Your data matches 58 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00206: Posets antichains of maximal sizeLattices
Mp00193: Lattices to posetPosets
St000848: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,4),(1,2),(1,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
Description
The balance constant multiplied with the number of linear extensions of a poset. A pair of elements $x,y$ of a poset is $\alpha$-balanced if the proportion $P(x,y)$ of linear extensions where $x$ comes before $y$ is between $\alpha$ and $1-\alpha$. The balance constant of a poset is $\max\min(P(x,y), P(y,x)).$ Kislitsyn [1] conjectured that every poset which is not a chain is $1/3$-balanced. Brightwell, Felsner and Trotter [2] show that it is at least $(1-\sqrt 5)/10$-balanced. Olson and Sagan [3] exhibit various posets that are $1/2$-balanced.
Mp00206: Posets antichains of maximal sizeLattices
Mp00193: Lattices to posetPosets
St000849: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,4),(1,2),(1,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
Description
The number of 1/3-balanced pairs in a poset. A pair of elements $x,y$ of a poset is $\alpha$-balanced if the proportion of linear extensions where $x$ comes before $y$ is between $\alpha$ and $1-\alpha$. Kislitsyn [1] conjectured that every poset which is not a chain has a $1/3$-balanced pair. Brightwell, Felsner and Trotter [2] show that at least a $(1-\sqrt 5)/10$-balanced pair exists in posets which are not chains. Olson and Sagan [3] show that posets corresponding to skew Ferrers diagrams have a $1/3$-balanced pair.
Mp00206: Posets antichains of maximal sizeLattices
Mp00263: Lattices join irreduciblesPosets
St001397: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> 0
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> 0
([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([],1)
=> 0
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> 0
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> 0
([(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> 0
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([],1)
=> 0
([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ([],1)
=> 0
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> 0
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> 0
([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> 0
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> 0
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> 1
([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2)],3)
=> 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> 0
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ([],1)
=> 0
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(1,2),(1,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> 0
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> 0
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ([],1)
=> 0
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(1,2)],3)
=> 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> 0
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> 0
([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> 2
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> 0
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> 1
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> 0
([(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> 0
([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> ([(0,1)],2)
=> ([],1)
=> 0
([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,1)],2)
=> ([],1)
=> 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> ([(0,1)],2)
=> ([],1)
=> 0
Description
Number of pairs of incomparable elements in a finite poset. For a finite poset $(P,\leq)$, this is the number of unordered pairs $\{x,y\} \in \binom{P}{2}$ with $x \not\leq y$ and $y \not\leq x$.
Mp00206: Posets antichains of maximal sizeLattices
Mp00193: Lattices to posetPosets
St001633: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,4),(1,2),(1,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
([(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
Description
The number of simple modules with projective dimension two in the incidence algebra of the poset.
Matching statistic: St000185
Mp00206: Posets antichains of maximal sizeLattices
Mp00193: Lattices to posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
St000185: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 0
([(0,4),(1,2),(1,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 0
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 0
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 0
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
Description
The weighted size of a partition. Let $\lambda = (\lambda_0\geq\lambda_1 \geq \dots\geq\lambda_m)$ be an integer partition. Then the weighted size of $\lambda$ is $$\sum_{i=0}^m i \cdot \lambda_i.$$ This is also the sum of the leg lengths of the cells in $\lambda$, or $$ \sum_i \binom{\lambda^{\prime}_i}{2} $$ where $\lambda^{\prime}$ is the conjugate partition of $\lambda$. This is the minimal number of inversions a permutation with the given shape can have, see [1, cor.2.2]. This is also the smallest possible sum of the entries of a semistandard tableau (allowing 0 as a part) of shape $\lambda=(\lambda_0,\lambda_1,\ldots,\lambda_m)$, obtained uniquely by placing $i-1$ in all the cells of the $i$th row of $\lambda$, see [2, eq.7.103].
Matching statistic: St000362
Mp00206: Posets antichains of maximal sizeLattices
Mp00193: Lattices to posetPosets
Mp00198: Posets incomparability graphGraphs
St000362: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(0,4),(1,2),(1,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
Description
The size of a minimal vertex cover of a graph. A '''vertex cover''' of a graph $G$ is a subset $S$ of the vertices of $G$ such that each edge of $G$ contains at least one vertex of $S$. Finding a minimal vertex cover is an NP-hard optimization problem.
Matching statistic: St000387
Mp00206: Posets antichains of maximal sizeLattices
Mp00193: Lattices to posetPosets
Mp00198: Posets incomparability graphGraphs
St000387: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(0,4),(1,2),(1,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
Description
The matching number of a graph. For a graph $G$, this is defined as the maximal size of a '''matching''' or '''independent edge set''' (a set of edges without common vertices) contained in $G$.
Matching statistic: St000985
Mp00206: Posets antichains of maximal sizeLattices
Mp00193: Lattices to posetPosets
Mp00198: Posets incomparability graphGraphs
St000985: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(0,4),(1,2),(1,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
([(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 0
Description
The number of positive eigenvalues of the adjacency matrix of the graph.
Matching statistic: St001176
Mp00206: Posets antichains of maximal sizeLattices
Mp00193: Lattices to posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
St001176: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 0
([(0,4),(1,2),(1,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 0
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 0
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 0
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
Description
The size of a partition minus its first part. This is the number of boxes in its diagram that are not in the first row.
Matching statistic: St001214
Mp00206: Posets antichains of maximal sizeLattices
Mp00193: Lattices to posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
St001214: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 0
([(0,4),(1,2),(1,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 0
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 2
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 0
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 0
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 0
([(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 0
Description
The aft of an integer partition. The aft is the size of the partition minus the length of the first row or column, whichever is larger. See also [[St000784]].
The following 48 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001305The number of induced cycles on four vertices in a graph. St001311The cyclomatic number of a graph. St001317The minimal number of occurrences of the forest-pattern in a linear ordering of the vertices of the graph. St001324The minimal number of occurrences of the chordal-pattern in a linear ordering of the vertices of the graph. St001326The minimal number of occurrences of the interval-pattern in a linear ordering of the vertices of the graph. St000456The monochromatic index of a connected graph. St000814The sum of the entries in the column specified by the partition of the change of basis matrix from elementary symmetric functions to Schur symmetric functions. St001271The competition number of a graph. St001725The harmonious chromatic number of a graph. St001883The mutual visibility number of a graph. St001117The game chromatic index of a graph. St001574The minimal number of edges to add or remove to make a graph regular. St001576The minimal number of edges to add or remove to make a graph vertex transitive. St001742The difference of the maximal and the minimal degree in a graph. St001812The biclique partition number of a graph. St000450The number of edges minus the number of vertices plus 2 of a graph. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001624The breadth of a lattice. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St001330The hat guessing number of a graph. St000454The largest eigenvalue of a graph if it is integral. St001651The Frankl number of a lattice. St000379The number of Hamiltonian cycles in a graph. St001570The minimal number of edges to add to make a graph Hamiltonian. St001060The distinguishing index of a graph. St001118The acyclic chromatic index of a graph. St001545The second Elser number of a connected graph. St001722The number of minimal chains with small intervals between a binary word and the top element. St001845The number of join irreducibles minus the rank of a lattice. St001846The number of elements which do not have a complement in the lattice. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001820The size of the image of the pop stack sorting operator. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001435The number of missing boxes in the first row. St001438The number of missing boxes of a skew partition. St001487The number of inner corners of a skew partition. St001490The number of connected components of a skew partition. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001625The Möbius invariant of a lattice. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001875The number of simple modules with projective dimension at most 1. St001256Number of simple reflexive modules that are 2-stable reflexive.