Your data matches 4 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001111
Mp00148: Finite Cartan types to root posetPosets
Mp00074: Posets to graphGraphs
Mp00111: Graphs complementGraphs
St001111: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
Description
The weak 2-dynamic chromatic number of a graph. A $k$-weak-dynamic coloring of a graph $G$ is a (non-proper) coloring of $G$ in such a way that each vertex $v$ sees at least $\min\{d(v), k\}$ colors in its neighborhood. The $k$-weak-dynamic number of a graph is the smallest number of colors needed to find an $k$-dynamic coloring. This statistic records the $2$-weak-dynamic number of a graph.
Matching statistic: St001060
Mp00148: Finite Cartan types to root posetPosets
Mp00074: Posets to graphGraphs
Mp00111: Graphs complementGraphs
St001060: Graphs ⟶ ℤResult quality: 60% values known / values provided: 60%distinct values known / distinct values provided: 67%
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? = 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
Description
The distinguishing index of a graph. This is the smallest number of colours such that there is a colouring of the edges which is not preserved by any automorphism. If the graph has a connected component which is a single edge, or at least two isolated vertices, this statistic is undefined.
Matching statistic: St001386
Mp00148: Finite Cartan types to root posetPosets
Mp00074: Posets to graphGraphs
Mp00203: Graphs coneGraphs
St001386: Graphs ⟶ ℤResult quality: 60% values known / values provided: 60%distinct values known / distinct values provided: 67%
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 2
Description
The number of prime labellings of a graph. A prime labelling of a graph is a bijective labelling of the vertices with the numbers $\{1,\dots, |V(G)|\}$ such that adjacent vertices have coprime labels.
Matching statistic: St001623
Mp00148: Finite Cartan types to root posetPosets
Mp00205: Posets maximal antichainsLattices
Mp00197: Lattices lattice of congruencesLattices
St001623: Lattices ⟶ ℤResult quality: 60% values known / values provided: 60%distinct values known / distinct values provided: 67%
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 2 - 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 2 - 1
Description
The number of doubly irreducible elements of a lattice. An element $d$ of a lattice $L$ is '''doubly irreducible''' if it is both join and meet irreducible. That means, $d$ is neither the least nor the greatest element of $L$ and if $d=x\vee y$ or $d=x\wedge y$, then $d\in\{x,y\}$ for all $x,y\in L$. In a finite lattice, the doubly irreducible elements are those which cover and are covered by a unique element.