Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000845
St000845: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 0
([],2)
=> 0
([(0,1)],2)
=> 1
([],3)
=> 0
([(1,2)],3)
=> 1
([(0,1),(0,2)],3)
=> 2
([(0,2),(2,1)],3)
=> 1
([(0,2),(1,2)],3)
=> 1
([],4)
=> 0
([(2,3)],4)
=> 1
([(1,2),(1,3)],4)
=> 2
([(0,1),(0,2),(0,3)],4)
=> 3
([(0,2),(0,3),(3,1)],4)
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,2),(2,3)],4)
=> 1
([(0,3),(3,1),(3,2)],4)
=> 2
([(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(3,2)],4)
=> 1
([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2)],4)
=> 1
([(0,3),(1,2),(1,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,3),(2,1),(3,2)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> 1
([],5)
=> 0
([(3,4)],5)
=> 1
([(2,3),(2,4)],5)
=> 2
([(1,2),(1,3),(1,4)],5)
=> 3
([(0,1),(0,2),(0,3),(0,4)],5)
=> 4
([(0,2),(0,3),(0,4),(4,1)],5)
=> 3
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> 3
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 3
([(1,3),(1,4),(4,2)],5)
=> 2
([(0,3),(0,4),(4,1),(4,2)],5)
=> 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(2,3),(3,4)],5)
=> 1
([(1,4),(4,2),(4,3)],5)
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> 3
([(2,4),(3,4)],5)
=> 1
([(1,4),(2,4),(4,3)],5)
=> 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> 2
([(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3)],5)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
Description
The maximal number of elements covered by an element in a poset.
Matching statistic: St000846
Mp00125: Posets dual posetPosets
St000846: Posets ⟶ ℤResult quality: 70% values known / values provided: 70%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> 0
([],2)
=> ([],2)
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> 1
([],3)
=> ([],3)
=> 0
([(1,2)],3)
=> ([(1,2)],3)
=> 1
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
([(0,2),(1,2)],3)
=> ([(0,1),(0,2)],3)
=> 1
([],4)
=> ([],4)
=> 0
([(2,3)],4)
=> ([(2,3)],4)
=> 1
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,2),(2,3)],4)
=> ([(1,2),(2,3)],4)
=> 1
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(3,2)],4)
=> 2
([(1,3),(2,3)],4)
=> ([(1,2),(1,3)],4)
=> 1
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(3,1),(3,2)],4)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3)],4)
=> 1
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(3,1)],4)
=> 1
([],5)
=> ([],5)
=> 0
([(3,4)],5)
=> ([(3,4)],5)
=> 1
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> 2
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 3
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 3
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> 2
([(2,3),(3,4)],5)
=> ([(2,3),(3,4)],5)
=> 1
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(4,3)],5)
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> 3
([(2,4),(3,4)],5)
=> ([(2,3),(2,4)],5)
=> 1
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(4,2),(4,3)],5)
=> 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(4,2),(4,3)],5)
=> 2
([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4)],5)
=> 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,4),(1,2),(1,3)],5)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4)],5)
=> 2
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,5),(1,2),(1,3),(1,4),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 4
([(0,2),(0,3),(0,4),(0,5),(3,6),(4,6),(5,1)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> ? = 4
([(0,1),(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(4,6)],7)
=> ([(0,6),(1,4),(1,5),(2,3),(2,5),(3,6),(4,6),(5,6)],7)
=> ? = 4
([(0,1),(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> ? = 4
([(0,1),(0,2),(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> ? = 4
([(0,2),(0,3),(0,4),(0,5),(3,6),(4,6),(5,1),(5,6)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> ? = 4
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 4
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(4,6)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 4
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 4
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 4
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 4
([(0,1),(0,2),(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 4
([(2,3),(2,4),(2,5),(4,6),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 3
([(1,2),(1,3),(1,4),(2,6),(3,6),(4,6),(6,5)],7)
=> ([(1,5),(2,6),(3,6),(4,6),(5,2),(5,3),(5,4)],7)
=> ? = 3
([(1,3),(1,4),(1,5),(3,6),(4,6),(5,2)],7)
=> ([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> ? = 3
([(1,2),(1,3),(1,4),(2,6),(3,5),(4,5),(4,6)],7)
=> ([(1,4),(1,5),(2,3),(2,5),(3,6),(4,6),(5,6)],7)
=> ? = 3
([(1,2),(1,3),(1,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> ? = 3
([(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> ? = 3
([(0,2),(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(6,1)],7)
=> ([(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> ? = 3
([(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,1)],7)
=> ([(0,3),(1,2),(1,4),(1,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 3
([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,2),(0,3),(1,6),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 3
([(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,5),(4,6),(6,1)],7)
=> ([(0,4),(0,5),(1,2),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> ? = 3
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(4,6),(6,1)],7)
=> ([(0,4),(1,3),(1,5),(2,6),(3,6),(4,2),(4,5),(5,6)],7)
=> ? = 3
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,1),(5,6),(6,2)],7)
=> ([(0,5),(1,4),(2,6),(3,6),(4,2),(4,3),(4,5),(5,6)],7)
=> ? = 3
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(1,5),(2,6),(3,6),(4,2),(4,3),(5,6)],7)
=> ? = 3
([(1,2),(1,3),(1,4),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,4),(1,5),(2,6),(3,6),(4,6),(5,2),(5,3)],7)
=> ? = 3
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ? = 3
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,4),(1,5),(2,6),(3,6),(4,6),(5,2),(5,3)],7)
=> ? = 3
([(1,2),(1,3),(1,4),(3,6),(4,6),(6,5)],7)
=> ([(1,3),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 3
([(1,4),(1,5),(1,6),(5,3),(6,2)],7)
=> ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 3
([(1,3),(1,4),(1,5),(4,6),(5,2),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 3
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> ? = 3
([(0,1),(0,2),(0,3),(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 3
([(0,2),(0,3),(0,4),(3,5),(3,6),(4,5),(4,6),(6,1)],7)
=> ([(0,6),(1,4),(1,5),(2,3),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 3
([(0,1),(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 3
([(0,3),(0,4),(0,5),(4,6),(5,1),(5,6),(6,2)],7)
=> ([(0,6),(1,5),(2,3),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 3
([(0,3),(0,4),(0,5),(3,6),(4,2),(5,1),(5,6)],7)
=> ([(0,5),(1,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> ? = 3
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,1),(4,5),(4,6)],7)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,6),(4,6),(5,6)],7)
=> ? = 3
([(0,2),(0,3),(0,4),(2,5),(3,5),(3,6),(4,1),(4,6)],7)
=> ([(0,4),(1,4),(1,5),(2,3),(2,5),(3,6),(4,6),(5,6)],7)
=> ? = 3
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5)],7)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> ? = 3
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> ? = 3
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> ? = 3
([(0,1),(0,2),(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(4,3),(5,3),(6,3)],7)
=> ? = 3
([(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,1),(4,5),(4,6)],7)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> ? = 3
([(0,1),(0,2),(0,3),(1,5),(2,4),(2,6),(3,4),(3,5),(5,6)],7)
=> ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,6),(4,6),(5,6)],7)
=> ? = 3
([(0,3),(0,4),(0,5),(3,6),(4,2),(4,6),(5,1),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> ? = 3
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,5),(1,3),(1,4),(2,6),(3,6),(4,2),(4,5),(5,6)],7)
=> ? = 3
([(3,4),(3,5),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> ? = 2
([(2,3),(2,4),(3,6),(4,6),(6,5)],7)
=> ([(2,3),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 2
([(2,5),(2,6),(5,4),(6,3)],7)
=> ([(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 2
Description
The maximal number of elements covering an element of a poset.