searching the database
Your data matches 58 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000294
(load all 100 compositions to match this statistic)
(load all 100 compositions to match this statistic)
St000294: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
0 => 2
1 => 2
00 => 3
01 => 4
10 => 4
11 => 3
000 => 4
001 => 6
010 => 6
011 => 6
100 => 6
101 => 6
110 => 6
111 => 4
0000 => 5
1111 => 5
00000 => 6
11111 => 6
000000 => 7
111111 => 7
Description
The number of distinct factors of a binary word.
This is also known as the subword complexity of a binary word, see [1].
Matching statistic: St000518
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00224: Binary words —runsort⟶ Binary words
St000518: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000518: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
0 => 0 => 2
1 => 1 => 2
00 => 00 => 3
01 => 01 => 4
10 => 01 => 4
11 => 11 => 3
000 => 000 => 4
001 => 001 => 6
010 => 001 => 6
011 => 011 => 6
100 => 001 => 6
101 => 011 => 6
110 => 011 => 6
111 => 111 => 4
0000 => 0000 => 5
1111 => 1111 => 5
00000 => 00000 => 6
11111 => 11111 => 6
000000 => 000000 => 7
111111 => 111111 => 7
Description
The number of distinct subsequences in a binary word.
In contrast to the subword complexity [[St000294]] this is the cardinality of the set of all subsequences of not necessarily consecutive letters.
Matching statistic: St000228
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00262: Binary words —poset of factors⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000228: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000228: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
0 => ([(0,1)],2)
=> [2]
=> 2
1 => ([(0,1)],2)
=> [2]
=> 2
00 => ([(0,2),(2,1)],3)
=> [3]
=> 3
01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 4
10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 4
11 => ([(0,2),(2,1)],3)
=> [3]
=> 3
000 => ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 6
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [4,2]
=> 6
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 6
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 6
101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [4,2]
=> 6
110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 6
111 => ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5
00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> 6
11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> 6
000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [7]
=> 7
111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [7]
=> 7
Description
The size of a partition.
This statistic is the constant statistic of the level sets.
Matching statistic: St000479
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
0 => ([(0,1)],2)
=> ([],2)
=> 2
1 => ([(0,1)],2)
=> ([],2)
=> 2
00 => ([(0,2),(2,1)],3)
=> ([],3)
=> 3
01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 4
10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 4
11 => ([(0,2),(2,1)],3)
=> ([],3)
=> 3
000 => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 6
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> 6
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 6
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 6
101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> 6
110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 6
111 => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 6
11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 6
000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> 7
111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> 7
Description
The Ramsey number of a graph.
This is the smallest integer $n$ such that every two-colouring of the edges of the complete graph $K_n$ contains a (not necessarily induced) monochromatic copy of the given graph. [1]
Thus, the Ramsey number of the complete graph $K_n$ is the ordinary Ramsey number $R(n,n)$. Very few of these numbers are known, in particular, it is only known that $43\leq R(5,5)\leq 48$. [2,3,4,5]
Matching statistic: St000926
(load all 12 compositions to match this statistic)
(load all 12 compositions to match this statistic)
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000926: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000926: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
0 => [2] => ([],2)
=> 2
1 => [1,1] => ([(0,1)],2)
=> 2
00 => [3] => ([],3)
=> 3
01 => [2,1] => ([(0,2),(1,2)],3)
=> 4
10 => [1,2] => ([(1,2)],3)
=> 4
11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
000 => [4] => ([],4)
=> 4
001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 6
010 => [2,2] => ([(1,3),(2,3)],4)
=> 6
011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
100 => [1,3] => ([(2,3)],4)
=> 6
101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 6
110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 6
111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
0000 => [5] => ([],5)
=> 5
1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
00000 => [6] => ([],6)
=> 6
11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
000000 => [7] => ([],7)
=> 7
111111 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7
Description
The clique-coclique number of a graph.
This is the product of the size of a maximal clique [[St000097]] and the size of a maximal independent set [[St000093]].
Matching statistic: St001318
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
0 => ([(0,1)],2)
=> ([],2)
=> 2
1 => ([(0,1)],2)
=> ([],2)
=> 2
00 => ([(0,2),(2,1)],3)
=> ([],3)
=> 3
01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 4
10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 4
11 => ([(0,2),(2,1)],3)
=> ([],3)
=> 3
000 => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 6
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> 6
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 6
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 6
101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> 6
110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 6
111 => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 6
11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 6
000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> 7
111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> 7
Description
The number of vertices of the largest induced subforest with the same number of connected components of a graph.
Matching statistic: St001321
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
0 => ([(0,1)],2)
=> ([],2)
=> 2
1 => ([(0,1)],2)
=> ([],2)
=> 2
00 => ([(0,2),(2,1)],3)
=> ([],3)
=> 3
01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 4
10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 4
11 => ([(0,2),(2,1)],3)
=> ([],3)
=> 3
000 => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 6
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> 6
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 6
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 6
101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> 6
110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 6
111 => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 6
11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 6
000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> 7
111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> 7
Description
The number of vertices of the largest induced subforest of a graph.
Matching statistic: St001342
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
0 => ([(0,1)],2)
=> ([],2)
=> 2
1 => ([(0,1)],2)
=> ([],2)
=> 2
00 => ([(0,2),(2,1)],3)
=> ([],3)
=> 3
01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 4
10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 4
11 => ([(0,2),(2,1)],3)
=> ([],3)
=> 3
000 => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 6
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> 6
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 6
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 6
101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> 6
110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 6
111 => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 6
11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 6
000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> 7
111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> 7
Description
The number of vertices in the center of a graph.
The center of a graph is the set of vertices whose maximal distance to any other vertex is minimal. In particular, if the graph is disconnected, all vertices are in the certer.
Matching statistic: St001622
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
0 => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 2
1 => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 2
00 => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 4
10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 4
11 => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
000 => ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> 6
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,6),(1,8),(2,8),(3,7),(4,7),(6,1),(6,2),(7,5),(8,3),(8,4)],9)
=> 6
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> 6
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> 6
101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,6),(1,8),(2,8),(3,7),(4,7),(6,1),(6,2),(7,5),(8,3),(8,4)],9)
=> 6
110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> 6
111 => ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6
11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6
000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> 7
111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> 7
Description
The number of join-irreducible elements of a lattice.
An element $j$ of a lattice $L$ is '''join irreducible''' if it is not the least element and if $j=x\vee y$, then $j\in\{x,y\}$ for all $x,y\in L$.
Matching statistic: St001707
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Values
0 => ([(0,1)],2)
=> ([(0,1)],2)
=> 2
1 => ([(0,1)],2)
=> ([(0,1)],2)
=> 2
00 => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 3
01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
11 => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 3
000 => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 6
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 6
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 6
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 6
101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 6
110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 6
111 => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4
0000 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 5
1111 => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 5
00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 6
11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 6
000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 7
111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 7
Description
The length of a longest path in a graph such that the remaining vertices can be partitioned into two sets of the same size without edges between them.
Such a partition always exists because of a construction due to Dudek and Pralat [1] and independently Pokrovskiy [2].
The following 48 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000532The total number of rook placements on a Ferrers board. St000987The number of positive eigenvalues of the Laplacian matrix of the graph. St001120The length of a longest path in a graph. St000548The number of different non-empty partial sums of an integer partition. St000718The largest Laplacian eigenvalue of a graph if it is integral. St001746The coalition number of a graph. St000108The number of partitions contained in the given partition. St000171The degree of the graph. St001658The total number of rook placements on a Ferrers board. St000362The size of a minimal vertex cover of a graph. St001723The differential of a graph. St001724The 2-packing differential of a graph. St000189The number of elements in the poset. St001717The largest size of an interval in a poset. St001300The rank of the boundary operator in degree 1 of the chain complex of the order complex of the poset. St000656The number of cuts of a poset. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St000087The number of induced subgraphs. St001645The pebbling number of a connected graph. St001725The harmonious chromatic number of a graph. St001218Smallest index k greater than or equal to one such that the Coxeter matrix C of the corresponding Nakayama algebra has C^k=1. St001706The number of closed sets in a graph. St001615The number of join prime elements of a lattice. St001617The dimension of the space of valuations of a lattice. St001875The number of simple modules with projective dimension at most 1. St001330The hat guessing number of a graph. St000454The largest eigenvalue of a graph if it is integral. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St000762The sum of the positions of the weak records of an integer composition. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St000422The energy of a graph, if it is integral. St000264The girth of a graph, which is not a tree. St000806The semiperimeter of the associated bargraph. St000464The Schultz index of a connected graph. St000817The sum of the entries in the column specified by the composition of the change of basis matrix from dual immaculate quasisymmetric functions to monomial quasisymmetric functions. St000818The sum of the entries in the column specified by the composition of the change of basis matrix from quasisymmetric Schur functions to monomial quasisymmetric functions. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001545The second Elser number of a connected graph. St000285The size of the preimage of the map 'to inverse des composition' from Parking functions to Integer compositions. St000456The monochromatic index of a connected graph. St001118The acyclic chromatic index of a graph. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001498The normalised height of a Nakayama algebra with magnitude 1. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St000455The second largest eigenvalue of a graph if it is integral. St001060The distinguishing index of a graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!