Your data matches 195 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000908: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 1
([],2)
=> 2
([(0,1)],2)
=> 1
([(1,2)],3)
=> 2
([(0,1),(0,2)],3)
=> 1
([(0,2),(2,1)],3)
=> 1
([(0,2),(1,2)],3)
=> 1
([(0,2),(0,3),(3,1)],4)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
([(0,3),(3,1),(3,2)],4)
=> 1
([(0,3),(1,3),(3,2)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,3),(2,1),(3,2)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> 1
([(0,3),(3,4),(4,1),(4,2)],5)
=> 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
Description
The length of the shortest maximal antichain in a poset.
Mp00198: Posets incomparability graphGraphs
St001316: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> 1
([],2)
=> ([(0,1)],2)
=> 2
([(0,1)],2)
=> ([],2)
=> 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> 1
([(0,2),(2,1)],3)
=> ([],3)
=> 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 1
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1
Description
The domatic number of a graph. This is the maximal size of a partition of the vertices into dominating sets.
Mp00198: Posets incomparability graphGraphs
St000310: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> 0 = 1 - 1
([],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,1)],2)
=> ([],2)
=> 0 = 1 - 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> 0 = 1 - 1
([(0,2),(2,1)],3)
=> ([],3)
=> 0 = 1 - 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 0 = 1 - 1
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 0 = 1 - 1
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> 0 = 1 - 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 0 = 1 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 1 = 2 - 1
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0 = 1 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = 1 - 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 0 = 1 - 1
Description
The minimal degree of a vertex of a graph.
Mp00198: Posets incomparability graphGraphs
St001271: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> 0 = 1 - 1
([],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,1)],2)
=> ([],2)
=> 0 = 1 - 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> 0 = 1 - 1
([(0,2),(2,1)],3)
=> ([],3)
=> 0 = 1 - 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 0 = 1 - 1
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 0 = 1 - 1
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> 0 = 1 - 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 0 = 1 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 1 = 2 - 1
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0 = 1 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = 1 - 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 0 = 1 - 1
Description
The competition number of a graph. The competition graph of a digraph $D$ is a (simple undirected) graph which has the same vertex set as $D$ and has an edge between $x$ and $y$ if and only if there exists a vertex $v$ in $D$ such that $(x, v)$ and $(y, v)$ are arcs of $D$. For any graph, $G$ together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number $k(G)$ is the smallest number of such isolated vertices.
Mp00198: Posets incomparability graphGraphs
Mp00111: Graphs complementGraphs
St000273: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([(0,1)],2)
=> ([],2)
=> 2
([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
Description
The domination number of a graph. The domination number of a graph is given by the minimum size of a dominating set of vertices. A dominating set of vertices is a subset of the vertex set of such that every vertex is either in this subset or adjacent to an element of this subset.
Mp00198: Posets incomparability graphGraphs
Mp00111: Graphs complementGraphs
St000544: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([(0,1)],2)
=> ([],2)
=> 2
([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
Description
The cop number of a graph. This is the minimal number of cops needed to catch the robber. The algorithm is from [2].
Mp00198: Posets incomparability graphGraphs
Mp00251: Graphs clique sizesInteger partitions
St000667: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [1]
=> 1
([],2)
=> ([(0,1)],2)
=> [2]
=> 2
([(0,1)],2)
=> ([],2)
=> [1,1]
=> 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> 2
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 1
([(0,2),(2,1)],3)
=> ([],3)
=> [1,1,1]
=> 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 1
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [1,1,1,1]
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 1
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> [1,1,1,1,1,1]
=> 1
Description
The greatest common divisor of the parts of the partition.
Mp00198: Posets incomparability graphGraphs
Mp00111: Graphs complementGraphs
St001322: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([(0,1)],2)
=> ([],2)
=> 2
([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
Description
The size of a minimal independent dominating set in a graph.
Mp00198: Posets incomparability graphGraphs
Mp00111: Graphs complementGraphs
St001339: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([(0,1)],2)
=> ([],2)
=> 2
([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
Description
The irredundance number of a graph. A set $S$ of vertices is irredundant, if there is no vertex in $S$, whose closed neighbourhood is contained in the union of the closed neighbourhoods of the other vertices of $S$. The irredundance number is the smallest size of a maximal irredundant set.
Mp00198: Posets incomparability graphGraphs
Mp00251: Graphs clique sizesInteger partitions
St001571: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [1]
=> 1
([],2)
=> ([(0,1)],2)
=> [2]
=> 2
([(0,1)],2)
=> ([],2)
=> [1,1]
=> 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> 2
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 1
([(0,2),(2,1)],3)
=> ([],3)
=> [1,1,1]
=> 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 1
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [1,1,1,1]
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 1
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [1,1,1,1,1]
=> 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> [1,1,1,1,1,1]
=> 1
Description
The Cartan determinant of the integer partition. Let $p=[p_1,...,p_r]$ be a given integer partition with highest part t. Let $A=K[x]/(x^t)$ be the finite dimensional algebra over the field $K$ and $M$ the direct sum of the indecomposable $A$-modules of vector space dimension $p_i$ for each $i$. Then the Cartan determinant of $p$ is the Cartan determinant of the endomorphism algebra of $M$ over $A$. Explicitly, this is the determinant of the matrix $\left(\min(\bar p_i, \bar p_j)\right)_{i,j}$, where $\bar p$ is the set of distinct parts of the partition.
The following 185 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001829The common independence number of a graph. St000149The number of cells of the partition whose leg is zero and arm is odd. St000256The number of parts from which one can substract 2 and still get an integer partition. St000274The number of perfect matchings of a graph. St001119The length of a shortest maximal path in a graph. St001357The maximal degree of a regular spanning subgraph of a graph. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001702The absolute value of the determinant of the adjacency matrix of a graph. St000093The cardinality of a maximal independent set of vertices of a graph. St000160The multiplicity of the smallest part of a partition. St000482The (zero)-forcing number of a graph. St000531The leading coefficient of the rook polynomial of an integer partition. St000723The maximal cardinality of a set of vertices with the same neighbourhood in a graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000774The maximal multiplicity of a Laplacian eigenvalue in a graph. St000776The maximal multiplicity of an eigenvalue in a graph. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St000899The maximal number of repetitions of an integer composition. St000900The minimal number of repetitions of a part in an integer composition. St000902 The minimal number of repetitions of an integer composition. St000904The maximal number of repetitions of an integer composition. St000917The open packing number of a graph. St000986The multiplicity of the eigenvalue zero of the adjacency matrix of the graph. St001286The annihilation number of a graph. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001642The Prague dimension of a graph. St001659The number of ways to place as many non-attacking rooks as possible on a Ferrers board. St001672The restrained domination number of a graph. St001765The number of connected components of the friends and strangers graph. St001933The largest multiplicity of a part in an integer partition. St000150The floored half-sum of the multiplicities of a partition. St000257The number of distinct parts of a partition that occur at least twice. St000258The burning number of a graph. St001091The number of parts in an integer partition whose next smaller part has the same size. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001691The number of kings in a graph. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St001777The number of weak descents in an integer composition. St001931The weak major index of an integer composition regarded as a word. St000261The edge connectivity of a graph. St000706The product of the factorials of the multiplicities of an integer partition. St000993The multiplicity of the largest part of an integer partition. St001340The cardinality of a minimal non-edge isolating set of a graph. St001217The projective dimension of the indecomposable injective module I[n-2] in the corresponding Nakayama algebra with simples enumerated from 0 to n-1. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000207Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St001389The number of partitions of the same length below the given integer partition. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St001280The number of parts of an integer partition that are at least two. St001541The Gini index of an integer partition. St001587Half of the largest even part of an integer partition. St001657The number of twos in an integer partition. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St000741The Colin de Verdière graph invariant. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph. St000259The diameter of a connected graph. St000260The radius of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St001498The normalised height of a Nakayama algebra with magnitude 1. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001481The minimal height of a peak of a Dyck path. St000968We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) $[c_0,c_1,...,c_{n−1}]$ by adding $c_0$ to $c_{n−1}$. St001006Number of simple modules with projective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001188The number of simple modules $S$ with grade $\inf \{ i \geq 0 | Ext^i(S,A) \neq 0 \}$ at least two in the Nakayama algebra $A$ corresponding to the Dyck path. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001194The injective dimension of $A/AfA$ in the corresponding Nakayama algebra $A$ when $Af$ is the minimal faithful projective-injective left $A$-module St001201The grade of the simple module $S_0$ in the special CNakayama algebra corresponding to the Dyck path. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St001257The dominant dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J. St001273The projective dimension of the first term in an injective coresolution of the regular module. St001289The vector space dimension of the n-fold tensor product of D(A), where n is maximal such that this n-fold tensor product is nonzero. St001493The number of simple modules with maximal even projective dimension in the corresponding Nakayama algebra. St001507The sum of projective dimension of simple modules with even projective dimension divided by 2 in the LNakayama algebra corresponding to Dyck paths. St001021Sum of the differences between projective and codominant dimension of the non-projective indecomposable injective modules in the Nakayama algebra corresponding to the Dyck path. St001089Number of indecomposable projective non-injective modules minus the number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001140Number of indecomposable modules with projective and injective dimension at least two in the corresponding Nakayama algebra. St001159Number of simple modules with dominant dimension equal to the global dimension in the corresponding Nakayama algebra. St001165Number of simple modules with even projective dimension in the corresponding Nakayama algebra. St001186Number of simple modules with grade at least 3 in the corresponding Nakayama algebra. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001221The number of simple modules in the corresponding LNakayama algebra that have 2 dimensional second Extension group with the regular module. St001229The vector space dimension of the first extension group between the Jacobson radical J and J^2. St001230The number of simple modules with injective dimension equal to the dominant dimension equal to one and the dual property. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St001530The depth of a Dyck path. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St001240The number of indecomposable modules e_i J^2 that have injective dimension at most one in the corresponding Nakayama algebra St001095The number of non-isomorphic posets with precisely one further covering relation. St000264The girth of a graph, which is not a tree. St000618The number of self-evacuating tableaux of given shape. St000668The least common multiple of the parts of the partition. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000781The number of proper colouring schemes of a Ferrers diagram. St000815The number of semistandard Young tableaux of partition weight of given shape. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St000997The even-odd crank of an integer partition. St001432The order dimension of the partition. St001780The order of promotion on the set of standard tableaux of given shape. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001924The number of cells in an integer partition whose arm and leg length coincide. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000225Difference between largest and smallest parts in a partition. St000478Another weight of a partition according to Alladi. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St000934The 2-degree of an integer partition. St000944The 3-degree of an integer partition. St001175The size of a partition minus the hook length of the base cell. St001178Twelve times the variance of the major index among all standard Young tableaux of a partition. St001248Sum of the even parts of a partition. St001279The sum of the parts of an integer partition that are at least two. St001586The number of odd parts smaller than the largest even part in an integer partition. St000455The second largest eigenvalue of a graph if it is integral. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St000100The number of linear extensions of a poset. St000282The size of the preimage of the map 'to poset' from Ordered trees to Posets. St000456The monochromatic index of a connected graph. St000524The number of posets with the same order polynomial. St000525The number of posets with the same zeta polynomial. St000526The number of posets with combinatorially isomorphic order polytopes. St000633The size of the automorphism group of a poset. St000635The number of strictly order preserving maps of a poset into itself. St000640The rank of the largest boolean interval in a poset. St000910The number of maximal chains of minimal length in a poset. St000914The sum of the values of the Möbius function of a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001890The maximum magnitude of the Möbius function of a poset. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000850The number of 1/2-balanced pairs in a poset. St000284The Plancherel distribution on integer partitions. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000929The constant term of the character polynomial of an integer partition. St001128The exponens consonantiae of a partition. St001570The minimal number of edges to add to make a graph Hamiltonian. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St001060The distinguishing index of a graph. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001568The smallest positive integer that does not appear twice in the partition. St000262The vertex connectivity of a graph. St001118The acyclic chromatic index of a graph. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St001000Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001330The hat guessing number of a graph. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001875The number of simple modules with projective dimension at most 1. St000302The determinant of the distance matrix of a connected graph. St000467The hyper-Wiener index of a connected graph. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001545The second Elser number of a connected graph. St000464The Schultz index of a connected graph.