searching the database
Your data matches 16 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001431
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001431: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001431: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [2]
=> [1,0,1,0]
=> 0
[[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [1,1]
=> [1,1,0,0]
=> 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> 0
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> 0
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> 1
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> 0
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> 0
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 1
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> 0
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> 0
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 1
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> 0
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 1
[[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1
[[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 0
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 0
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 0
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[[0,0,0,1,0],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 0
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 0
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 0
Description
Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path.
The modified algebra B is obtained from the stable Auslander algebra kQ/I by deleting all relations which contain walks of length at least three (conjectural this step of deletion is not necessary as the stable higher Auslander algebras might be quadratic) and taking as B then the algebra kQ^(op)/J when J is the quadratic perp of the ideal I.
See http://www.findstat.org/DyckPaths/NakayamaAlgebras for the definition of Loewy length and Nakayama algebras associated to Dyck paths.
Matching statistic: St001553
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001553: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001553: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [2]
=> [1,0,1,0]
=> 0
[[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [1,1]
=> [1,1,0,0]
=> 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> 0
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> 0
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> 1
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> 0
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> 0
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 1
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> 0
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> 0
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 1
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> 0
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 1
[[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1
[[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 0
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 0
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 0
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[[0,0,0,1,0],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 0
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 0
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 0
[[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,0,1]]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0]]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[[0,0,0,0,0,0,0,1,0],[0,0,0,0,0,0,1,0,0],[0,0,0,0,0,1,0,0,0],[0,0,0,0,1,0,0,0,0],[0,0,0,1,0,0,0,0,0],[0,0,1,0,0,0,0,0,0],[0,1,0,0,0,0,0,-1,1],[0,0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0,0]]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0,0]
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[[0,0,0,0,0,0,0,1,0],[0,0,0,0,0,0,1,0,0],[0,0,0,0,0,1,0,0,0],[0,0,0,0,1,0,0,0,0],[0,0,0,1,0,0,0,0,0],[0,0,1,0,0,0,0,0,0],[0,1,0,0,0,0,-1,0,1],[0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0,0]]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0,0]
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
Description
The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path.
The statistic returns zero in case that bimodule is the zero module.
Matching statistic: St001232
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00103: Dyck paths —peeling map⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 20%
Mp00103: Dyck paths —peeling map⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 20%
Values
[[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> ? = 1 + 4
[[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> ? = 0 + 4
[[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [1,0,1,0,1,0]
=> ? = 1 + 4
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 2 + 4
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 1 + 4
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 2 + 4
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 1 + 4
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 0 + 4
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 1 + 4
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 0 + 4
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 2 + 4
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 1 + 4
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 2 + 4
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 1 + 4
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 0 + 4
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 1 + 4
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 0 + 4
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 2 + 4
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 1 + 4
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 1 + 4
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 2 + 4
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 1 + 4
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 0 + 4
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 1 + 4
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 0 + 4
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 2 + 4
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 1 + 4
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 1 + 4
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 1 + 4
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 0 + 4
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 1 + 4
[[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 4
[[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 4
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 4
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 4
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 4
[[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? = 0 + 4
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 4
[[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? = 0 + 4
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 4
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 4
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 4
[[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? = 0 + 4
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 4
[[0,0,0,1,0],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? = 0 + 4
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 4
[[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? = 0 + 4
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 4
[[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 4
[[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ? = 0 + 4
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,-1,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,-1,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,-1,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,1,-1,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,-1,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,-1,0,1],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,1,-1,0,1],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,-1,0,1],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[1,0,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[1,0,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,0,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,-1,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,-1,0,0,1],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,1,-1,0,1],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[1,-1,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[1,-1,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,0,0,0,1],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,-1,0,0,1],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,-1,0,0,1],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,-1,0,0,1],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,-1,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,-1,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,-1,0,1],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,1,-1,0,1],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,-1,0,1],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,-1,0,1],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,1,-1,0,1],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,-1,0,1],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[1,0,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[1,0,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 1 + 4
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Matching statistic: St000454
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00029: Dyck paths —to binary tree: left tree, up step, right tree, down step⟶ Binary trees
Mp00011: Binary trees —to graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 20%
Mp00029: Dyck paths —to binary tree: left tree, up step, right tree, down step⟶ Binary trees
Mp00011: Binary trees —to graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 20%
Values
[[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [[[.,.],.],.]
=> ([(0,2),(1,2)],3)
=> ? = 1 - 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [[.,[.,.]],.]
=> ([(0,2),(1,2)],3)
=> ? = 0 - 1
[[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 1 - 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [[[[.,.],.],.],.]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 1
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 1
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 2 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [[.,[[.,.],.]],.]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 1
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 - 1
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [[.,[[.,.],.]],.]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 1
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 - 1
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 1
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [.,[[[.,.],.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 1
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [.,[[.,[.,.]],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 - 1
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [.,[[[.,.],.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 1
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [.,[[.,[.,.]],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 - 1
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 1
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 1 - 1
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 1 - 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 1
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [.,[[[.,.],.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 1
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [.,[[.,[.,.]],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 - 1
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [.,[[[.,.],.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 1
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [.,[[.,[.,.]],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 - 1
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 1
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 1 - 1
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 1 - 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [.,[[[.,.],.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [.,[[.,[.,.]],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 - 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 1 - 1
[[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 1
[[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 1
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 1
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 1
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 1
[[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 0 - 1
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 1
[[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 0 - 1
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 1
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 1
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 1
[[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 0 - 1
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 1
[[0,0,0,1,0],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 0 - 1
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 1
[[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 0 - 1
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 1
[[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 1
[[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 0 - 1
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,-1,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,1,-1,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,1,-1,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,1,-1,0,1],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,1,-1,0,1],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[1,0,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,0,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,1,-1,0,1],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[1,-1,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,0,0,0,1],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,-1,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,1,-1,0,1],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,1,-1,0,1],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,1,-1,0,1],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,1,-1,0,1],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[1,0,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,0,0,0,1],[0,1,0,0,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[1,0,0,0,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,1,0,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,1,-1,0,1],[0,0,0,1,0,0],[0,1,0,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[1,-1,0,1,0,0],[0,1,0,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,1,0,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,0,0,0,1],[0,0,1,0,0,0],[0,1,0,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[1,-1,1,0,0,0],[0,1,0,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[1,0,0,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[1,0,0,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,0,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,-1,0,1],[0,0,0,0,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,1,-1,0,1],[0,1,-1,0,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,1,-1,0,1],[0,1,-1,0,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[1,0,-1,0,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,0,0,0,1],[0,1,0,-1,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,0,0,0,1],[0,1,0,-1,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[1,0,0,-1,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
Description
The largest eigenvalue of a graph if it is integral.
If a graph is d-regular, then its largest eigenvalue equals d. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St000422
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00029: Dyck paths —to binary tree: left tree, up step, right tree, down step⟶ Binary trees
Mp00011: Binary trees —to graph⟶ Graphs
St000422: Graphs ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 20%
Mp00029: Dyck paths —to binary tree: left tree, up step, right tree, down step⟶ Binary trees
Mp00011: Binary trees —to graph⟶ Graphs
St000422: Graphs ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 20%
Values
[[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [[[.,.],.],.]
=> ([(0,2),(1,2)],3)
=> ? = 1 + 3
[[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [[.,[.,.]],.]
=> ([(0,2),(1,2)],3)
=> ? = 0 + 3
[[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 1 + 3
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [[[[.,.],.],.],.]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 + 3
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 3
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 2 + 3
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [[.,[[.,.],.]],.]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 3
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 3
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [[.,[[.,.],.]],.]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 3
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 3
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 + 3
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 3
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 + 3
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [.,[[[.,.],.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 3
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [.,[[.,[.,.]],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 3
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [.,[[[.,.],.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 3
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [.,[[.,[.,.]],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 3
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 + 3
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 1 + 3
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 1 + 3
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 + 3
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [.,[[[.,.],.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 3
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [.,[[.,[.,.]],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 3
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [.,[[[.,.],.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 3
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [.,[[.,[.,.]],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 3
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 + 3
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 1 + 3
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 1 + 3
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [.,[[[.,.],.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 3
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [.,[[.,[.,.]],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 3
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 1 + 3
[[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 3
[[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 3
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 3
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 3
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 3
[[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 0 + 3
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 3
[[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 0 + 3
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 3
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 3
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 3
[[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 0 + 3
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 3
[[0,0,0,1,0],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 0 + 3
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 3
[[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 0 + 3
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 3
[[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 3
[[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 0 + 3
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,-1,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,1,-1,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,1,-1,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,1,-1,0,1],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,1,-1,0,1],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[1,0,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,0,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,1,-1,0,1],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[1,-1,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,0,0,0,1],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,-1,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,1,-1,0,1],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,1,-1,0,1],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[1,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,1,-1,0,1],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,1,-1,0,1],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[1,0,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,0,0,0,1],[0,1,0,0,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[1,0,0,0,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,1,0,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,1,-1,0,1],[0,0,0,1,0,0],[0,1,0,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[1,-1,0,1,0,0],[0,1,0,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,1,0,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,0,0,0,1],[0,0,1,0,0,0],[0,1,0,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[1,-1,1,0,0,0],[0,1,0,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[1,0,0,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[1,0,0,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,0,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,-1,0,1],[0,0,0,0,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,1,-1,0,1],[0,1,-1,0,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,1,-1,0,1],[0,1,-1,0,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[1,0,-1,0,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,0,0,0,1],[0,1,0,-1,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,0,0,0,1],[0,1,0,-1,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
[[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[1,0,0,-1,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0]]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 3 + 3
Description
The energy of a graph, if it is integral.
The energy of a graph is the sum of the absolute values of its eigenvalues. This statistic is only defined for graphs with integral energy. It is known, that the energy is never an odd integer [2]. In fact, it is never the square root of an odd integer [3].
The energy of a graph is the sum of the energies of the connected components of a graph. The energy of the complete graph Kn equals 2n−2. For this reason, we do not define the energy of the empty graph.
Matching statistic: St001630
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00192: Skew partitions —dominating sublattice⟶ Lattices
St001630: Lattices ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 20%
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00192: Skew partitions —dominating sublattice⟶ Lattices
St001630: Lattices ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 20%
Values
[[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [[1,1,1],[]]
=> ([],1)
=> ? = 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [[2,2],[1]]
=> ([],1)
=> ? = 0
[[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [[2,1],[]]
=> ([],1)
=> ? = 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> ([],1)
=> ? = 2
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> ([],1)
=> ? = 1
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> ([(0,1)],2)
=> ? = 2
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> ([],1)
=> ? = 1
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> ([],1)
=> ? = 0
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> ([],1)
=> ? = 1
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> ([],1)
=> ? = 0
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> ([],1)
=> ? = 2
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> ([(0,1)],2)
=> ? = 1
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> ([],1)
=> ? = 2
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> ([],1)
=> ? = 1
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> ([],1)
=> ? = 0
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> ([],1)
=> ? = 1
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> ([],1)
=> ? = 0
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> ([],1)
=> ? = 2
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> ([],1)
=> ? = 1
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> ([],1)
=> ? = 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> ([],1)
=> ? = 2
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> ([],1)
=> ? = 1
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> ([],1)
=> ? = 0
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> ([],1)
=> ? = 1
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> ([],1)
=> ? = 0
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> ([],1)
=> ? = 2
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> ([],1)
=> ? = 1
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> ([],1)
=> ? = 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> ([],1)
=> ? = 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> ([],1)
=> ? = 0
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> ([],1)
=> ? = 1
[[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> ([],1)
=> ? = 1
[[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> ([],1)
=> ? = 1
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> ([(0,1)],2)
=> ? = 1
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> ([(0,1)],2)
=> ? = 1
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ([],1)
=> ? = 1
[[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> ([],1)
=> ? = 0
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ([],1)
=> ? = 1
[[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> ([],1)
=> ? = 0
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> ([(0,1)],2)
=> ? = 1
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> ([(0,1)],2)
=> ? = 1
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ([],1)
=> ? = 1
[[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> ([],1)
=> ? = 0
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ([],1)
=> ? = 1
[[0,0,0,1,0],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> ([],1)
=> ? = 0
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ([],1)
=> ? = 1
[[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> ([],1)
=> ? = 0
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> ([(0,1)],2)
=> ? = 1
[[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ([],1)
=> ? = 1
[[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> ([],1)
=> ? = 0
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [[3,3,2,2],[1,1]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [[3,3,2,2],[1,1]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,-1,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,-1,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,-1,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,0,0,0,1],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[1,0,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [[3,3,2,2],[1,1]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [[3,3,2,2],[1,1]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,0,0,0,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,0,0,0,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,-1,0,0,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,-1,0,0,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,-1,0,0,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,1,0,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,0,0,0,1],[0,1,0,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,0,0,0,1],[0,1,0,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[1,0,0,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,-1,0,0,1],[0,0,0,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,-1,0,0,1],[0,0,0,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,-1,0,0,1],[0,0,0,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,1,-1,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,0,0,0,1],[0,1,-1,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,0,0,0,1],[0,1,-1,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[1,0,-1,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,1,0,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,1,0,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,0,0,0,1],[0,0,0,0,1,0],[0,1,0,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[1,-1,0,0,1,0],[0,1,0,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[1,0,0,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
Description
The global dimension of the incidence algebra of the lattice over the rational numbers.
Matching statistic: St001878
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00192: Skew partitions —dominating sublattice⟶ Lattices
St001878: Lattices ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 20%
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00192: Skew partitions —dominating sublattice⟶ Lattices
St001878: Lattices ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 20%
Values
[[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [[1,1,1],[]]
=> ([],1)
=> ? = 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [[2,2],[1]]
=> ([],1)
=> ? = 0
[[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [[2,1],[]]
=> ([],1)
=> ? = 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> ([],1)
=> ? = 2
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> ([],1)
=> ? = 1
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> ([(0,1)],2)
=> ? = 2
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> ([],1)
=> ? = 1
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> ([],1)
=> ? = 0
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> ([],1)
=> ? = 1
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> ([],1)
=> ? = 0
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> ([],1)
=> ? = 2
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> ([(0,1)],2)
=> ? = 1
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> ([],1)
=> ? = 2
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> ([],1)
=> ? = 1
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> ([],1)
=> ? = 0
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> ([],1)
=> ? = 1
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> ([],1)
=> ? = 0
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> ([],1)
=> ? = 2
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> ([],1)
=> ? = 1
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> ([],1)
=> ? = 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> ([],1)
=> ? = 2
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> ([],1)
=> ? = 1
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> ([],1)
=> ? = 0
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> ([],1)
=> ? = 1
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> ([],1)
=> ? = 0
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> ([],1)
=> ? = 2
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> ([],1)
=> ? = 1
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> ([],1)
=> ? = 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> ([],1)
=> ? = 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> ([],1)
=> ? = 0
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> ([],1)
=> ? = 1
[[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> ([],1)
=> ? = 1
[[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> ([],1)
=> ? = 1
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> ([(0,1)],2)
=> ? = 1
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> ([(0,1)],2)
=> ? = 1
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ([],1)
=> ? = 1
[[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> ([],1)
=> ? = 0
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ([],1)
=> ? = 1
[[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> ([],1)
=> ? = 0
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> ([(0,1)],2)
=> ? = 1
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> ([(0,1)],2)
=> ? = 1
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ([],1)
=> ? = 1
[[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> ([],1)
=> ? = 0
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ([],1)
=> ? = 1
[[0,0,0,1,0],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> ([],1)
=> ? = 0
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ([],1)
=> ? = 1
[[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> ([],1)
=> ? = 0
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> ([(0,1)],2)
=> ? = 1
[[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ([],1)
=> ? = 1
[[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> ([],1)
=> ? = 0
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [[3,3,2,2],[1,1]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [[3,3,2,2],[1,1]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,-1,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,-1,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,-1,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,0,0,0,1],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[1,0,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [[3,3,2,2],[1,1]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [[3,3,2,2],[1,1]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,0,0,0,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,0,0,0,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,-1,0,0,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,-1,0,0,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,-1,0,0,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,1,0,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,0,0,0,1],[0,1,0,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,0,0,0,1],[0,1,0,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[1,0,0,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,-1,0,0,1],[0,0,0,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,-1,0,0,1],[0,0,0,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,-1,0,0,1],[0,0,0,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,1,-1,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,0,0,0,1],[0,1,-1,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,0,0,0,1],[0,1,-1,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[1,0,-1,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,1,0,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,1,0,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,0,0,0,1],[0,0,0,0,1,0],[0,1,0,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[1,-1,0,0,1,0],[0,1,0,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[1,0,0,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 1
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
Matching statistic: St001876
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00192: Skew partitions —dominating sublattice⟶ Lattices
St001876: Lattices ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 20%
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00192: Skew partitions —dominating sublattice⟶ Lattices
St001876: Lattices ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 20%
Values
[[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [[1,1,1],[]]
=> ([],1)
=> ? = 1 - 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [[2,2],[1]]
=> ([],1)
=> ? = 0 - 1
[[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [[2,1],[]]
=> ([],1)
=> ? = 1 - 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> ([],1)
=> ? = 2 - 1
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> ([],1)
=> ? = 1 - 1
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> ([(0,1)],2)
=> ? = 2 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> ([],1)
=> ? = 1 - 1
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> ([],1)
=> ? = 0 - 1
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> ([],1)
=> ? = 1 - 1
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> ([],1)
=> ? = 0 - 1
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> ([],1)
=> ? = 2 - 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> ([(0,1)],2)
=> ? = 1 - 1
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> ([],1)
=> ? = 2 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> ([],1)
=> ? = 1 - 1
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> ([],1)
=> ? = 0 - 1
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> ([],1)
=> ? = 1 - 1
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> ([],1)
=> ? = 0 - 1
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> ([],1)
=> ? = 2 - 1
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> ([],1)
=> ? = 1 - 1
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> ([],1)
=> ? = 1 - 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> ([],1)
=> ? = 2 - 1
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> ([],1)
=> ? = 1 - 1
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> ([],1)
=> ? = 0 - 1
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> ([],1)
=> ? = 1 - 1
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> ([],1)
=> ? = 0 - 1
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> ([],1)
=> ? = 2 - 1
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> ([],1)
=> ? = 1 - 1
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> ([],1)
=> ? = 1 - 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> ([],1)
=> ? = 1 - 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> ([],1)
=> ? = 0 - 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> ([],1)
=> ? = 1 - 1
[[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> ([],1)
=> ? = 1 - 1
[[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> ([],1)
=> ? = 1 - 1
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> ([(0,1)],2)
=> ? = 1 - 1
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> ([(0,1)],2)
=> ? = 1 - 1
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ([],1)
=> ? = 1 - 1
[[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> ([],1)
=> ? = 0 - 1
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ([],1)
=> ? = 1 - 1
[[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> ([],1)
=> ? = 0 - 1
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> ([(0,1)],2)
=> ? = 1 - 1
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> ([(0,1)],2)
=> ? = 1 - 1
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ([],1)
=> ? = 1 - 1
[[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> ([],1)
=> ? = 0 - 1
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ([],1)
=> ? = 1 - 1
[[0,0,0,1,0],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> ([],1)
=> ? = 0 - 1
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ([],1)
=> ? = 1 - 1
[[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> ([],1)
=> ? = 0 - 1
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> ([(0,1)],2)
=> ? = 1 - 1
[[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ([],1)
=> ? = 1 - 1
[[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> ([],1)
=> ? = 0 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [[3,3,2,2],[1,1]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [[3,3,2,2],[1,1]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,-1,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,-1,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,-1,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,0,0,0,1],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[1,0,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [[3,3,2,2],[1,1]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [[3,3,2,2],[1,1]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,0,0,0,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,0,0,0,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,-1,0,0,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,-1,0,0,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,-1,0,0,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,1,0,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,0,0,0,1],[0,1,0,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,0,0,0,1],[0,1,0,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[1,0,0,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,-1,0,0,1],[0,0,0,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,-1,0,0,1],[0,0,0,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,-1,0,0,1],[0,0,0,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,1,-1,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,0,0,0,1],[0,1,-1,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,0,0,0,1],[0,1,-1,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[1,0,-1,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,1,0,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,1,0,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,0,0,0,1],[0,0,0,0,1,0],[0,1,0,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[1,-1,0,0,1,0],[0,1,0,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[1,0,0,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
Description
The number of 2-regular simple modules in the incidence algebra of the lattice.
Matching statistic: St001877
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00192: Skew partitions —dominating sublattice⟶ Lattices
St001877: Lattices ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 20%
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00192: Skew partitions —dominating sublattice⟶ Lattices
St001877: Lattices ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 20%
Values
[[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [[1,1,1],[]]
=> ([],1)
=> ? = 1 - 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [[2,2],[1]]
=> ([],1)
=> ? = 0 - 1
[[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [[2,1],[]]
=> ([],1)
=> ? = 1 - 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> ([],1)
=> ? = 2 - 1
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> ([],1)
=> ? = 1 - 1
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> ([(0,1)],2)
=> ? = 2 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> ([],1)
=> ? = 1 - 1
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> ([],1)
=> ? = 0 - 1
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> ([],1)
=> ? = 1 - 1
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> ([],1)
=> ? = 0 - 1
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> ([],1)
=> ? = 2 - 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> ([(0,1)],2)
=> ? = 1 - 1
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> ([],1)
=> ? = 2 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> ([],1)
=> ? = 1 - 1
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> ([],1)
=> ? = 0 - 1
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> ([],1)
=> ? = 1 - 1
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> ([],1)
=> ? = 0 - 1
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> ([],1)
=> ? = 2 - 1
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> ([],1)
=> ? = 1 - 1
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> ([],1)
=> ? = 1 - 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> ([],1)
=> ? = 2 - 1
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> ([],1)
=> ? = 1 - 1
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> ([],1)
=> ? = 0 - 1
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> ([],1)
=> ? = 1 - 1
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> ([],1)
=> ? = 0 - 1
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> ([],1)
=> ? = 2 - 1
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> ([],1)
=> ? = 1 - 1
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> ([],1)
=> ? = 1 - 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> ([],1)
=> ? = 1 - 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> ([],1)
=> ? = 0 - 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> ([],1)
=> ? = 1 - 1
[[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> ([],1)
=> ? = 1 - 1
[[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> ([],1)
=> ? = 1 - 1
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> ([(0,1)],2)
=> ? = 1 - 1
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> ([(0,1)],2)
=> ? = 1 - 1
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ([],1)
=> ? = 1 - 1
[[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> ([],1)
=> ? = 0 - 1
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ([],1)
=> ? = 1 - 1
[[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> ([],1)
=> ? = 0 - 1
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> ([(0,1)],2)
=> ? = 1 - 1
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> ([(0,1)],2)
=> ? = 1 - 1
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ([],1)
=> ? = 1 - 1
[[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> ([],1)
=> ? = 0 - 1
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ([],1)
=> ? = 1 - 1
[[0,0,0,1,0],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> ([],1)
=> ? = 0 - 1
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ([],1)
=> ? = 1 - 1
[[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> ([],1)
=> ? = 0 - 1
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> ([(0,1)],2)
=> ? = 1 - 1
[[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ([],1)
=> ? = 1 - 1
[[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> ([],1)
=> ? = 0 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [[3,3,2,2],[1,1]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [[3,3,2,2],[1,1]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,-1,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,-1,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,-1,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,0,0,0,1],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[1,0,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [[3,3,2,2],[1,1]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [[3,3,2,2],[1,1]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,0,0,0,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,0,0,0,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,-1,0,0,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,-1,0,0,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,-1,0,0,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,1,0,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,0,0,0,1],[0,1,0,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,0,0,0,1],[0,1,0,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[1,0,0,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,-1,0,0,1],[0,0,0,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,-1,0,0,1],[0,0,0,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,-1,0,0,1],[0,0,0,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,1,-1,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,0,0,0,1],[0,1,-1,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,0,0,0,1],[0,1,-1,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[1,0,-1,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,1,0,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,1,0,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,0,0,0,1],[0,0,0,0,1,0],[0,1,0,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[1,-1,0,0,1,0],[0,1,0,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[1,0,0,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
Description
Number of indecomposable injective modules with projective dimension 2.
Matching statistic: St001875
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00192: Skew partitions —dominating sublattice⟶ Lattices
St001875: Lattices ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 20%
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00192: Skew partitions —dominating sublattice⟶ Lattices
St001875: Lattices ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 20%
Values
[[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [[1,1,1],[]]
=> ([],1)
=> ? = 1 + 2
[[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [[2,2],[1]]
=> ([],1)
=> ? = 0 + 2
[[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [[2,1],[]]
=> ([],1)
=> ? = 1 + 2
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> ([],1)
=> ? = 2 + 2
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> ([],1)
=> ? = 1 + 2
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> ([(0,1)],2)
=> ? = 2 + 2
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> ([],1)
=> ? = 1 + 2
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> ([],1)
=> ? = 0 + 2
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> ([],1)
=> ? = 1 + 2
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> ([],1)
=> ? = 0 + 2
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> ([],1)
=> ? = 2 + 2
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> ([(0,1)],2)
=> ? = 1 + 2
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> ([],1)
=> ? = 2 + 2
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> ([],1)
=> ? = 1 + 2
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> ([],1)
=> ? = 0 + 2
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> ([],1)
=> ? = 1 + 2
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> ([],1)
=> ? = 0 + 2
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> ([],1)
=> ? = 2 + 2
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> ([],1)
=> ? = 1 + 2
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> ([],1)
=> ? = 1 + 2
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> ([],1)
=> ? = 2 + 2
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> ([],1)
=> ? = 1 + 2
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> ([],1)
=> ? = 0 + 2
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> ([],1)
=> ? = 1 + 2
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> ([],1)
=> ? = 0 + 2
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> ([],1)
=> ? = 2 + 2
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> ([],1)
=> ? = 1 + 2
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> ([],1)
=> ? = 1 + 2
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> ([],1)
=> ? = 1 + 2
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> ([],1)
=> ? = 0 + 2
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> ([],1)
=> ? = 1 + 2
[[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> ([],1)
=> ? = 1 + 2
[[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> ([],1)
=> ? = 1 + 2
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> ([(0,1)],2)
=> ? = 1 + 2
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> ([(0,1)],2)
=> ? = 1 + 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ([],1)
=> ? = 1 + 2
[[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> ([],1)
=> ? = 0 + 2
[[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ([],1)
=> ? = 1 + 2
[[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> ([],1)
=> ? = 0 + 2
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> ([(0,1)],2)
=> ? = 1 + 2
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> ([(0,1)],2)
=> ? = 1 + 2
[[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ([],1)
=> ? = 1 + 2
[[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> ([],1)
=> ? = 0 + 2
[[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ([],1)
=> ? = 1 + 2
[[0,0,0,1,0],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> ([],1)
=> ? = 0 + 2
[[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ([],1)
=> ? = 1 + 2
[[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> ([],1)
=> ? = 0 + 2
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> ([(0,1)],2)
=> ? = 1 + 2
[[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ([],1)
=> ? = 1 + 2
[[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> ([],1)
=> ? = 0 + 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [[3,3,2,2],[1,1]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [[3,3,2,2],[1,1]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,-1,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,-1,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,-1,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,0,0,0,1],[0,1,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[1,0,0,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [[3,3,2,2],[1,1]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [[3,3,2,2],[1,1]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,0,0,0,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,0,0,0,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,-1,0,0,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,-1,0,0,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,-1,0,0,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,1,0,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,0,0,0,1],[0,1,0,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,0,0,0,1],[0,1,0,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[1,0,0,-1,1,0],[0,0,0,1,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,-1,0,0,1],[0,0,0,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,-1,0,0,1],[0,0,0,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,-1,0,0,1],[0,0,0,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,1,-1,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,0,0,0,1],[0,1,-1,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,0,0,0,1],[0,1,-1,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[1,0,-1,0,1,0],[0,0,1,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,1,0,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[0,1,0,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,-1,0,0,0,1],[0,0,0,0,1,0],[0,1,0,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[1,-1,0,0,1,0],[0,1,0,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0],[1,0,0,0,0,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
Description
The number of simple modules with projective dimension at most 1.
The following 6 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000133The "bounce" of a permutation. St001085The number of occurrences of the vincular pattern |21-3 in a permutation. St001207The Lowey length of the algebra A/T when T is the 1-tilting module corresponding to the permutation in the Auslander algebra of K[x]/(xn). St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St000115The single entry in the last row.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!