1]]
=> [2,1]
=> [2,1]
=> 2
[[3]]
=> [[3]]
=> [3]
=> [1,1,1]
=> 1
[[2,1]]
=> [[2],[1]]
=> [2,1]
=> [2,1]
=> 2
[[1,1,1]]
=> [[1],[1],[1]]
=> [1,1,1]
=> [3]
=> 3
[[1],[1],[1],[1]]
=> [[1,1,1,1]]
=> [4]
=> [1,1,1,1]
=> 1
[[2],[1],[1]]
=> [[2,1,1]]
=> [4]
=> [1,1,1,1]
=> 1
[[2],[2]]
=> [[2,2]]
=> [4]
=> [1,1,1,1]
=> 1
[[1,1],[1],[1]]
=> [[1,1,1],[1]]
=> [3,1]
=> [2,1,1]
=> 2
[[1,1],[1,1]]
=> [[1,1],[1,1]]
=> [2,2]
=> [2,2]
=> 2
[[3],[1]]
=> [[3,1]]
=> [4]
=> [1,1,1,1]
=> 1
[[2,1],[1]]
=> [[2,1],[1]]
=> [3,1]
=> [2,1,1]
=> 2
[[1,1,1],[1]]
=> [[1,1],[1],[1]]
=> [2,1,1]
=> [3,1]
=> 3
[[4]]
=> [[4]]
=> [4]
=> [1,1,1,1]
=> 1
[[3,1]]
=> [[3],[1]]
=> [3,1]
=> [2,1,1]
=> 2
[[2,2]]
=> [[2],[2]]
=> [2,2]
=> [2,2]
=> 2
[[2,1,1]]
=> [[2],[1],[1]]
=> [2,1,1]
=> [3,1]
=> 3
[[1,1,1,1]]
=> [[1],[1],[1],[1]]
=> [1,1,1,1]
=> [4]
=> 4
[[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[2],[1],[1],[1]]
=> [[2,1,1,1]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[2],[2],[1]]
=> [[2,2,1]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[1,1],[1],[1],[1]]
=> [[1,1,1,1],[1]]
=> [4,1]
=> [2,1,1,1]
=> 2
[[1,1],[1,1],[1]]
=> [[1,1,1],[1,1]]
=> [3,2]
=> [2,2,1]
=> 2
[[3],[1],[1]]
=> [[3,1,1]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[3],[2]]
=> [[3,2]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[2,1],[1],[1]]
=> [[2,1,1],[1]]
=> [4,1]
=> [2,1,1,1]
=> 2
[[2,1],[2]]
=> [[2,2],[1]]
=> [4,1]
=> [2,1,1,1]
=> 2
[[2,1],[1,1]]
=> [[2,1],[1,1]]
=> [3,2]
=> [2,2,1]
=> 2
[[1,1,1],[1],[1]]
=> [[1,1,1],[1],[1]]
=> [3,1,1]
=> [3,1,1]
=> 3
[[1,1,1],[1,1]]
=> [[1,1],[1,1],[1]]
=> [2,2,1]
=> [3,2]
=> 3
[[4],[1]]
=> [[4,1]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[3,1],[1]]
=> [[3,1],[1]]
=> [4,1]
=> [2,1,1,1]
=> 2
[[2,2],[1]]
=> [[2,1],[2]]
=> [3,2]
=> [2,2,1]
=> 2
[[2,1,1],[1]]
=> [[2,1],[1],[1]]
=> [3,1,1]
=> [3,1,1]
=> 3
[[1,1,1,1],[1]]
=> [[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [4,1]
=> 4
[[5]]
=> [[5]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[4,1]]
=> [[4],[1]]
=> [4,1]
=> [2,1,1,1]
=> 2
[[3,2]]
=> [[3],[2]]
=> [3,2]
=> [2,2,1]
=> 2
[[3,1,1]]
=> [[3],[1],[1]]
=> [3,1,1]
=> [3,1,1]
=> 3
[[2,2,1]]
=> [[2],[2],[1]]
=> [2,2,1]
=> [3,2]
=> 3
[[2,1,1,1]]
=> [[2],[1],[1],[1]]
=> [2,1,1,1]
=> [4,1]
=> 4
[[1,1,1,1,1]]
=> [[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [5]
=> 5
[[1],[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1,1]]
=> [6]
=> [1,1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1]]
=> [[2,1,1,1,1]]
=> [6]
=> [1,1,1,1,1,1]
=> 1
[[2],[2],[1],[1]]
=> [[2,2,1,1]]
=> [6]
=> [1,1,1,1,1,1]
=> 1
Description
The largest part of an integer partition.
Matching statistic: St000288
Mp00177: Plane partitions transposePlane partitions
Mp00311: Plane partitions to partitionInteger partitions
Mp00095: Integer partitions to binary wordBinary words
St000288: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1]
=> 10 => 1
[[1],[1]]
=> [[1,1]]
=> [2]
=> 100 => 1
[[2]]
=> [[2]]
=> [2]
=> 100 => 1
[[1,1]]
=> [[1],[1]]
=> [1,1]
=> 110 => 2
[[1],[1],[1]]
=> [[1,1,1]]
=> [3]
=> 1000 => 1
[[2],[1]]
=> [[2,1]]
=> [3]
=> 1000 => 1
[[1,1],[1]]
=> [[1,1],[1]]
=> [2,1]
=> 1010 => 2
[[3]]
=> [[3]]
=> [3]
=> 1000 => 1
[[2,1]]
=> [[2],[1]]
=> [2,1]
=> 1010 => 2
[[1,1,1]]
=> [[1],[1],[1]]
=> [1,1,1]
=> 1110 => 3
[[1],[1],[1],[1]]
=> [[1,1,1,1]]
=> [4]
=> 10000 => 1
[[2],[1],[1]]
=> [[2,1,1]]
=> [4]
=> 10000 => 1
[[2],[2]]
=> [[2,2]]
=> [4]
=> 10000 => 1
[[1,1],[1],[1]]
=> [[1,1,1],[1]]
=> [3,1]
=> 10010 => 2
[[1,1],[1,1]]
=> [[1,1],[1,1]]
=> [2,2]
=> 1100 => 2
[[3],[1]]
=> [[3,1]]
=> [4]
=> 10000 => 1
[[2,1],[1]]
=> [[2,1],[1]]
=> [3,1]
=> 10010 => 2
[[1,1,1],[1]]
=> [[1,1],[1],[1]]
=> [2,1,1]
=> 10110 => 3
[[4]]
=> [[4]]
=> [4]
=> 10000 => 1
[[3,1]]
=> [[3],[1]]
=> [3,1]
=> 10010 => 2
[[2,2]]
=> [[2],[2]]
=> [2,2]
=> 1100 => 2
[[2,1,1]]
=> [[2],[1],[1]]
=> [2,1,1]
=> 10110 => 3
[[1,1,1,1]]
=> [[1],[1],[1],[1]]
=> [1,1,1,1]
=> 11110 => 4
[[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1]]
=> [5]
=> 100000 => 1
[[2],[1],[1],[1]]
=> [[2,1,1,1]]
=> [5]
=> 100000 => 1
[[2],[2],[1]]
=> [[2,2,1]]
=> [5]
=> 100000 => 1
[[1,1],[1],[1],[1]]
=> [[1,1,1,1],[1]]
=> [4,1]
=> 100010 => 2
[[1,1],[1,1],[1]]
=> [[1,1,1],[1,1]]
=> [3,2]
=> 10100 => 2
[[3],[1],[1]]
=> [[3,1,1]]
=> [5]
=> 100000 => 1
[[3],[2]]
=> [[3,2]]
=> [5]
=> 100000 => 1
[[2,1],[1],[1]]
=> [[2,1,1],[1]]
=> [4,1]
=> 100010 => 2
[[2,1],[2]]
=> [[2,2],[1]]
=> [4,1]
=> 100010 => 2
[[2,1],[1,1]]
=> [[2,1],[1,1]]
=> [3,2]
=> 10100 => 2
[[1,1,1],[1],[1]]
=> [[1,1,1],[1],[1]]
=> [3,1,1]
=> 100110 => 3
[[1,1,1],[1,1]]
=> [[1,1],[1,1],[1]]
=> [2,2,1]
=> 11010 => 3
[[4],[1]]
=> [[4,1]]
=> [5]
=> 100000 => 1
[[3,1],[1]]
=> [[3,1],[1]]
=> [4,1]
=> 100010 => 2
[[2,2],[1]]
=> [[2,1],[2]]
=> [3,2]
=> 10100 => 2
[[2,1,1],[1]]
=> [[2,1],[1],[1]]
=> [3,1,1]
=> 100110 => 3
[[1,1,1,1],[1]]
=> [[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> 101110 => 4
[[5]]
=> [[5]]
=> [5]
=> 100000 => 1
[[4,1]]
=> [[4],[1]]
=> [4,1]
=> 100010 => 2
[[3,2]]
=> [[3],[2]]
=> [3,2]
=> 10100 => 2
[[3,1,1]]
=> [[3],[1],[1]]
=> [3,1,1]
=> 100110 => 3
[[2,2,1]]
=> [[2],[2],[1]]
=> [2,2,1]
=> 11010 => 3
[[2,1,1,1]]
=> [[2],[1],[1],[1]]
=> [2,1,1,1]
=> 101110 => 4
[[1,1,1,1,1]]
=> [[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> 111110 => 5
[[1],[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1,1]]
=> [6]
=> 1000000 => 1
[[2],[1],[1],[1],[1]]
=> [[2,1,1,1,1]]
=> [6]
=> 1000000 => 1
[[2],[2],[1],[1]]
=> [[2,2,1,1]]
=> [6]
=> 1000000 => 1
Description
The number of ones in a binary word. This is also known as the Hamming weight of the word.
Matching statistic: St000378
Mp00177: Plane partitions transposePlane partitions
Mp00311: Plane partitions to partitionInteger partitions
Mp00322: Integer partitions Loehr-WarringtonInteger partitions
St000378: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1]
=> [1]
=> 1
[[1],[1]]
=> [[1,1]]
=> [2]
=> [1,1]
=> 1
[[2]]
=> [[2]]
=> [2]
=> [1,1]
=> 1
[[1,1]]
=> [[1],[1]]
=> [1,1]
=> [2]
=> 2
[[1],[1],[1]]
=> [[1,1,1]]
=> [3]
=> [1,1,1]
=> 1
[[2],[1]]
=> [[2,1]]
=> [3]
=> [1,1,1]
=> 1
[[1,1],[1]]
=> [[1,1],[1]]
=> [2,1]
=> [3]
=> 2
[[3]]
=> [[3]]
=> [3]
=> [1,1,1]
=> 1
[[2,1]]
=> [[2],[1]]
=> [2,1]
=> [3]
=> 2
[[1,1,1]]
=> [[1],[1],[1]]
=> [1,1,1]
=> [2,1]
=> 3
[[1],[1],[1],[1]]
=> [[1,1,1,1]]
=> [4]
=> [1,1,1,1]
=> 1
[[2],[1],[1]]
=> [[2,1,1]]
=> [4]
=> [1,1,1,1]
=> 1
[[2],[2]]
=> [[2,2]]
=> [4]
=> [1,1,1,1]
=> 1
[[1,1],[1],[1]]
=> [[1,1,1],[1]]
=> [3,1]
=> [2,1,1]
=> 2
[[1,1],[1,1]]
=> [[1,1],[1,1]]
=> [2,2]
=> [4]
=> 2
[[3],[1]]
=> [[3,1]]
=> [4]
=> [1,1,1,1]
=> 1
[[2,1],[1]]
=> [[2,1],[1]]
=> [3,1]
=> [2,1,1]
=> 2
[[1,1,1],[1]]
=> [[1,1],[1],[1]]
=> [2,1,1]
=> [2,2]
=> 3
[[4]]
=> [[4]]
=> [4]
=> [1,1,1,1]
=> 1
[[3,1]]
=> [[3],[1]]
=> [3,1]
=> [2,1,1]
=> 2
[[2,2]]
=> [[2],[2]]
=> [2,2]
=> [4]
=> 2
[[2,1,1]]
=> [[2],[1],[1]]
=> [2,1,1]
=> [2,2]
=> 3
[[1,1,1,1]]
=> [[1],[1],[1],[1]]
=> [1,1,1,1]
=> [3,1]
=> 4
[[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[2],[1],[1],[1]]
=> [[2,1,1,1]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[2],[2],[1]]
=> [[2,2,1]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[1,1],[1],[1],[1]]
=> [[1,1,1,1],[1]]
=> [4,1]
=> [2,1,1,1]
=> 2
[[1,1],[1,1],[1]]
=> [[1,1,1],[1,1]]
=> [3,2]
=> [5]
=> 2
[[3],[1],[1]]
=> [[3,1,1]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[3],[2]]
=> [[3,2]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[2,1],[1],[1]]
=> [[2,1,1],[1]]
=> [4,1]
=> [2,1,1,1]
=> 2
[[2,1],[2]]
=> [[2,2],[1]]
=> [4,1]
=> [2,1,1,1]
=> 2
[[2,1],[1,1]]
=> [[2,1],[1,1]]
=> [3,2]
=> [5]
=> 2
[[1,1,1],[1],[1]]
=> [[1,1,1],[1],[1]]
=> [3,1,1]
=> [4,1]
=> 3
[[1,1,1],[1,1]]
=> [[1,1],[1,1],[1]]
=> [2,2,1]
=> [2,2,1]
=> 3
[[4],[1]]
=> [[4,1]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[3,1],[1]]
=> [[3,1],[1]]
=> [4,1]
=> [2,1,1,1]
=> 2
[[2,2],[1]]
=> [[2,1],[2]]
=> [3,2]
=> [5]
=> 2
[[2,1,1],[1]]
=> [[2,1],[1],[1]]
=> [3,1,1]
=> [4,1]
=> 3
[[1,1,1,1],[1]]
=> [[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [3,1,1]
=> 4
[[5]]
=> [[5]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[4,1]]
=> [[4],[1]]
=> [4,1]
=> [2,1,1,1]
=> 2
[[3,2]]
=> [[3],[2]]
=> [3,2]
=> [5]
=> 2
[[3,1,1]]
=> [[3],[1],[1]]
=> [3,1,1]
=> [4,1]
=> 3
[[2,2,1]]
=> [[2],[2],[1]]
=> [2,2,1]
=> [2,2,1]
=> 3
[[2,1,1,1]]
=> [[2],[1],[1],[1]]
=> [2,1,1,1]
=> [3,1,1]
=> 4
[[1,1,1,1,1]]
=> [[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [3,2]
=> 5
[[1],[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1,1]]
=> [6]
=> [1,1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1]]
=> [[2,1,1,1,1]]
=> [6]
=> [1,1,1,1,1,1]
=> 1
[[2],[2],[1],[1]]
=> [[2,2,1,1]]
=> [6]
=> [1,1,1,1,1,1]
=> 1
Description
The diagonal inversion number of an integer partition. The dinv of a partition is the number of cells $c$ in the diagram of an integer partition $\lambda$ for which $\operatorname{arm}(c)-\operatorname{leg}(c) \in \{0,1\}$. See also exercise 3.19 of [2]. This statistic is equidistributed with the length of the partition, see [3].
Matching statistic: St000733
Mp00177: Plane partitions transposePlane partitions
Mp00311: Plane partitions to partitionInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
St000733: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1]
=> [[1]]
=> 1
[[1],[1]]
=> [[1,1]]
=> [2]
=> [[1,2]]
=> 1
[[2]]
=> [[2]]
=> [2]
=> [[1,2]]
=> 1
[[1,1]]
=> [[1],[1]]
=> [1,1]
=> [[1],[2]]
=> 2
[[1],[1],[1]]
=> [[1,1,1]]
=> [3]
=> [[1,2,3]]
=> 1
[[2],[1]]
=> [[2,1]]
=> [3]
=> [[1,2,3]]
=> 1
[[1,1],[1]]
=> [[1,1],[1]]
=> [2,1]
=> [[1,2],[3]]
=> 2
[[3]]
=> [[3]]
=> [3]
=> [[1,2,3]]
=> 1
[[2,1]]
=> [[2],[1]]
=> [2,1]
=> [[1,2],[3]]
=> 2
[[1,1,1]]
=> [[1],[1],[1]]
=> [1,1,1]
=> [[1],[2],[3]]
=> 3
[[1],[1],[1],[1]]
=> [[1,1,1,1]]
=> [4]
=> [[1,2,3,4]]
=> 1
[[2],[1],[1]]
=> [[2,1,1]]
=> [4]
=> [[1,2,3,4]]
=> 1
[[2],[2]]
=> [[2,2]]
=> [4]
=> [[1,2,3,4]]
=> 1
[[1,1],[1],[1]]
=> [[1,1,1],[1]]
=> [3,1]
=> [[1,2,3],[4]]
=> 2
[[1,1],[1,1]]
=> [[1,1],[1,1]]
=> [2,2]
=> [[1,2],[3,4]]
=> 2
[[3],[1]]
=> [[3,1]]
=> [4]
=> [[1,2,3,4]]
=> 1
[[2,1],[1]]
=> [[2,1],[1]]
=> [3,1]
=> [[1,2,3],[4]]
=> 2
[[1,1,1],[1]]
=> [[1,1],[1],[1]]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 3
[[4]]
=> [[4]]
=> [4]
=> [[1,2,3,4]]
=> 1
[[3,1]]
=> [[3],[1]]
=> [3,1]
=> [[1,2,3],[4]]
=> 2
[[2,2]]
=> [[2],[2]]
=> [2,2]
=> [[1,2],[3,4]]
=> 2
[[2,1,1]]
=> [[2],[1],[1]]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 3
[[1,1,1,1]]
=> [[1],[1],[1],[1]]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 4
[[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1]]
=> [5]
=> [[1,2,3,4,5]]
=> 1
[[2],[1],[1],[1]]
=> [[2,1,1,1]]
=> [5]
=> [[1,2,3,4,5]]
=> 1
[[2],[2],[1]]
=> [[2,2,1]]
=> [5]
=> [[1,2,3,4,5]]
=> 1
[[1,1],[1],[1],[1]]
=> [[1,1,1,1],[1]]
=> [4,1]
=> [[1,2,3,4],[5]]
=> 2
[[1,1],[1,1],[1]]
=> [[1,1,1],[1,1]]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 2
[[3],[1],[1]]
=> [[3,1,1]]
=> [5]
=> [[1,2,3,4,5]]
=> 1
[[3],[2]]
=> [[3,2]]
=> [5]
=> [[1,2,3,4,5]]
=> 1
[[2,1],[1],[1]]
=> [[2,1,1],[1]]
=> [4,1]
=> [[1,2,3,4],[5]]
=> 2
[[2,1],[2]]
=> [[2,2],[1]]
=> [4,1]
=> [[1,2,3,4],[5]]
=> 2
[[2,1],[1,1]]
=> [[2,1],[1,1]]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 2
[[1,1,1],[1],[1]]
=> [[1,1,1],[1],[1]]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
[[1,1,1],[1,1]]
=> [[1,1],[1,1],[1]]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 3
[[4],[1]]
=> [[4,1]]
=> [5]
=> [[1,2,3,4,5]]
=> 1
[[3,1],[1]]
=> [[3,1],[1]]
=> [4,1]
=> [[1,2,3,4],[5]]
=> 2
[[2,2],[1]]
=> [[2,1],[2]]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 2
[[2,1,1],[1]]
=> [[2,1],[1],[1]]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
[[1,1,1,1],[1]]
=> [[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 4
[[5]]
=> [[5]]
=> [5]
=> [[1,2,3,4,5]]
=> 1
[[4,1]]
=> [[4],[1]]
=> [4,1]
=> [[1,2,3,4],[5]]
=> 2
[[3,2]]
=> [[3],[2]]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 2
[[3,1,1]]
=> [[3],[1],[1]]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
[[2,2,1]]
=> [[2],[2],[1]]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 3
[[2,1,1,1]]
=> [[2],[1],[1],[1]]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 4
[[1,1,1,1,1]]
=> [[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 5
[[1],[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1,1]]
=> [6]
=> [[1,2,3,4,5,6]]
=> 1
[[2],[1],[1],[1],[1]]
=> [[2,1,1,1,1]]
=> [6]
=> [[1,2,3,4,5,6]]
=> 1
[[2],[2],[1],[1]]
=> [[2,2,1,1]]
=> [6]
=> [[1,2,3,4,5,6]]
=> 1
Description
The row containing the largest entry of a standard tableau.
Mp00177: Plane partitions transposePlane partitions
Mp00311: Plane partitions to partitionInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
St000157: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1]
=> [[1]]
=> 0 = 1 - 1
[[1],[1]]
=> [[1,1]]
=> [2]
=> [[1,2]]
=> 0 = 1 - 1
[[2]]
=> [[2]]
=> [2]
=> [[1,2]]
=> 0 = 1 - 1
[[1,1]]
=> [[1],[1]]
=> [1,1]
=> [[1],[2]]
=> 1 = 2 - 1
[[1],[1],[1]]
=> [[1,1,1]]
=> [3]
=> [[1,2,3]]
=> 0 = 1 - 1
[[2],[1]]
=> [[2,1]]
=> [3]
=> [[1,2,3]]
=> 0 = 1 - 1
[[1,1],[1]]
=> [[1,1],[1]]
=> [2,1]
=> [[1,2],[3]]
=> 1 = 2 - 1
[[3]]
=> [[3]]
=> [3]
=> [[1,2,3]]
=> 0 = 1 - 1
[[2,1]]
=> [[2],[1]]
=> [2,1]
=> [[1,2],[3]]
=> 1 = 2 - 1
[[1,1,1]]
=> [[1],[1],[1]]
=> [1,1,1]
=> [[1],[2],[3]]
=> 2 = 3 - 1
[[1],[1],[1],[1]]
=> [[1,1,1,1]]
=> [4]
=> [[1,2,3,4]]
=> 0 = 1 - 1
[[2],[1],[1]]
=> [[2,1,1]]
=> [4]
=> [[1,2,3,4]]
=> 0 = 1 - 1
[[2],[2]]
=> [[2,2]]
=> [4]
=> [[1,2,3,4]]
=> 0 = 1 - 1
[[1,1],[1],[1]]
=> [[1,1,1],[1]]
=> [3,1]
=> [[1,2,3],[4]]
=> 1 = 2 - 1
[[1,1],[1,1]]
=> [[1,1],[1,1]]
=> [2,2]
=> [[1,2],[3,4]]
=> 1 = 2 - 1
[[3],[1]]
=> [[3,1]]
=> [4]
=> [[1,2,3,4]]
=> 0 = 1 - 1
[[2,1],[1]]
=> [[2,1],[1]]
=> [3,1]
=> [[1,2,3],[4]]
=> 1 = 2 - 1
[[1,1,1],[1]]
=> [[1,1],[1],[1]]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 2 = 3 - 1
[[4]]
=> [[4]]
=> [4]
=> [[1,2,3,4]]
=> 0 = 1 - 1
[[3,1]]
=> [[3],[1]]
=> [3,1]
=> [[1,2,3],[4]]
=> 1 = 2 - 1
[[2,2]]
=> [[2],[2]]
=> [2,2]
=> [[1,2],[3,4]]
=> 1 = 2 - 1
[[2,1,1]]
=> [[2],[1],[1]]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 2 = 3 - 1
[[1,1,1,1]]
=> [[1],[1],[1],[1]]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 3 = 4 - 1
[[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1]]
=> [5]
=> [[1,2,3,4,5]]
=> 0 = 1 - 1
[[2],[1],[1],[1]]
=> [[2,1,1,1]]
=> [5]
=> [[1,2,3,4,5]]
=> 0 = 1 - 1
[[2],[2],[1]]
=> [[2,2,1]]
=> [5]
=> [[1,2,3,4,5]]
=> 0 = 1 - 1
[[1,1],[1],[1],[1]]
=> [[1,1,1,1],[1]]
=> [4,1]
=> [[1,2,3,4],[5]]
=> 1 = 2 - 1
[[1,1],[1,1],[1]]
=> [[1,1,1],[1,1]]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 1 = 2 - 1
[[3],[1],[1]]
=> [[3,1,1]]
=> [5]
=> [[1,2,3,4,5]]
=> 0 = 1 - 1
[[3],[2]]
=> [[3,2]]
=> [5]
=> [[1,2,3,4,5]]
=> 0 = 1 - 1
[[2,1],[1],[1]]
=> [[2,1,1],[1]]
=> [4,1]
=> [[1,2,3,4],[5]]
=> 1 = 2 - 1
[[2,1],[2]]
=> [[2,2],[1]]
=> [4,1]
=> [[1,2,3,4],[5]]
=> 1 = 2 - 1
[[2,1],[1,1]]
=> [[2,1],[1,1]]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 1 = 2 - 1
[[1,1,1],[1],[1]]
=> [[1,1,1],[1],[1]]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 2 = 3 - 1
[[1,1,1],[1,1]]
=> [[1,1],[1,1],[1]]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 2 = 3 - 1
[[4],[1]]
=> [[4,1]]
=> [5]
=> [[1,2,3,4,5]]
=> 0 = 1 - 1
[[3,1],[1]]
=> [[3,1],[1]]
=> [4,1]
=> [[1,2,3,4],[5]]
=> 1 = 2 - 1
[[2,2],[1]]
=> [[2,1],[2]]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 1 = 2 - 1
[[2,1,1],[1]]
=> [[2,1],[1],[1]]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 2 = 3 - 1
[[1,1,1,1],[1]]
=> [[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 3 = 4 - 1
[[5]]
=> [[5]]
=> [5]
=> [[1,2,3,4,5]]
=> 0 = 1 - 1
[[4,1]]
=> [[4],[1]]
=> [4,1]
=> [[1,2,3,4],[5]]
=> 1 = 2 - 1
[[3,2]]
=> [[3],[2]]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 1 = 2 - 1
[[3,1,1]]
=> [[3],[1],[1]]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 2 = 3 - 1
[[2,2,1]]
=> [[2],[2],[1]]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 2 = 3 - 1
[[2,1,1,1]]
=> [[2],[1],[1],[1]]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 3 = 4 - 1
[[1,1,1,1,1]]
=> [[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 4 = 5 - 1
[[1],[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1,1]]
=> [6]
=> [[1,2,3,4,5,6]]
=> 0 = 1 - 1
[[2],[1],[1],[1],[1]]
=> [[2,1,1,1,1]]
=> [6]
=> [[1,2,3,4,5,6]]
=> 0 = 1 - 1
[[2],[2],[1],[1]]
=> [[2,2,1,1]]
=> [6]
=> [[1,2,3,4,5,6]]
=> 0 = 1 - 1
Description
The number of descents of a standard tableau. Entry $i$ of a standard Young tableau is a descent if $i+1$ appears in a row below the row of $i$.
Matching statistic: St001227
Mp00177: Plane partitions transposePlane partitions
Mp00311: Plane partitions to partitionInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
St001227: Dyck paths ⟶ ℤResult quality: 42% values known / values provided: 42%distinct values known / distinct values provided: 50%
Values
[[1]]
=> [[1]]
=> [1]
=> [1,0,1,0]
=> 1
[[1],[1]]
=> [[1,1]]
=> [2]
=> [1,1,0,0,1,0]
=> 1
[[2]]
=> [[2]]
=> [2]
=> [1,1,0,0,1,0]
=> 1
[[1,1]]
=> [[1],[1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[[1],[1],[1]]
=> [[1,1,1]]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1
[[2],[1]]
=> [[2,1]]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1
[[1,1],[1]]
=> [[1,1],[1]]
=> [2,1]
=> [1,0,1,0,1,0]
=> 2
[[3]]
=> [[3]]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1
[[2,1]]
=> [[2],[1]]
=> [2,1]
=> [1,0,1,0,1,0]
=> 2
[[1,1,1]]
=> [[1],[1],[1]]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 3
[[1],[1],[1],[1]]
=> [[1,1,1,1]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[[2],[1],[1]]
=> [[2,1,1]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[[2],[2]]
=> [[2,2]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[[1,1],[1],[1]]
=> [[1,1,1],[1]]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 2
[[1,1],[1,1]]
=> [[1,1],[1,1]]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
[[3],[1]]
=> [[3,1]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[[2,1],[1]]
=> [[2,1],[1]]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 2
[[1,1,1],[1]]
=> [[1,1],[1],[1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 3
[[4]]
=> [[4]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[[3,1]]
=> [[3],[1]]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 2
[[2,2]]
=> [[2],[2]]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
[[2,1,1]]
=> [[2],[1],[1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 3
[[1,1,1,1]]
=> [[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 4
[[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1]]
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
[[2],[1],[1],[1]]
=> [[2,1,1,1]]
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
[[2],[2],[1]]
=> [[2,2,1]]
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
[[1,1],[1],[1],[1]]
=> [[1,1,1,1],[1]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
[[1,1],[1,1],[1]]
=> [[1,1,1],[1,1]]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 2
[[3],[1],[1]]
=> [[3,1,1]]
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
[[3],[2]]
=> [[3,2]]
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
[[2,1],[1],[1]]
=> [[2,1,1],[1]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
[[2,1],[2]]
=> [[2,2],[1]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
[[2,1],[1,1]]
=> [[2,1],[1,1]]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 2
[[1,1,1],[1],[1]]
=> [[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3
[[1,1,1],[1,1]]
=> [[1,1],[1,1],[1]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 3
[[4],[1]]
=> [[4,1]]
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
[[3,1],[1]]
=> [[3,1],[1]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
[[2,2],[1]]
=> [[2,1],[2]]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 2
[[2,1,1],[1]]
=> [[2,1],[1],[1]]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3
[[1,1,1,1],[1]]
=> [[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 4
[[5]]
=> [[5]]
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
[[4,1]]
=> [[4],[1]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
[[3,2]]
=> [[3],[2]]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 2
[[3,1,1]]
=> [[3],[1],[1]]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 3
[[2,2,1]]
=> [[2],[2],[1]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 3
[[2,1,1,1]]
=> [[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 4
[[1,1,1,1,1]]
=> [[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 5
[[1],[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1,1]]
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1
[[2],[1],[1],[1],[1]]
=> [[2,1,1,1,1]]
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1
[[2],[2],[1],[1]]
=> [[2,2,1,1]]
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1
[[2],[2],[2]]
=> [[2,2,2]]
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1
[[1,1],[1],[1],[1],[1]]
=> [[1,1,1,1,1],[1]]
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 2
[[1,1],[1,1],[1],[1]]
=> [[1,1,1,1],[1,1]]
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2
[[1,1],[1,1],[1,1]]
=> [[1,1,1],[1,1,1]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
[[3],[1],[1],[1]]
=> [[3,1,1,1]]
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1
[[3],[2],[1]]
=> [[3,2,1]]
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1
[[3],[3]]
=> [[3,3]]
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1
[[4],[1],[1]]
=> [[4,1,1]]
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1
[[4],[2]]
=> [[4,2]]
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1
[[5],[1]]
=> [[5,1]]
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1
[[6]]
=> [[6]]
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1
[[1,1,1,1,1,1]]
=> [[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 6
[[1],[1],[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1,1,1]]
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[2],[1],[1],[1],[1],[1]]
=> [[2,1,1,1,1,1]]
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[2],[2],[1],[1],[1]]
=> [[2,2,1,1,1]]
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[2],[2],[2],[1]]
=> [[2,2,2,1]]
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[1,1],[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1,1],[1]]
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 2
[[3],[1],[1],[1],[1]]
=> [[3,1,1,1,1]]
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[3],[2],[1],[1]]
=> [[3,2,1,1]]
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[3],[2],[2]]
=> [[3,2,2]]
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[3],[3],[1]]
=> [[3,3,1]]
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[2,1],[1],[1],[1],[1]]
=> [[2,1,1,1,1],[1]]
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 2
[[2,1],[2],[1],[1]]
=> [[2,2,1,1],[1]]
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 2
[[2,1],[2],[2]]
=> [[2,2,2],[1]]
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 2
[[4],[1],[1],[1]]
=> [[4,1,1,1]]
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[4],[2],[1]]
=> [[4,2,1]]
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[4],[3]]
=> [[4,3]]
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[3,1],[1],[1],[1]]
=> [[3,1,1,1],[1]]
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 2
[[3,1],[2],[1]]
=> [[3,2,1],[1]]
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 2
[[3,1],[3]]
=> [[3,3],[1]]
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 2
[[5],[1],[1]]
=> [[5,1,1]]
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[5],[2]]
=> [[5,2]]
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[4,1],[1],[1]]
=> [[4,1,1],[1]]
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 2
[[4,1],[2]]
=> [[4,2],[1]]
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 2
[[6],[1]]
=> [[6,1]]
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[5,1],[1]]
=> [[5,1],[1]]
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 2
[[1,1,1,1,1,1],[1]]
=> [[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 6
[[7]]
=> [[7]]
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[6,1]]
=> [[6],[1]]
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 2
[[2,1,1,1,1,1]]
=> [[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 6
[[1,1,1,1,1,1,1]]
=> [[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 7
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1,1,1,1]]
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[2],[1],[1],[1],[1],[1],[1]]
=> [[2,1,1,1,1,1,1]]
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[2],[2],[1],[1],[1],[1]]
=> [[2,2,1,1,1,1]]
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[2],[2],[2],[1],[1]]
=> [[2,2,2,1,1]]
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[2],[2],[2],[2]]
=> [[2,2,2,2]]
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[1,1],[1],[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1,1,1],[1]]
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> ? = 2
[[1,1],[1,1],[1],[1],[1],[1]]
=> [[1,1,1,1,1,1],[1,1]]
=> [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> ? = 2
[[3],[1],[1],[1],[1],[1]]
=> [[3,1,1,1,1,1]]
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
[[3],[2],[1],[1],[1]]
=> [[3,2,1,1,1]]
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 1
Description
The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra.
Matching statistic: St000329
Mp00177: Plane partitions transposePlane partitions
Mp00311: Plane partitions to partitionInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St000329: Dyck paths ⟶ ℤResult quality: 23% values known / values provided: 23%distinct values known / distinct values provided: 60%
Values
[[1]]
=> [[1]]
=> [1]
=> [1,0]
=> 0 = 1 - 1
[[1],[1]]
=> [[1,1]]
=> [2]
=> [1,0,1,0]
=> 0 = 1 - 1
[[2]]
=> [[2]]
=> [2]
=> [1,0,1,0]
=> 0 = 1 - 1
[[1,1]]
=> [[1],[1]]
=> [1,1]
=> [1,1,0,0]
=> 1 = 2 - 1
[[1],[1],[1]]
=> [[1,1,1]]
=> [3]
=> [1,0,1,0,1,0]
=> 0 = 1 - 1
[[2],[1]]
=> [[2,1]]
=> [3]
=> [1,0,1,0,1,0]
=> 0 = 1 - 1
[[1,1],[1]]
=> [[1,1],[1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1 = 2 - 1
[[3]]
=> [[3]]
=> [3]
=> [1,0,1,0,1,0]
=> 0 = 1 - 1
[[2,1]]
=> [[2],[1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1 = 2 - 1
[[1,1,1]]
=> [[1],[1],[1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2 = 3 - 1
[[1],[1],[1],[1]]
=> [[1,1,1,1]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[[2],[1],[1]]
=> [[2,1,1]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[[2],[2]]
=> [[2,2]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[[1,1],[1],[1]]
=> [[1,1,1],[1]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[[1,1],[1,1]]
=> [[1,1],[1,1]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 1 = 2 - 1
[[3],[1]]
=> [[3,1]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[[2,1],[1]]
=> [[2,1],[1]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[[1,1,1],[1]]
=> [[1,1],[1],[1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2 = 3 - 1
[[4]]
=> [[4]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[[3,1]]
=> [[3],[1]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[[2,2]]
=> [[2],[2]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 1 = 2 - 1
[[2,1,1]]
=> [[2],[1],[1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2 = 3 - 1
[[1,1,1,1]]
=> [[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 3 = 4 - 1
[[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1]]
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[[2],[1],[1],[1]]
=> [[2,1,1,1]]
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[[2],[2],[1]]
=> [[2,2,1]]
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[[1,1],[1],[1],[1]]
=> [[1,1,1,1],[1]]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[[1,1],[1,1],[1]]
=> [[1,1,1],[1,1]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[[3],[1],[1]]
=> [[3,1,1]]
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[[3],[2]]
=> [[3,2]]
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[[2,1],[1],[1]]
=> [[2,1,1],[1]]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[[2,1],[2]]
=> [[2,2],[1]]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[[2,1],[1,1]]
=> [[2,1],[1,1]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[[1,1,1],[1],[1]]
=> [[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2 = 3 - 1
[[1,1,1],[1,1]]
=> [[1,1],[1,1],[1]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[[4],[1]]
=> [[4,1]]
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[[3,1],[1]]
=> [[3,1],[1]]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[[2,2],[1]]
=> [[2,1],[2]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[[2,1,1],[1]]
=> [[2,1],[1],[1]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2 = 3 - 1
[[1,1,1,1],[1]]
=> [[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3 = 4 - 1
[[5]]
=> [[5]]
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[[4,1]]
=> [[4],[1]]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[[3,2]]
=> [[3],[2]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[[3,1,1]]
=> [[3],[1],[1]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2 = 3 - 1
[[2,2,1]]
=> [[2],[2],[1]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[[2,1,1,1]]
=> [[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3 = 4 - 1
[[1,1,1,1,1]]
=> [[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4 = 5 - 1
[[1],[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1,1]]
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[[2],[1],[1],[1],[1]]
=> [[2,1,1,1,1]]
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[[2],[2],[1],[1]]
=> [[2,2,1,1]]
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[[1],[1],[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1,1,1]]
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[2],[1],[1],[1],[1],[1]]
=> [[2,1,1,1,1,1]]
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[2],[2],[1],[1],[1]]
=> [[2,2,1,1,1]]
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[2],[2],[2],[1]]
=> [[2,2,2,1]]
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[1,1],[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1,1],[1]]
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 - 1
[[3],[1],[1],[1],[1]]
=> [[3,1,1,1,1]]
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[3],[2],[1],[1]]
=> [[3,2,1,1]]
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[3],[2],[2]]
=> [[3,2,2]]
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[3],[3],[1]]
=> [[3,3,1]]
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[2,1],[1],[1],[1],[1]]
=> [[2,1,1,1,1],[1]]
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 - 1
[[2,1],[2],[1],[1]]
=> [[2,2,1,1],[1]]
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 - 1
[[2,1],[2],[2]]
=> [[2,2,2],[1]]
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 - 1
[[1,1,1],[1],[1],[1],[1]]
=> [[1,1,1,1,1],[1],[1]]
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3 - 1
[[4],[1],[1],[1]]
=> [[4,1,1,1]]
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[4],[2],[1]]
=> [[4,2,1]]
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[4],[3]]
=> [[4,3]]
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[3,1],[1],[1],[1]]
=> [[3,1,1,1],[1]]
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 - 1
[[3,1],[2],[1]]
=> [[3,2,1],[1]]
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 - 1
[[3,1],[3]]
=> [[3,3],[1]]
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 - 1
[[2,1,1],[1],[1],[1]]
=> [[2,1,1,1],[1],[1]]
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3 - 1
[[2,1,1],[2],[1]]
=> [[2,2,1],[1],[1]]
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3 - 1
[[1,1,1,1],[1],[1],[1]]
=> [[1,1,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 4 - 1
[[5],[1],[1]]
=> [[5,1,1]]
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[5],[2]]
=> [[5,2]]
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[4,1],[1],[1]]
=> [[4,1,1],[1]]
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 - 1
[[4,1],[2]]
=> [[4,2],[1]]
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 - 1
[[3,1,1],[1],[1]]
=> [[3,1,1],[1],[1]]
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3 - 1
[[3,1,1],[2]]
=> [[3,2],[1],[1]]
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3 - 1
[[2,1,1,1],[1],[1]]
=> [[2,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 4 - 1
[[2,1,1,1],[2]]
=> [[2,2],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 4 - 1
[[1,1,1,1,1],[1],[1]]
=> [[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 5 - 1
[[6],[1]]
=> [[6,1]]
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[5,1],[1]]
=> [[5,1],[1]]
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 - 1
[[4,1,1],[1]]
=> [[4,1],[1],[1]]
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3 - 1
[[3,1,1,1],[1]]
=> [[3,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 4 - 1
[[2,1,1,1,1],[1]]
=> [[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 5 - 1
[[1,1,1,1,1,1],[1]]
=> [[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 6 - 1
[[7]]
=> [[7]]
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[6,1]]
=> [[6],[1]]
=> [6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 - 1
[[5,1,1]]
=> [[5],[1],[1]]
=> [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3 - 1
[[4,1,1,1]]
=> [[4],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 4 - 1
[[3,1,1,1,1]]
=> [[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 5 - 1
[[2,1,1,1,1,1]]
=> [[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 6 - 1
[[1,1,1,1,1,1,1]]
=> [[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 7 - 1
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1,1,1,1]]
=> [8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[2],[1],[1],[1],[1],[1],[1]]
=> [[2,1,1,1,1,1,1]]
=> [8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[2],[2],[1],[1],[1],[1]]
=> [[2,2,1,1,1,1]]
=> [8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[2],[2],[2],[1],[1]]
=> [[2,2,2,1,1]]
=> [8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[2],[2],[2],[2]]
=> [[2,2,2,2]]
=> [8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
[[1,1],[1],[1],[1],[1],[1],[1]]
=> [[1,1,1,1,1,1,1],[1]]
=> [7,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 - 1
Description
The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1.