searching the database
Your data matches 252 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000455
(load all 31 compositions to match this statistic)
(load all 31 compositions to match this statistic)
Mp00046: Ordered trees —to graph⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000455: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[],[]]
=> ([(0,2),(1,2)],3)
=> 0
[[[]]]
=> ([(0,2),(1,2)],3)
=> 0
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[[[],[]]]
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[[]],[[]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[[[]]],[]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[[[[[]]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[[[],[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[[[[],[]],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[[[],[[]]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[[[[[]],[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[[],[],[],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0
[[],[],[[]],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[],[[]],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[],[[]],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[],[[],[],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[],[[],[[]],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[],[[[]],[],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 1
[[[]],[],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[[]],[],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[[]],[[]],[],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[[]],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 1
[[[],[],[[]]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[[],[[]],[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[[[]],[],[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[[[]],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 1
[[[],[],[],[],[]]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0
[[[],[[]],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[[[]],[],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[[[]],[[]],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[[[],[],[[]]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[[[],[[]],[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[[[[]],[],[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
Description
The second largest eigenvalue of a graph if it is integral.
This statistic is undefined if the second largest eigenvalue of the graph is not integral.
Chapter 4 of [1] provides lots of context.
Matching statistic: St000671
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00046: Ordered trees —to graph⟶ Graphs
St000671: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000671: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[],[]]
=> ([(0,2),(1,2)],3)
=> 0
[[[]]]
=> ([(0,2),(1,2)],3)
=> 0
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[[[],[]]]
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[[]],[[]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[[[]]],[]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[[[[[]]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[[[],[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[[[[],[]],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[[[],[[]]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[[[[[]],[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[[],[],[],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0
[[],[],[[]],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[],[[]],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[],[[]],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[],[[],[],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[],[[],[[]],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[],[[[]],[],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 1
[[[]],[],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[[]],[],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[[]],[[]],[],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[[]],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 1
[[[],[],[[]]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[[],[[]],[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[[[]],[],[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[[[]],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 1
[[[],[],[],[],[]]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0
[[[],[[]],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[[[]],[],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[[[]],[[]],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[[[],[],[[]]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[[[],[[]],[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[[[[]],[],[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
Description
The maximin edge-connectivity for choosing a subgraph.
This is max, where X ranges over all subsets of the vertex set V and \lambda is the edge-connectivity of a graph.
Matching statistic: St001353
(load all 23 compositions to match this statistic)
(load all 23 compositions to match this statistic)
Mp00046: Ordered trees —to graph⟶ Graphs
St001353: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001353: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[],[]]
=> ([(0,2),(1,2)],3)
=> 0
[[[]]]
=> ([(0,2),(1,2)],3)
=> 0
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[[[],[]]]
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[[]],[[]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[[[]]],[]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[[[[[]]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[[[],[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[[[[],[]],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[[[],[[]]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[[[[[]],[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[[],[],[],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0
[[],[],[[]],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[],[[]],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[],[[]],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[],[[],[],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[],[[],[[]],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[],[[[]],[],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 1
[[[]],[],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[[]],[],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[[]],[[]],[],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[[]],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 1
[[[],[],[[]]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[[],[[]],[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[[[]],[],[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[[[]],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 1
[[[],[],[],[],[]]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0
[[[],[[]],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[[[]],[],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[[[]],[[]],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[[[],[],[[]]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[[[],[[]],[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
[[[[[]],[],[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 1
Description
The number of prime nodes in the modular decomposition of a graph.
Matching statistic: St000260
(load all 19 compositions to match this statistic)
(load all 19 compositions to match this statistic)
Mp00046: Ordered trees —to graph⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000260: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[],[]]
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[[[]]]
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
[[[],[]]]
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[[]],[[]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[[[]]],[]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[[[[[]]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1 = 0 + 1
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 1 + 1
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 1 + 1
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 1 + 1
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[[],[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1 = 0 + 1
[[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 1 + 1
[[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[[[],[]],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 1 + 1
[[[[],[[]]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[[[[]],[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[],[],[],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 1 = 0 + 1
[[],[],[[]],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 1 + 1
[[],[[]],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 1 + 1
[[],[[]],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 1 + 1
[[],[[],[],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 1 + 1
[[],[[],[[]],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 1 + 1
[[],[[[]],[],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 1 + 1
[[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
[[[]],[],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 1 + 1
[[[]],[],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 1 + 1
[[[]],[[]],[],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 1 + 1
[[[]],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
[[[],[],[[]]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 1 + 1
[[[],[[]],[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 1 + 1
[[[[]],[],[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 1 + 1
[[[[]],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 1 + 1
[[[],[],[],[],[]]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 1 = 0 + 1
[[[],[[]],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 1 + 1
[[[[]],[],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 1 + 1
[[[[]],[[]],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 1 + 1
[[[[],[],[[]]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 1 + 1
[[[[],[[]],[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 1 + 1
[[[[[]],[],[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 2 = 1 + 1
Description
The radius of a connected graph.
This is the minimum eccentricity of any vertex.
Matching statistic: St000172
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00046: Ordered trees —to graph⟶ Graphs
St000172: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000172: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[],[]]
=> ([(0,2),(1,2)],3)
=> 2 = 0 + 2
[[[]]]
=> ([(0,2),(1,2)],3)
=> 2 = 0 + 2
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
[[[],[]]]
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3 = 1 + 2
[[[]],[[]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3 = 1 + 2
[[[[]]],[]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3 = 1 + 2
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[[[[[]]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3 = 1 + 2
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 1 + 2
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 1 + 2
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 1 + 2
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[[],[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 1 + 2
[[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[[[],[]],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 1 + 2
[[[[],[[]]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[[[[]],[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[],[],[],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[],[],[[]],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[],[[]],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[],[[]],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[],[[],[],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[],[[],[[]],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[],[[[]],[],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[]],[],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[]],[],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[]],[[]],[],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[]],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[],[],[[]]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[],[[]],[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[[]],[],[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[[]],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[],[],[],[],[]]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[[],[[]],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[[]],[],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[[]],[[]],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[[],[],[[]]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[[],[[]],[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[[[]],[],[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
Description
The Grundy number of a graph.
The Grundy number \Gamma(G) is defined to be the largest k such that G admits a greedy k-coloring. Any order of the vertices of G induces a greedy coloring by assigning to the i-th vertex in this order the smallest positive integer such that the partial coloring remains a proper coloring.
In particular, we have that \chi(G) \leq \Gamma(G) \leq \Delta(G) + 1, where \chi(G) is the chromatic number of G ([[St000098]]), and where \Delta(G) is the maximal degree of a vertex of G ([[St000171]]).
Matching statistic: St000258
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00046: Ordered trees —to graph⟶ Graphs
St000258: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000258: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[],[]]
=> ([(0,2),(1,2)],3)
=> 2 = 0 + 2
[[[]]]
=> ([(0,2),(1,2)],3)
=> 2 = 0 + 2
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
[[[],[]]]
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3 = 1 + 2
[[[]],[[]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3 = 1 + 2
[[[[]]],[]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3 = 1 + 2
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[[[[[]]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3 = 1 + 2
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 1 + 2
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 1 + 2
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 1 + 2
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[[],[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 1 + 2
[[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[[[],[]],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 1 + 2
[[[[],[[]]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[[[[]],[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[],[],[],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[],[],[[]],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[],[[]],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[],[[]],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[],[[],[],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[],[[],[[]],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[],[[[]],[],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[]],[],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[]],[],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[]],[[]],[],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[]],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[],[],[[]]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[],[[]],[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[[]],[],[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[[]],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[],[],[],[],[]]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[[],[[]],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[[]],[],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[[]],[[]],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[[],[],[[]]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[[],[[]],[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[[[]],[],[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
Description
The burning number of a graph.
This is the minimum number of rounds needed to burn all vertices of a graph. In each round, the neighbours of all burned vertices are burnt. Additionally, an unburned vertex may be chosen to be burned.
Matching statistic: St001116
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00046: Ordered trees —to graph⟶ Graphs
St001116: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001116: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[],[]]
=> ([(0,2),(1,2)],3)
=> 2 = 0 + 2
[[[]]]
=> ([(0,2),(1,2)],3)
=> 2 = 0 + 2
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
[[[],[]]]
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3 = 1 + 2
[[[]],[[]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3 = 1 + 2
[[[[]]],[]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3 = 1 + 2
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[[[[[]]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3 = 1 + 2
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 1 + 2
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 1 + 2
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 1 + 2
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[[],[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 1 + 2
[[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[[[],[]],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 1 + 2
[[[[],[[]]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[[[[]],[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[],[],[],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[],[],[[]],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[],[[]],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[],[[]],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[],[[],[],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[],[[],[[]],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[],[[[]],[],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[]],[],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[]],[],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[]],[[]],[],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[]],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[],[],[[]]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[],[[]],[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[[]],[],[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[[]],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[],[],[],[],[]]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[[],[[]],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[[]],[],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[[]],[[]],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[[],[],[[]]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[[],[[]],[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[[[]],[],[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
Description
The game chromatic number of a graph.
Two players, Alice and Bob, take turns colouring properly any uncolored vertex of the graph. Alice begins. If it is not possible for either player to colour a vertex, then Bob wins. If the graph is completely colored, Alice wins.
The game chromatic number is the smallest number of colours such that Alice has a winning strategy.
Matching statistic: St001963
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00046: Ordered trees —to graph⟶ Graphs
St001963: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001963: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[],[]]
=> ([(0,2),(1,2)],3)
=> 2 = 0 + 2
[[[]]]
=> ([(0,2),(1,2)],3)
=> 2 = 0 + 2
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
[[[],[]]]
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 0 + 2
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3 = 1 + 2
[[[]],[[]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3 = 1 + 2
[[[[]]],[]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3 = 1 + 2
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[[[[[]]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3 = 1 + 2
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 1 + 2
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 1 + 2
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 1 + 2
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[[],[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
[[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 1 + 2
[[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[[[],[]],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 1 + 2
[[[[],[[]]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[[[[]],[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 1 + 2
[[],[],[],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[],[],[[]],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[],[[]],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[],[[]],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[],[[],[],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[],[[],[[]],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[],[[[]],[],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[]],[],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[]],[],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[]],[[]],[],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[]],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[],[],[[]]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[],[[]],[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[[]],[],[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[[]],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[],[],[],[],[]]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
[[[],[[]],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[[]],[],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[[]],[[]],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[[],[],[[]]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[[],[[]],[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
[[[[[]],[],[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 1 + 2
Description
The tree-depth of a graph.
The tree-depth \operatorname{td}(G) of a graph G whose connected components are G_1,\ldots,G_p is recursively defined as
\operatorname{td}(G)=\begin{cases} 1, & \text{if }|G|=1\\ 1 + \min_{v\in V} \operatorname{td}(G-v), & \text{if } p=1 \text{ and } |G| > 1\\ \max_{i=1}^p \operatorname{td}(G_i), & \text{otherwise} \end{cases}
Nešetřil and Ossona de Mendez [2] proved that the tree-depth of a connected graph is equal to its minimum elimination tree height and its centered chromatic number (fewest colors needed for a vertex coloring where every connected induced subgraph has a color that appears exactly once).
Tree-depth is strictly greater than [[St000536|pathwidth]]. A [[St001120|longest path]] in G has at least \operatorname{td}(G) vertices [3].
Matching statistic: St000640
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
[[],[]]
=> ([(0,2),(1,2)],3)
=> ([],2)
=> 0
[[[]]]
=> ([(0,2),(1,2)],3)
=> ([],2)
=> 0
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([],2)
=> 0
[[[],[]]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([],2)
=> 0
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],2)
=> 0
[[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(2,3),(2,4)],5)
=> 1
[[[]],[[]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(2,3),(2,4)],5)
=> 1
[[[[]]],[]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(2,3),(2,4)],5)
=> 1
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],2)
=> 0
[[[[[]]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(2,3),(2,4)],5)
=> 1
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> 0
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> 1
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4)],6)
=> 1
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> 1
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4)],6)
=> 1
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4)],6)
=> 1
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4)],6)
=> 1
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4)],6)
=> 1
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> 1
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4)],6)
=> 1
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4)],6)
=> 1
[[[],[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> 0
[[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> 1
[[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4)],6)
=> 1
[[[[],[]],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> 1
[[[[],[[]]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4)],6)
=> 1
[[[[[]],[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4)],6)
=> 1
[[],[],[],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([],2)
=> 0
[[],[],[[]],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4)],6)
=> 1
[[],[[]],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4)],6)
=> 1
[[],[[]],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4)],6)
=> 1
[[],[[],[],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4)],6)
=> 1
[[],[[],[[]],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4)],6)
=> 1
[[],[[[]],[],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4)],6)
=> 1
[[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(3,4),(3,5),(3,6)],7)
=> 1
[[[]],[],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4)],6)
=> 1
[[[]],[],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4)],6)
=> 1
[[[]],[[]],[],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4)],6)
=> 1
[[[]],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(3,4),(3,5),(3,6)],7)
=> 1
[[[],[],[[]]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4)],6)
=> 1
[[[],[[]],[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4)],6)
=> 1
[[[[]],[],[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4)],6)
=> 1
[[[[]],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(3,4),(3,5),(3,6)],7)
=> 1
[[[],[],[],[],[]]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([],2)
=> 0
[[[],[[]],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4)],6)
=> 1
[[[[]],[],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4)],6)
=> 1
[[[[]],[[]],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4)],6)
=> 1
[[[[],[],[[]]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4)],6)
=> 1
[[[[],[[]],[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4)],6)
=> 1
[[[[[]],[],[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,3),(2,4)],6)
=> 1
Description
The rank of the largest boolean interval in a poset.
Matching statistic: St001335
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Values
[[],[]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
[[[]]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[[[],[]]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
[[[]],[[]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
[[[[]]],[]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[[[[[]]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1
[[[],[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1
[[[[],[]],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[[[],[[]]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1
[[[[[]],[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1
[[],[],[],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0
[[],[],[[]],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[[],[[]],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[[],[[]],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[[],[[],[],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[[],[[],[[]],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[[],[[[]],[],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[[],[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> 1
[[[]],[],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[[[]],[],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[[[]],[[]],[],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[[[]],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> 1
[[[],[],[[]]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[[[],[[]],[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[[[[]],[],[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[[[[]],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> 1
[[[],[],[],[],[]]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0
[[[],[[]],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[[[[]],[],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[[[[]],[[]],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[[[[],[],[[]]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[[[[],[[]],[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[[[[[]],[],[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
Description
The cardinality of a minimal cycle-isolating set of a graph.
Let \mathcal F be a set of graphs. A set of vertices S is \mathcal F-isolating, if the subgraph induced by the vertices in the complement of the closed neighbourhood of S does not contain any graph in \mathcal F.
This statistic returns the cardinality of the smallest isolating set when \mathcal F contains all cycles.
The following 242 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St000259The diameter of a connected graph. St000273The domination number of a graph. St000528The height of a poset. St000758The length of the longest staircase fitting into an integer composition. St000985The number of positive eigenvalues of the adjacency matrix of the graph. St001111The weak 2-dynamic chromatic number of a graph. St001322The size of a minimal independent dominating set in a graph. St001343The dimension of the reduced incidence algebra of a poset. St001716The 1-improper chromatic number of a graph. St001717The largest size of an interval in a poset. St001774The degree of the minimal polynomial of the smallest eigenvalue of a graph. St001776The degree of the minimal polynomial of the largest Laplacian eigenvalue of a graph. St001829The common independence number of a graph. St001108The 2-dynamic chromatic number of a graph. St001512The minimum rank of a graph. St001674The number of vertices of the largest induced star graph in the graph. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St001093The detour number of a graph. St001486The number of corners of the ribbon associated with an integer composition. St000091The descent variation of a composition. St000096The number of spanning trees of a graph. St000146The Andrews-Garvan crank of a partition. St000268The number of strongly connected orientations of a graph. St000271The chromatic index of a graph. St000276The size of the preimage of the map 'to graph' from Ordered trees to Graphs. St000283The size of the preimage of the map 'to graph' from Binary trees to Graphs. St000344The number of strongly connected outdegree sequences of a graph. St000370The genus of a graph. St000450The number of edges minus the number of vertices plus 2 of a graph. St000761The number of ascents in an integer composition. St000768The number of peaks in an integer composition. St000948The chromatic discriminant of a graph. St001057The Grundy value of the game of creating an independent set in a graph. St001070The absolute value of the derivative of the chromatic polynomial of the graph at 1. St001073The number of nowhere zero 3-flows of a graph. St001271The competition number of a graph. St001280The number of parts of an integer partition that are at least two. St001333The cardinality of a minimal edge-isolating set of a graph. St001356The number of vertices in prime modules of a graph. St001367The smallest number which does not occur as degree of a vertex in a graph. St001393The induced matching number of a graph. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001477The number of nowhere zero 5-flows of a graph. St001478The number of nowhere zero 4-flows of a graph. St001484The number of singletons of an integer partition. St001593This is the number of standard Young tableaux of the given shifted shape. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001707The length of a longest path in a graph such that the remaining vertices can be partitioned into two sets of the same size without edges between them. St001743The discrepancy of a graph. St001795The binary logarithm of the evaluation of the Tutte polynomial of the graph at (x,y) equal to (-1,-1). St001796The absolute value of the quotient of the Tutte polynomial of the graph at (1,1) and (-1,-1). St000089The absolute variation of a composition. St000090The variation of a composition. St000093The cardinality of a maximal independent set of vertices of a graph. St000183The side length of the Durfee square of an integer partition. St000291The number of descents of a binary word. St000378The diagonal inversion number of an integer partition. St000469The distinguishing number of a graph. St000473The number of parts of a partition that are strictly bigger than the number of ones. St000630The length of the shortest palindromic decomposition of a binary word. St000760The length of the longest strictly decreasing subsequence of parts of an integer composition. St000764The number of strong records in an integer composition. St000783The side length of the largest staircase partition fitting into a partition. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St000862The number of parts of the shifted shape of a permutation. St001261The Castelnuovo-Mumford regularity of a graph. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St001432The order dimension of the partition. St001591The number of graphs with the given composition of multiplicities of Laplacian eigenvalues. St001642The Prague dimension of a graph. St001654The monophonic hull number of a graph. St001672The restrained domination number of a graph. St001741The largest integer such that all patterns of this size are contained in the permutation. St001775The degree of the minimal polynomial of the largest eigenvalue of a graph. St000388The number of orbits of vertices of a graph under automorphisms. St000691The number of changes of a binary word. St000722The number of different neighbourhoods in a graph. St000767The number of runs in an integer composition. St001352The number of internal nodes in the modular decomposition of a graph. St001951The number of factors in the disjoint direct product decomposition of the automorphism group of a graph. St000315The number of isolated vertices of a graph. St001031The height of the bicoloured Motzkin path associated with the Dyck path. St001316The domatic number of a graph. St000080The rank of the poset. St001581The achromatic number of a graph. St000257The number of distinct parts of a partition that occur at least twice. St000535The rank-width of a graph. St000845The maximal number of elements covered by an element in a poset. St001354The number of series nodes in the modular decomposition of a graph. St000723The maximal cardinality of a set of vertices with the same neighbourhood in a graph. St001339The irredundance number of a graph. St001734The lettericity of a graph. St001917The order of toric promotion on the set of labellings of a graph. St000299The number of nonisomorphic vertex-induced subtrees. St000453The number of distinct Laplacian eigenvalues of a graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000918The 2-limited packing number of a graph. St001315The dissociation number of a graph. St001318The number of vertices of the largest induced subforest with the same number of connected components of a graph. St001321The number of vertices of the largest induced subforest of a graph. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000264The girth of a graph, which is not a tree. St000456The monochromatic index of a connected graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001645The pebbling number of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St001060The distinguishing index of a graph. St000781The number of proper colouring schemes of a Ferrers diagram. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St000298The order dimension or Dushnik-Miller dimension of a poset. St000256The number of parts from which one can substract 2 and still get an integer partition. St000480The number of lower covers of a partition in dominance order. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St001121The multiplicity of the irreducible representation indexed by the partition in the Kronecker square corresponding to the partition. St001340The cardinality of a minimal non-edge isolating set of a graph. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000310The minimal degree of a vertex of a graph. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St001357The maximal degree of a regular spanning subgraph of a graph. St000533The minimum of the number of parts and the size of the first part of an integer partition. St001691The number of kings in a graph. St000387The matching number of a graph. St001670The connected partition number of a graph. St001871The number of triconnected components of a graph. St001345The Hamming dimension of a graph. St001792The arboricity of a graph. St000159The number of distinct parts of the integer partition. St000897The number of different multiplicities of parts of an integer partition. St001570The minimal number of edges to add to make a graph Hamiltonian. St000225Difference between largest and smallest parts in a partition. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St000318The number of addable cells of the Ferrers diagram of an integer partition. St001644The dimension of a graph. St001330The hat guessing number of a graph. St000454The largest eigenvalue of a graph if it is integral. St001305The number of induced cycles on four vertices in a graph. St001324The minimal number of occurrences of the chordal-pattern in a linear ordering of the vertices of the graph. St001325The minimal number of occurrences of the comparability-pattern in a linear ordering of the vertices of the graph. St001689The number of celebrities in a graph. St001692The number of vertices with higher degree than the average degree in a graph. St000544The cop number of a graph. St001545The second Elser number of a connected graph. St000181The number of connected components of the Hasse diagram for the poset. St001309The number of four-cliques in a graph. St001326The minimal number of occurrences of the interval-pattern in a linear ordering of the vertices of the graph. St001327The minimal number of occurrences of the split-pattern in a linear ordering of the vertices of the graph. St001334The minimal number of occurrences of the 3-colorable pattern in a linear ordering of the vertices of the graph. St001272The number of graphs with the same degree sequence. St001331The size of the minimal feedback vertex set. St001336The minimal number of vertices in a graph whose complement is triangle-free. St001395The number of strictly unfriendly partitions of a graph. St001277The degeneracy of a graph. St001358The largest degree of a regular subgraph of a graph. St000449The number of pairs of vertices of a graph with distance 4. St001575The minimal number of edges to add or remove to make a graph edge transitive. St001577The minimal number of edges to add or remove to make a graph a cograph. St001964The interval resolution global dimension of a poset. St001572The minimal number of edges to remove to make a graph bipartite. St001573The minimal number of edges to remove to make a graph triangle-free. St001812The biclique partition number of a graph. St000718The largest Laplacian eigenvalue of a graph if it is integral. St001703The villainy of a graph. St000095The number of triangles of a graph. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000379The number of Hamiltonian cycles in a graph. St000422The energy of a graph, if it is integral. St000699The toughness times the least common multiple of 1,. St001281The normalized isoperimetric number of a graph. St001306The number of induced paths on four vertices in a graph. St001310The number of induced diamond graphs in a graph. St001311The cyclomatic number of a graph. St001317The minimal number of occurrences of the forest-pattern in a linear ordering of the vertices of the graph. St001319The minimal number of occurrences of the star-pattern in a linear ordering of the vertices of the graph. St001328The minimal number of occurrences of the bipartite-pattern in a linear ordering of the vertices of the graph. St001329The minimal number of occurrences of the outerplanar pattern in a linear ordering of the vertices of the graph. St001341The number of edges in the center of a graph. St001423The number of distinct cubes in a binary word. St001520The number of strict 3-descents. St001592The maximal number of simple paths between any two different vertices of a graph. St001651The Frankl number of a lattice. St001960The number of descents of a permutation minus one if its first entry is not one. St000917The open packing number of a graph. St001282The number of graphs with the same chromatic polynomial. St001342The number of vertices in the center of a graph. St001349The number of different graphs obtained from the given graph by removing an edge. St001363The Euler characteristic of a graph according to Knill. St001368The number of vertices of maximal degree in a graph. St001413Half the length of the longest even length palindromic prefix of a binary word. St001459The number of zero columns in the nullspace of a graph. St001475The evaluation of the Tutte polynomial of the graph at (x,y) equal to (1,0). St001476The evaluation of the Tutte polynomial of the graph at (x,y) equal to (1,-1). St001496The number of graphs with the same Laplacian spectrum as the given graph. St001569The maximal modular displacement of a permutation. St001668The number of points of the poset minus the width of the poset. St000822The Hadwiger number of the graph. St001302The number of minimally dominating sets of vertices of a graph. St001304The number of maximally independent sets of vertices of a graph. St001458The rank of the adjacency matrix of a graph. St001488The number of corners of a skew partition. St001563The value of the power-sum symmetric function evaluated at 1. St001564The value of the forgotten symmetric functions when all variables set to 1. St000274The number of perfect matchings of a graph. St000303The determinant of the product of the incidence matrix and its transpose of a graph divided by 4. St001690The length of a longest path in a graph such that after removing the paths edges, every vertex of the path has distance two from some other vertex of the path. St001783The number of odd automorphisms of a graph. St000287The number of connected components of a graph. St001828The Euler characteristic of a graph. St000286The number of connected components of the complement of a graph. St000741The Colin de Verdière graph invariant. St001649The length of a longest trail in a graph. St001307The number of induced stars on four vertices in a graph. St001308The number of induced paths on three vertices in a graph. St001323The independence gap of a graph. St001347The number of pairs of vertices of a graph having the same neighbourhood. St001350Half of the Albertson index of a graph. St001351The Albertson index of a graph. St001374The Padmakar-Ivan index of a graph. St001578The minimal number of edges to add or remove to make a graph a line graph. St001518The number of graphs with the same ordinary spectrum as the given graph. St001373The logarithm of the number of winning configurations of the lights out game on a graph. St001638The book thickness of a graph. St001199The dominant dimension of eAe for the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001198The number of simple modules in the algebra eAe with projective dimension at most 1 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001206The maximal dimension of an indecomposable projective eAe-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module eA. St001498The normalised height of a Nakayama algebra with magnitude 1. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St000790The number of pairs of centered tunnels, one strictly containing the other, of a Dyck path. St000417The size of the automorphism group of the ordered tree. St000679The pruning number of an ordered tree. St001058The breadth of the ordered tree. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000973The length of the boundary of an ordered tree. St000975The length of the boundary minus the length of the trunk of an ordered tree.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!