Your data matches 10 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001199
Mp00307: Posets promotion cycle typeInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
St001199: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],3)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
([(2,3)],4)
=> [4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 4
([(0,1),(0,2),(0,3)],4)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
([(0,3),(1,3),(2,3)],4)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
([(0,3),(1,2)],4)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1
([(0,3),(1,2),(1,3)],4)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 4
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2
([(1,4),(4,2),(4,3)],5)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
([(1,4),(2,4),(4,3)],5)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 4
([(0,4),(1,2),(1,4),(2,3)],5)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2
([(0,4),(1,2),(1,3),(3,4)],5)
=> [4,4,3]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> 2
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> [5,3]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 1
([(0,3),(1,2),(1,4),(3,4)],5)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 1
([(0,3),(1,4),(4,2)],5)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 2
([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> 2
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 2
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> 2
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
([(0,5),(1,5),(5,2),(5,3),(5,4)],6)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> 2
([(0,5),(1,5),(2,5),(5,3),(5,4)],6)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> 2
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> 2
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2
([(0,3),(0,4),(1,5),(2,5),(4,1),(4,2)],6)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 2
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1
([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> [4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 4
([(0,5),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 2
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 2
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2
([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6)
=> [4,4,2,2]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> 3
Description
The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Mp00307: Posets promotion cycle typeInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
St001000: Dyck paths ⟶ ℤResult quality: 33% values known / values provided: 33%distinct values known / distinct values provided: 50%
Values
([],3)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
([(2,3)],4)
=> [4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 4
([(0,1),(0,2),(0,3)],4)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
([(0,3),(1,3),(2,3)],4)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
([(0,3),(1,2)],4)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1
([(0,3),(1,2),(1,3)],4)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 4
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
([(1,4),(4,2),(4,3)],5)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
([(1,4),(2,4),(4,3)],5)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 4
([(0,4),(1,2),(1,4),(2,3)],5)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
([(0,4),(1,2),(1,3),(3,4)],5)
=> [4,4,3]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> ? = 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 2
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> [5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 1
([(0,3),(1,2),(1,4),(3,4)],5)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1
([(0,3),(1,4),(4,2)],5)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 2
([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 2
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 2
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 2
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
([(0,5),(1,5),(5,2),(5,3),(5,4)],6)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 2
([(0,5),(1,5),(2,5),(5,3),(5,4)],6)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 2
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 2
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
([(0,3),(0,4),(1,5),(2,5),(4,1),(4,2)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 2
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1
([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> [4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 4
([(0,5),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 2
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 2
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 1
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6)
=> [4,4,2,2]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 3
([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6)
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 3
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> [4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 2
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> [4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 4
([(0,3),(0,4),(4,5),(5,1),(5,2)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 2
([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 2
([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 1
([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> [5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 1
([(0,4),(1,2),(1,3),(2,5),(3,4),(4,5)],6)
=> [4,4,3]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> ? = 1
([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6)
=> [4,4,3]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> ? = 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(5,4)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 2
([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> [5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 1
([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6)
=> [3,3,3]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 4
([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1
([(0,5),(1,4),(4,2),(4,5),(5,3)],6)
=> [4,3,3]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> ? = 2
([(0,5),(4,3),(5,1),(5,2),(5,4)],6)
=> [4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 4
([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1
([(0,3),(1,2),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,4,2,2]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 3
([(0,4),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1
([(0,5),(1,3),(1,5),(4,2),(5,4)],6)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1
([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6)
=> [4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
([(0,4),(2,5),(3,1),(3,5),(4,2),(4,3)],6)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 1
([(0,5),(3,2),(4,1),(5,3),(5,4)],6)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1
([(0,5),(1,3),(3,4),(4,2),(4,5)],6)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1
([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 2
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,6),(6,1),(6,2)],7)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 2
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 2
([(0,4),(0,5),(4,6),(5,6),(6,1),(6,2),(6,3)],7)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 2
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6),(6,1)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
([(0,6),(1,6),(2,6),(3,5),(5,4),(6,3)],7)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
([(0,6),(1,6),(2,5),(3,5),(4,2),(4,3),(6,4)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
([(0,6),(1,6),(4,5),(5,2),(5,3),(6,4)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
([(0,6),(1,6),(2,5),(3,5),(5,4),(6,2),(6,3)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
([(0,5),(0,6),(1,5),(1,6),(2,3),(4,2),(5,4),(6,4)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 1
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1
([(0,3),(0,4),(3,6),(4,6),(5,1),(5,2),(6,5)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2),(4,6),(5,6)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
([(0,5),(1,6),(2,6),(5,1),(5,2),(6,3),(6,4)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
([(0,5),(4,6),(5,4),(6,1),(6,2),(6,3)],7)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
([(0,6),(1,3),(1,6),(3,5),(4,2),(5,4),(6,5)],7)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 1
Description
Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path.
Mp00307: Posets promotion cycle typeInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
St001195: Dyck paths ⟶ ℤResult quality: 33% values known / values provided: 33%distinct values known / distinct values provided: 50%
Values
([],3)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1 = 2 - 1
([(2,3)],4)
=> [4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 4 - 1
([(0,1),(0,2),(0,3)],4)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 0 = 1 - 1
([(0,3),(1,2),(1,3)],4)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 0 = 1 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 4 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1 = 2 - 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 2 - 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 0 = 1 - 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 0 = 1 - 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
([(1,4),(4,2),(4,3)],5)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 2 - 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1 = 2 - 1
([(1,4),(2,4),(4,3)],5)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 2 - 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 2 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 4 - 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1 - 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 0 = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(3,4)],5)
=> [4,4,3]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> ? = 1 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> [5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 1 - 1
([(0,3),(1,2),(1,4),(3,4)],5)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1 - 1
([(0,3),(1,4),(4,2)],5)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 2 - 1
([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 2 - 1
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 2 - 1
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 2 - 1
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,5),(1,5),(5,2),(5,3),(5,4)],6)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 2 - 1
([(0,5),(1,5),(2,5),(5,3),(5,4)],6)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 2 - 1
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 2 - 1
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(4,1),(4,2)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 0 = 1 - 1
([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> [4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 4 - 1
([(0,5),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 2 - 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 2 - 1
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 0 = 1 - 1
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6)
=> [4,4,2,2]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 3 - 1
([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6)
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 3 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> [4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> [4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 4 - 1
([(0,3),(0,4),(4,5),(5,1),(5,2)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 2 - 1
([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 2 - 1
([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1 - 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 0 = 1 - 1
([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1 - 1
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> [5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 1 - 1
([(0,4),(1,2),(1,3),(2,5),(3,4),(4,5)],6)
=> [4,4,3]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> ? = 1 - 1
([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6)
=> [4,4,3]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> ? = 1 - 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(5,4)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 2 - 1
([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> [5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 1 - 1
([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6)
=> [3,3,3]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 4 - 1
([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1 - 1
([(0,5),(1,4),(4,2),(4,5),(5,3)],6)
=> [4,3,3]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> ? = 2 - 1
([(0,5),(4,3),(5,1),(5,2),(5,4)],6)
=> [4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 4 - 1
([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 0 = 1 - 1
([(0,3),(1,2),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,4,2,2]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 3 - 1
([(0,4),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1 - 1
([(0,5),(1,3),(1,5),(4,2),(5,4)],6)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1 - 1
([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6)
=> [4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 2 - 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,4),(2,5),(3,1),(3,5),(4,2),(4,3)],6)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 0 = 1 - 1
([(0,5),(3,2),(4,1),(5,3),(5,4)],6)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 0 = 1 - 1
([(0,5),(1,3),(3,4),(4,2),(4,5)],6)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1 - 1
([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 2 - 1
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,6),(6,1),(6,2)],7)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 2 - 1
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 2 - 1
([(0,4),(0,5),(4,6),(5,6),(6,1),(6,2),(6,3)],7)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 2 - 1
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6),(6,1)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,6),(1,6),(2,6),(3,5),(5,4),(6,3)],7)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,6),(1,6),(2,5),(3,5),(4,2),(4,3),(6,4)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,6),(1,6),(4,5),(5,2),(5,3),(6,4)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,6),(1,6),(2,5),(3,5),(5,4),(6,2),(6,3)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,5),(0,6),(1,5),(1,6),(2,3),(4,2),(5,4),(6,4)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 0 = 1 - 1
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 0 = 1 - 1
([(0,3),(0,4),(3,6),(4,6),(5,1),(5,2),(6,5)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 0 = 1 - 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2),(4,6),(5,6)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,5),(1,6),(2,6),(5,1),(5,2),(6,3),(6,4)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,5),(4,6),(5,4),(6,1),(6,2),(6,3)],7)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,6),(1,3),(1,6),(3,5),(4,2),(5,4),(6,5)],7)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 0 = 1 - 1
Description
The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$.
Mp00307: Posets promotion cycle typeInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00132: Dyck paths switch returns and last double riseDyck paths
St001431: Dyck paths ⟶ ℤResult quality: 33% values known / values provided: 33%distinct values known / distinct values provided: 50%
Values
([],3)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
([(2,3)],4)
=> [4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> ? = 4
([(0,1),(0,2),(0,3)],4)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
([(0,3),(1,3),(2,3)],4)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
([(0,3),(1,2)],4)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
([(0,3),(1,2),(1,3)],4)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> ? = 4
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ? = 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(1,4),(4,2),(4,3)],5)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ? = 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
([(1,4),(2,4),(4,3)],5)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ? = 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> ? = 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> ? = 4
([(0,4),(1,2),(1,4),(2,3)],5)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,4),(1,2),(1,3),(3,4)],5)
=> [4,4,3]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> ? = 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> ? = 2
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> [5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 1
([(0,3),(1,2),(1,4),(3,4)],5)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1
([(0,3),(1,4),(4,2)],5)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ? = 2
([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> ? = 2
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ? = 2
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> ? = 2
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
([(0,5),(1,5),(5,2),(5,3),(5,4)],6)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> ? = 2
([(0,5),(1,5),(2,5),(5,3),(5,4)],6)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> ? = 2
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> ? = 2
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,3),(0,4),(1,5),(2,5),(4,1),(4,2)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ? = 2
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> [4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> ? = 4
([(0,5),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ? = 2
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ? = 2
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6)
=> [4,4,2,2]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> ? = 3
([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6)
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 3
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> [4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> ? = 2
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> [4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> ? = 4
([(0,3),(0,4),(4,5),(5,1),(5,2)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ? = 2
([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ? = 2
([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> [5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 1
([(0,4),(1,2),(1,3),(2,5),(3,4),(4,5)],6)
=> [4,4,3]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> ? = 1
([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6)
=> [4,4,3]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> ? = 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(5,4)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ? = 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> ? = 2
([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> [5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 1
([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6)
=> [3,3,3]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> ? = 4
([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1
([(0,5),(1,4),(4,2),(4,5),(5,3)],6)
=> [4,3,3]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> ? = 2
([(0,5),(4,3),(5,1),(5,2),(5,4)],6)
=> [4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> ? = 4
([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
([(0,3),(1,2),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,4,2,2]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> ? = 3
([(0,4),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1
([(0,5),(1,3),(1,5),(4,2),(5,4)],6)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1
([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6)
=> [4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> ? = 2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,4),(2,5),(3,1),(3,5),(4,2),(4,3)],6)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
([(0,5),(3,2),(4,1),(5,3),(5,4)],6)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
([(0,5),(1,3),(3,4),(4,2),(4,5)],6)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1
([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ? = 2
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,6),(6,1),(6,2)],7)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> ? = 2
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> ? = 2
([(0,4),(0,5),(4,6),(5,6),(6,1),(6,2),(6,3)],7)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> ? = 2
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6),(6,1)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,6),(1,6),(2,6),(3,5),(5,4),(6,3)],7)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
([(0,6),(1,6),(2,5),(3,5),(4,2),(4,3),(6,4)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,6),(1,6),(4,5),(5,2),(5,3),(6,4)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,6),(1,6),(2,5),(3,5),(5,4),(6,2),(6,3)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,5),(0,6),(1,5),(1,6),(2,3),(4,2),(5,4),(6,4)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
([(0,3),(0,4),(3,6),(4,6),(5,1),(5,2),(6,5)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2),(4,6),(5,6)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,5),(1,6),(2,6),(5,1),(5,2),(6,3),(6,4)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
([(0,5),(4,6),(5,4),(6,1),(6,2),(6,3)],7)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
([(0,6),(1,3),(1,6),(3,5),(4,2),(5,4),(6,5)],7)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
Description
Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. The modified algebra B is obtained from the stable Auslander algebra kQ/I by deleting all relations which contain walks of length at least three (conjectural this step of deletion is not necessary as the stable higher Auslander algebras might be quadratic) and taking as B then the algebra kQ^(op)/J when J is the quadratic perp of the ideal I. See http://www.findstat.org/DyckPaths/NakayamaAlgebras for the definition of Loewy length and Nakayama algebras associated to Dyck paths.
Matching statistic: St000689
Mp00307: Posets promotion cycle typeInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
St000689: Dyck paths ⟶ ℤResult quality: 33% values known / values provided: 33%distinct values known / distinct values provided: 50%
Values
([],3)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(2,3)],4)
=> [4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 4 - 1
([(0,1),(0,2),(0,3)],4)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0 = 1 - 1
([(0,3),(1,2),(1,3)],4)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 4 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0 = 1 - 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(1,4),(4,2),(4,3)],5)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(1,4),(2,4),(4,3)],5)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 4 - 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 - 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(3,4)],5)
=> [4,4,3]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> ? = 1 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> [5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 1 - 1
([(0,3),(1,2),(1,4),(3,4)],5)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 - 1
([(0,3),(1,4),(4,2)],5)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,5),(1,5),(5,2),(5,3),(5,4)],6)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,5),(1,5),(2,5),(5,3),(5,4)],6)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(4,1),(4,2)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0 = 1 - 1
([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> [4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 4 - 1
([(0,5),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6)
=> [4,4,2,2]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> ? = 3 - 1
([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6)
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 3 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> [4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> [4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 4 - 1
([(0,3),(0,4),(4,5),(5,1),(5,2)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 - 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 - 1
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> [5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 1 - 1
([(0,4),(1,2),(1,3),(2,5),(3,4),(4,5)],6)
=> [4,4,3]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> ? = 1 - 1
([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6)
=> [4,4,3]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> ? = 1 - 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(5,4)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> [5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 1 - 1
([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6)
=> [3,3,3]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 4 - 1
([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 - 1
([(0,5),(1,4),(4,2),(4,5),(5,3)],6)
=> [4,3,3]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> ? = 2 - 1
([(0,5),(4,3),(5,1),(5,2),(5,4)],6)
=> [4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 4 - 1
([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0 = 1 - 1
([(0,3),(1,2),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,4,2,2]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> ? = 3 - 1
([(0,4),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 - 1
([(0,5),(1,3),(1,5),(4,2),(5,4)],6)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 - 1
([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6)
=> [4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(2,5),(3,1),(3,5),(4,2),(4,3)],6)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
([(0,5),(3,2),(4,1),(5,3),(5,4)],6)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0 = 1 - 1
([(0,5),(1,3),(3,4),(4,2),(4,5)],6)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 - 1
([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,6),(6,1),(6,2)],7)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,4),(0,5),(4,6),(5,6),(6,1),(6,2),(6,3)],7)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6),(6,1)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,6),(1,6),(2,6),(3,5),(5,4),(6,3)],7)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,6),(1,6),(2,5),(3,5),(4,2),(4,3),(6,4)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,6),(1,6),(4,5),(5,2),(5,3),(6,4)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,6),(1,6),(2,5),(3,5),(5,4),(6,2),(6,3)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,5),(0,6),(1,5),(1,6),(2,3),(4,2),(5,4),(6,4)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0 = 1 - 1
([(0,3),(0,4),(3,6),(4,6),(5,1),(5,2),(6,5)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2),(4,6),(5,6)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,5),(1,6),(2,6),(5,1),(5,2),(6,3),(6,4)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,5),(4,6),(5,4),(6,1),(6,2),(6,3)],7)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,6),(1,3),(1,6),(3,5),(4,2),(5,4),(6,5)],7)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
Description
The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. The correspondence between LNakayama algebras and Dyck paths is explained in [[St000684]]. A module $M$ is $n$-rigid, if $\operatorname{Ext}^i(M,M)=0$ for $1\leq i\leq n$. This statistic gives the maximal $n$ such that the minimal generator-cogenerator module $A \oplus D(A)$ of the LNakayama algebra $A$ corresponding to a Dyck path is $n$-rigid. An application is to check for maximal $n$-orthogonal objects in the module category in the sense of [2].
Matching statistic: St001314
Mp00307: Posets promotion cycle typeInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
St001314: Dyck paths ⟶ ℤResult quality: 33% values known / values provided: 33%distinct values known / distinct values provided: 50%
Values
([],3)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(2,3)],4)
=> [4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 4 - 1
([(0,1),(0,2),(0,3)],4)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0 = 1 - 1
([(0,3),(1,2),(1,3)],4)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 4 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0 = 1 - 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(1,4),(4,2),(4,3)],5)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(1,4),(2,4),(4,3)],5)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 4 - 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 - 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(3,4)],5)
=> [4,4,3]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> ? = 1 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> [5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 1 - 1
([(0,3),(1,2),(1,4),(3,4)],5)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 - 1
([(0,3),(1,4),(4,2)],5)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,5),(1,5),(5,2),(5,3),(5,4)],6)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,5),(1,5),(2,5),(5,3),(5,4)],6)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(4,1),(4,2)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0 = 1 - 1
([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> [4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 4 - 1
([(0,5),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6)
=> [4,4,2,2]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> ? = 3 - 1
([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6)
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 3 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> [4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> [4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 4 - 1
([(0,3),(0,4),(4,5),(5,1),(5,2)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 - 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 - 1
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> [5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 1 - 1
([(0,4),(1,2),(1,3),(2,5),(3,4),(4,5)],6)
=> [4,4,3]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> ? = 1 - 1
([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6)
=> [4,4,3]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> ? = 1 - 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(5,4)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> [5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 1 - 1
([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6)
=> [3,3,3]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 4 - 1
([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 - 1
([(0,5),(1,4),(4,2),(4,5),(5,3)],6)
=> [4,3,3]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> ? = 2 - 1
([(0,5),(4,3),(5,1),(5,2),(5,4)],6)
=> [4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 4 - 1
([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0 = 1 - 1
([(0,3),(1,2),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,4,2,2]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> ? = 3 - 1
([(0,4),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 - 1
([(0,5),(1,3),(1,5),(4,2),(5,4)],6)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 - 1
([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6)
=> [4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(2,5),(3,1),(3,5),(4,2),(4,3)],6)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
([(0,5),(3,2),(4,1),(5,3),(5,4)],6)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0 = 1 - 1
([(0,5),(1,3),(3,4),(4,2),(4,5)],6)
=> [5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1 - 1
([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> [5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,6),(6,1),(6,2)],7)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,4),(0,5),(4,6),(5,6),(6,1),(6,2),(6,3)],7)
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6),(6,1)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,6),(1,6),(2,6),(3,5),(5,4),(6,3)],7)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,6),(1,6),(2,5),(3,5),(4,2),(4,3),(6,4)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,6),(1,6),(4,5),(5,2),(5,3),(6,4)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,6),(1,6),(2,5),(3,5),(5,4),(6,2),(6,3)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,5),(0,6),(1,5),(1,6),(2,3),(4,2),(5,4),(6,4)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0 = 1 - 1
([(0,3),(0,4),(3,6),(4,6),(5,1),(5,2),(6,5)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2),(4,6),(5,6)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,5),(1,6),(2,6),(5,1),(5,2),(6,3),(6,4)],7)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,5),(4,6),(5,4),(6,1),(6,2),(6,3)],7)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,6),(1,3),(1,6),(3,5),(4,2),(5,4),(6,5)],7)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
Description
The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra.
Mp00198: Posets incomparability graphGraphs
Mp00266: Graphs connected vertex partitionsLattices
St001624: Lattices ⟶ ℤResult quality: 20% values known / values provided: 20%distinct values known / distinct values provided: 25%
Values
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 4
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 4
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 4
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 2
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 1
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 1
([(0,3),(1,4),(4,2)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,15),(1,20),(1,21),(2,9),(2,10),(2,14),(2,18),(2,19),(3,8),(3,13),(3,17),(3,19),(3,21),(4,8),(4,12),(4,16),(4,18),(4,20),(5,7),(5,14),(5,15),(5,16),(5,17),(6,7),(6,10),(6,11),(6,12),(6,13),(7,31),(7,32),(8,30),(8,32),(9,30),(9,31),(10,22),(10,23),(10,31),(11,24),(11,25),(11,31),(12,22),(12,24),(12,32),(13,23),(13,25),(13,32),(14,26),(14,27),(14,31),(15,28),(15,29),(15,31),(16,26),(16,28),(16,32),(17,27),(17,29),(17,32),(18,22),(18,26),(18,30),(19,23),(19,27),(19,30),(20,24),(20,28),(20,30),(21,25),(21,29),(21,30),(22,33),(23,33),(24,33),(25,33),(26,33),(27,33),(28,33),(29,33),(30,33),(31,33),(32,33)],34)
=> ? = 2
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 2
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 2
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 2
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,5),(1,5),(5,2),(5,3),(5,4)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 2
([(0,5),(1,5),(2,5),(5,3),(5,4)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 2
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 2
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(0,4),(1,5),(2,5),(4,1),(4,2)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 2
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 1
([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 4
([(0,5),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 2
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 2
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 1
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6)
=> ([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 3
([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 3
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> ([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 2
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 4
([(0,3),(0,4),(4,5),(5,1),(5,2)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 2
([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,15),(1,20),(1,21),(2,9),(2,10),(2,14),(2,18),(2,19),(3,8),(3,13),(3,17),(3,19),(3,21),(4,8),(4,12),(4,16),(4,18),(4,20),(5,7),(5,14),(5,15),(5,16),(5,17),(6,7),(6,10),(6,11),(6,12),(6,13),(7,31),(7,32),(8,30),(8,32),(9,30),(9,31),(10,22),(10,23),(10,31),(11,24),(11,25),(11,31),(12,22),(12,24),(12,32),(13,23),(13,25),(13,32),(14,26),(14,27),(14,31),(15,28),(15,29),(15,31),(16,26),(16,28),(16,32),(17,27),(17,29),(17,32),(18,22),(18,26),(18,30),(19,23),(19,27),(19,30),(20,24),(20,28),(20,30),(21,25),(21,29),(21,30),(22,33),(23,33),(24,33),(25,33),(26,33),(27,33),(28,33),(29,33),(30,33),(31,33),(32,33)],34)
=> ? = 2
([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 1
([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 1
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 1
([(0,4),(1,2),(1,3),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 1
([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(5,4)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 2
([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 1
([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 4
([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 1
([(0,5),(1,4),(4,2),(4,5),(5,3)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> ? = 2
([(0,5),(4,3),(5,1),(5,2),(5,4)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 4
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6),(6,1)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,6),(1,6),(2,6),(3,5),(5,4),(6,3)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,6),(1,6),(2,5),(3,5),(4,2),(4,3),(6,4)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,6),(1,6),(4,5),(5,2),(5,3),(6,4)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,6),(1,6),(2,5),(3,5),(5,4),(6,2),(6,3)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(0,6),(1,5),(1,6),(2,3),(4,2),(5,4),(6,4)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(3,6),(4,6),(5,1),(5,2),(6,5)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2),(4,6),(5,6)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,6),(2,6),(5,1),(5,2),(6,3),(6,4)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,5),(4,6),(5,4),(6,1),(6,2),(6,3)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,3),(1,5),(1,6),(2,5),(2,6),(3,4),(4,1),(4,2)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
Description
The breadth of a lattice. The '''breadth''' of a lattice is the least integer $b$ such that any join $x_1\vee x_2\vee\cdots\vee x_n$, with $n > b$, can be expressed as a join over a proper subset of $\{x_1,x_2,\ldots,x_n\}$.
Mp00198: Posets incomparability graphGraphs
Mp00266: Graphs connected vertex partitionsLattices
St001630: Lattices ⟶ ℤResult quality: 20% values known / values provided: 20%distinct values known / distinct values provided: 25%
Values
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 4
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 4
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 4
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 2
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 1
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 1
([(0,3),(1,4),(4,2)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,15),(1,20),(1,21),(2,9),(2,10),(2,14),(2,18),(2,19),(3,8),(3,13),(3,17),(3,19),(3,21),(4,8),(4,12),(4,16),(4,18),(4,20),(5,7),(5,14),(5,15),(5,16),(5,17),(6,7),(6,10),(6,11),(6,12),(6,13),(7,31),(7,32),(8,30),(8,32),(9,30),(9,31),(10,22),(10,23),(10,31),(11,24),(11,25),(11,31),(12,22),(12,24),(12,32),(13,23),(13,25),(13,32),(14,26),(14,27),(14,31),(15,28),(15,29),(15,31),(16,26),(16,28),(16,32),(17,27),(17,29),(17,32),(18,22),(18,26),(18,30),(19,23),(19,27),(19,30),(20,24),(20,28),(20,30),(21,25),(21,29),(21,30),(22,33),(23,33),(24,33),(25,33),(26,33),(27,33),(28,33),(29,33),(30,33),(31,33),(32,33)],34)
=> ? = 2
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 2
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 2
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 2
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,5),(1,5),(5,2),(5,3),(5,4)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 2
([(0,5),(1,5),(2,5),(5,3),(5,4)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 2
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 2
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(0,4),(1,5),(2,5),(4,1),(4,2)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 2
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 1
([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 4
([(0,5),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 2
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 2
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 1
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6)
=> ([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 3
([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 3
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> ([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 2
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 4
([(0,3),(0,4),(4,5),(5,1),(5,2)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 2
([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,15),(1,20),(1,21),(2,9),(2,10),(2,14),(2,18),(2,19),(3,8),(3,13),(3,17),(3,19),(3,21),(4,8),(4,12),(4,16),(4,18),(4,20),(5,7),(5,14),(5,15),(5,16),(5,17),(6,7),(6,10),(6,11),(6,12),(6,13),(7,31),(7,32),(8,30),(8,32),(9,30),(9,31),(10,22),(10,23),(10,31),(11,24),(11,25),(11,31),(12,22),(12,24),(12,32),(13,23),(13,25),(13,32),(14,26),(14,27),(14,31),(15,28),(15,29),(15,31),(16,26),(16,28),(16,32),(17,27),(17,29),(17,32),(18,22),(18,26),(18,30),(19,23),(19,27),(19,30),(20,24),(20,28),(20,30),(21,25),(21,29),(21,30),(22,33),(23,33),(24,33),(25,33),(26,33),(27,33),(28,33),(29,33),(30,33),(31,33),(32,33)],34)
=> ? = 2
([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 1
([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 1
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 1
([(0,4),(1,2),(1,3),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 1
([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(5,4)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 2
([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 1
([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 4
([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 1
([(0,5),(1,4),(4,2),(4,5),(5,3)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> ? = 2
([(0,5),(4,3),(5,1),(5,2),(5,4)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 4
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6),(6,1)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,6),(1,6),(2,6),(3,5),(5,4),(6,3)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,6),(1,6),(2,5),(3,5),(4,2),(4,3),(6,4)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,6),(1,6),(4,5),(5,2),(5,3),(6,4)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,6),(1,6),(2,5),(3,5),(5,4),(6,2),(6,3)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(0,6),(1,5),(1,6),(2,3),(4,2),(5,4),(6,4)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(3,6),(4,6),(5,1),(5,2),(6,5)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2),(4,6),(5,6)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,6),(2,6),(5,1),(5,2),(6,3),(6,4)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,5),(4,6),(5,4),(6,1),(6,2),(6,3)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,3),(1,5),(1,6),(2,5),(2,6),(3,4),(4,1),(4,2)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
Description
The global dimension of the incidence algebra of the lattice over the rational numbers.
Mp00198: Posets incomparability graphGraphs
Mp00266: Graphs connected vertex partitionsLattices
St001878: Lattices ⟶ ℤResult quality: 20% values known / values provided: 20%distinct values known / distinct values provided: 25%
Values
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 4
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 4
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 4
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 2
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 1
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 1
([(0,3),(1,4),(4,2)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,15),(1,20),(1,21),(2,9),(2,10),(2,14),(2,18),(2,19),(3,8),(3,13),(3,17),(3,19),(3,21),(4,8),(4,12),(4,16),(4,18),(4,20),(5,7),(5,14),(5,15),(5,16),(5,17),(6,7),(6,10),(6,11),(6,12),(6,13),(7,31),(7,32),(8,30),(8,32),(9,30),(9,31),(10,22),(10,23),(10,31),(11,24),(11,25),(11,31),(12,22),(12,24),(12,32),(13,23),(13,25),(13,32),(14,26),(14,27),(14,31),(15,28),(15,29),(15,31),(16,26),(16,28),(16,32),(17,27),(17,29),(17,32),(18,22),(18,26),(18,30),(19,23),(19,27),(19,30),(20,24),(20,28),(20,30),(21,25),(21,29),(21,30),(22,33),(23,33),(24,33),(25,33),(26,33),(27,33),(28,33),(29,33),(30,33),(31,33),(32,33)],34)
=> ? = 2
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 2
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 2
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 2
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,5),(1,5),(5,2),(5,3),(5,4)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 2
([(0,5),(1,5),(2,5),(5,3),(5,4)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 2
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 2
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(0,4),(1,5),(2,5),(4,1),(4,2)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 2
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11)],12)
=> ? = 1
([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 4
([(0,5),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 2
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 2
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 1
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6)
=> ([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 3
([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 3
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> ([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 2
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 4
([(0,3),(0,4),(4,5),(5,1),(5,2)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 2
([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,15),(1,20),(1,21),(2,9),(2,10),(2,14),(2,18),(2,19),(3,8),(3,13),(3,17),(3,19),(3,21),(4,8),(4,12),(4,16),(4,18),(4,20),(5,7),(5,14),(5,15),(5,16),(5,17),(6,7),(6,10),(6,11),(6,12),(6,13),(7,31),(7,32),(8,30),(8,32),(9,30),(9,31),(10,22),(10,23),(10,31),(11,24),(11,25),(11,31),(12,22),(12,24),(12,32),(13,23),(13,25),(13,32),(14,26),(14,27),(14,31),(15,28),(15,29),(15,31),(16,26),(16,28),(16,32),(17,27),(17,29),(17,32),(18,22),(18,26),(18,30),(19,23),(19,27),(19,30),(20,24),(20,28),(20,30),(21,25),(21,29),(21,30),(22,33),(23,33),(24,33),(25,33),(26,33),(27,33),(28,33),(29,33),(30,33),(31,33),(32,33)],34)
=> ? = 2
([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 1
([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 1
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 1
([(0,4),(1,2),(1,3),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 1
([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(5,4)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 2
([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 1
([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 4
([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,15),(2,7),(2,8),(2,11),(2,14),(3,6),(3,8),(3,10),(3,13),(4,6),(4,7),(4,9),(4,12),(5,12),(5,13),(5,14),(5,15),(6,18),(6,22),(7,16),(7,22),(8,17),(8,22),(9,19),(9,22),(10,20),(10,22),(11,21),(11,22),(12,16),(12,18),(12,19),(13,17),(13,18),(13,20),(14,16),(14,17),(14,21),(15,19),(15,20),(15,21),(16,23),(17,23),(18,23),(19,23),(20,23),(21,23),(22,23)],24)
=> ? = 1
([(0,5),(1,4),(4,2),(4,5),(5,3)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> ? = 2
([(0,5),(4,3),(5,1),(5,2),(5,4)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 4
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6),(6,1)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,6),(1,6),(2,6),(3,5),(5,4),(6,3)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,6),(1,6),(2,5),(3,5),(4,2),(4,3),(6,4)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,6),(1,6),(4,5),(5,2),(5,3),(6,4)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,6),(1,6),(2,5),(3,5),(5,4),(6,2),(6,3)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(0,6),(1,5),(1,6),(2,3),(4,2),(5,4),(6,4)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(3,6),(4,6),(5,1),(5,2),(6,5)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2),(4,6),(5,6)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,6),(2,6),(5,1),(5,2),(6,3),(6,4)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,5),(4,6),(5,4),(6,1),(6,2),(6,3)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,3),(1,5),(1,6),(2,5),(2,6),(3,4),(4,1),(4,2)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
Mp00307: Posets promotion cycle typeInteger partitions
Mp00095: Integer partitions to binary wordBinary words
St001491: Binary words ⟶ ℤResult quality: 12% values known / values provided: 12%distinct values known / distinct values provided: 25%
Values
([],3)
=> [3,3]
=> 11000 => ? = 2 - 1
([(2,3)],4)
=> [4,4,4]
=> 1110000 => ? = 4 - 1
([(0,1),(0,2),(0,3)],4)
=> [3,3]
=> 11000 => ? = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> [3,3]
=> 11000 => ? = 2 - 1
([(0,3),(1,2)],4)
=> [4,2]
=> 100100 => ? = 1 - 1
([(0,3),(1,2),(1,3)],4)
=> [3,2]
=> 10100 => ? = 1 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> 1100 => 1 = 2 - 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> 1110000 => ? = 4 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> 11000 => ? = 2 - 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> [5,5]
=> 1100000 => ? = 2 - 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,2]
=> 100100 => ? = 1 - 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> 10100 => ? = 1 - 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2]
=> 1100 => 1 = 2 - 1
([(1,4),(4,2),(4,3)],5)
=> [5,5]
=> 1100000 => ? = 2 - 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,3]
=> 11000 => ? = 2 - 1
([(1,4),(2,4),(4,3)],5)
=> [5,5]
=> 1100000 => ? = 2 - 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> [2,2]
=> 1100 => 1 = 2 - 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,3]
=> 11000 => ? = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6,6]
=> 11000000 => ? = 2 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4,4,4]
=> 1110000 => ? = 4 - 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> [5,4]
=> 1010000 => ? = 1 - 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2]
=> 10100 => ? = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [2,2]
=> 1100 => 1 = 2 - 1
([(0,4),(1,2),(1,3),(3,4)],5)
=> [4,4,3]
=> 1101000 => ? = 1 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [6,6]
=> 11000000 => ? = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> [5,3]
=> 1001000 => ? = 1 - 1
([(0,3),(1,2),(1,4),(3,4)],5)
=> [5,4]
=> 1010000 => ? = 1 - 1
([(0,3),(1,4),(4,2)],5)
=> [5,5]
=> 1100000 => ? = 2 - 1
([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,2]
=> 100100 => ? = 1 - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> [3,3]
=> 11000 => ? = 2 - 1
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,6]
=> 11000000 => ? = 2 - 1
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6)
=> [5,5]
=> 1100000 => ? = 2 - 1
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> [2,2]
=> 1100 => 1 = 2 - 1
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [2,2]
=> 1100 => 1 = 2 - 1
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [6,6]
=> 11000000 => ? = 2 - 1
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> [3,3]
=> 11000 => ? = 2 - 1
([(0,5),(1,5),(5,2),(5,3),(5,4)],6)
=> [6,6]
=> 11000000 => ? = 2 - 1
([(0,5),(1,5),(2,5),(5,3),(5,4)],6)
=> [6,6]
=> 11000000 => ? = 2 - 1
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> [3,3]
=> 11000 => ? = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [6,6]
=> 11000000 => ? = 2 - 1
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> [2,2]
=> 1100 => 1 = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(4,1),(4,2)],6)
=> [5,5]
=> 1100000 => ? = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [4,2]
=> 100100 => ? = 1 - 1
([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> [4,4,4]
=> 1110000 => ? = 4 - 1
([(0,5),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> [5,5]
=> 1100000 => ? = 2 - 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> [3,3]
=> 11000 => ? = 2 - 1
([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> [5,5]
=> 1100000 => ? = 2 - 1
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> [2,2]
=> 1100 => 1 = 2 - 1
([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> [3,2]
=> 10100 => ? = 1 - 1
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6)
=> [4,4,2,2]
=> 11001100 => ? = 3 - 1
([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6)
=> [2,2,2,2]
=> 111100 => ? = 3 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> [4,4]
=> 110000 => ? = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6)
=> [2,2]
=> 1100 => 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> [4,4,4]
=> 1110000 => ? = 4 - 1
([(0,3),(0,4),(4,5),(5,1),(5,2)],6)
=> [5,5]
=> 1100000 => ? = 2 - 1
([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> [5,5]
=> 1100000 => ? = 2 - 1
([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> [5,4]
=> 1010000 => ? = 1 - 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [3,2]
=> 10100 => ? = 1 - 1
([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6)
=> [5,4]
=> 1010000 => ? = 1 - 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6)
=> [2,2]
=> 1100 => 1 = 2 - 1
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6),(6,1)],7)
=> [2,2]
=> 1100 => 1 = 2 - 1
([(0,6),(1,6),(2,5),(3,5),(4,2),(4,3),(6,4)],7)
=> [2,2]
=> 1100 => 1 = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> [2,2]
=> 1100 => 1 = 2 - 1
([(0,6),(1,6),(4,5),(5,2),(5,3),(6,4)],7)
=> [2,2]
=> 1100 => 1 = 2 - 1
([(0,6),(1,6),(2,5),(3,5),(5,4),(6,2),(6,3)],7)
=> [2,2]
=> 1100 => 1 = 2 - 1
([(0,5),(0,6),(1,5),(1,6),(2,3),(4,2),(5,4),(6,4)],7)
=> [2,2]
=> 1100 => 1 = 2 - 1
([(0,3),(0,4),(3,6),(4,6),(5,1),(5,2),(6,5)],7)
=> [2,2]
=> 1100 => 1 = 2 - 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2),(4,6),(5,6)],7)
=> [2,2]
=> 1100 => 1 = 2 - 1
([(0,5),(1,6),(2,6),(5,1),(5,2),(6,3),(6,4)],7)
=> [2,2]
=> 1100 => 1 = 2 - 1
([(0,3),(1,5),(1,6),(2,5),(2,6),(3,4),(4,1),(4,2)],7)
=> [2,2]
=> 1100 => 1 = 2 - 1
Description
The number of indecomposable projective-injective modules in the algebra corresponding to a subset. Let $A_n=K[x]/(x^n)$. We associate to a nonempty subset S of an (n-1)-set the module $M_S$, which is the direct sum of $A_n$-modules with indecomposable non-projective direct summands of dimension $i$ when $i$ is in $S$ (note that such modules have vector space dimension at most n-1). Then the corresponding algebra associated to S is the stable endomorphism ring of $M_S$. We decode the subset as a binary word so that for example the subset $S=\{1,3 \} $ of $\{1,2,3 \}$ is decoded as 101.