searching the database
Your data matches 26 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001279
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St001279: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001279: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [2]
=> 2
([],2)
=> [2,2]
=> 4
([(0,1)],2)
=> [3]
=> 3
([],3)
=> [2,2,2,2]
=> 8
([(1,2)],3)
=> [6]
=> 6
([(0,1),(0,2)],3)
=> [3,2]
=> 5
([(0,2),(2,1)],3)
=> [4]
=> 4
([(0,2),(1,2)],3)
=> [3,2]
=> 5
([(2,3)],4)
=> [6,6]
=> 12
([(0,1),(0,2),(0,3)],4)
=> [3,2,2,2]
=> 9
([(0,2),(0,3),(3,1)],4)
=> [7]
=> 7
([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> 6
([(1,2),(2,3)],4)
=> [4,4]
=> 8
([(0,3),(3,1),(3,2)],4)
=> [4,2]
=> 6
([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 6
([(0,3),(1,3),(2,3)],4)
=> [3,2,2,2]
=> 9
([(0,3),(1,2)],4)
=> [3,3,3]
=> 9
([(0,3),(1,2),(1,3)],4)
=> [5,3]
=> 8
([(0,2),(0,3),(1,2),(1,3)],4)
=> [3,2,2]
=> 7
([(0,3),(2,1),(3,2)],4)
=> [5]
=> 5
([(0,3),(1,2),(2,3)],4)
=> [7]
=> 7
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [4,2,2,2]
=> 10
([(1,2),(1,3),(2,4),(3,4)],5)
=> [4,4,2,2]
=> 12
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> 7
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,3,3]
=> 10
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [5,4]
=> 9
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [4,2,2]
=> 8
([(2,3),(3,4)],5)
=> [4,4,4,4]
=> 16
([(1,4),(4,2),(4,3)],5)
=> [4,4,2,2]
=> 12
([(0,4),(4,1),(4,2),(4,3)],5)
=> [4,2,2,2]
=> 10
([(1,4),(2,4),(4,3)],5)
=> [4,4,2,2]
=> 12
([(0,4),(1,4),(4,2),(4,3)],5)
=> [4,2,2]
=> 8
([(0,4),(1,4),(2,4),(4,3)],5)
=> [4,2,2,2]
=> 10
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2,2,2,2]
=> 11
([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> 7
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [5,4]
=> 9
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [4,2,2]
=> 8
([(0,2),(0,4),(3,1),(4,3)],5)
=> [5,4]
=> 9
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [3,2,2,2,2]
=> 11
([(0,3),(3,4),(4,1),(4,2)],5)
=> [5,2]
=> 7
([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 6
([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,3,3]
=> 10
([(0,4),(1,2),(2,3),(3,4)],5)
=> [5,4]
=> 9
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> 7
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> [5,2,2]
=> 9
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [5,2,2]
=> 9
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> [5,2,2]
=> 9
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [5,3,3]
=> 11
([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 8
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> [5,2,2]
=> 9
Description
The sum of the parts of an integer partition that are at least two.
Matching statistic: St000293
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
St000293: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00095: Integer partitions —to binary word⟶ Binary words
St000293: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [2]
=> 100 => 2
([],2)
=> [2,2]
=> 1100 => 4
([(0,1)],2)
=> [3]
=> 1000 => 3
([],3)
=> [2,2,2,2]
=> 111100 => 8
([(1,2)],3)
=> [6]
=> 1000000 => 6
([(0,1),(0,2)],3)
=> [3,2]
=> 10100 => 5
([(0,2),(2,1)],3)
=> [4]
=> 10000 => 4
([(0,2),(1,2)],3)
=> [3,2]
=> 10100 => 5
([(2,3)],4)
=> [6,6]
=> 11000000 => 12
([(0,1),(0,2),(0,3)],4)
=> [3,2,2,2]
=> 1011100 => 9
([(0,2),(0,3),(3,1)],4)
=> [7]
=> 10000000 => 7
([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> 100100 => 6
([(1,2),(2,3)],4)
=> [4,4]
=> 110000 => 8
([(0,3),(3,1),(3,2)],4)
=> [4,2]
=> 100100 => 6
([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 100100 => 6
([(0,3),(1,3),(2,3)],4)
=> [3,2,2,2]
=> 1011100 => 9
([(0,3),(1,2)],4)
=> [3,3,3]
=> 111000 => 9
([(0,3),(1,2),(1,3)],4)
=> [5,3]
=> 1001000 => 8
([(0,2),(0,3),(1,2),(1,3)],4)
=> [3,2,2]
=> 101100 => 7
([(0,3),(2,1),(3,2)],4)
=> [5]
=> 100000 => 5
([(0,3),(1,2),(2,3)],4)
=> [7]
=> 10000000 => 7
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [4,2,2,2]
=> 10011100 => 10
([(1,2),(1,3),(2,4),(3,4)],5)
=> [4,4,2,2]
=> 11001100 => 12
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> 1000100 => 7
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,3,3]
=> 1011000 => 10
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [5,4]
=> 1010000 => 9
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [4,2,2]
=> 1001100 => 8
([(2,3),(3,4)],5)
=> [4,4,4,4]
=> 11110000 => 16
([(1,4),(4,2),(4,3)],5)
=> [4,4,2,2]
=> 11001100 => 12
([(0,4),(4,1),(4,2),(4,3)],5)
=> [4,2,2,2]
=> 10011100 => 10
([(1,4),(2,4),(4,3)],5)
=> [4,4,2,2]
=> 11001100 => 12
([(0,4),(1,4),(4,2),(4,3)],5)
=> [4,2,2]
=> 1001100 => 8
([(0,4),(1,4),(2,4),(4,3)],5)
=> [4,2,2,2]
=> 10011100 => 10
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2,2,2,2]
=> 10111100 => 11
([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> 1000100 => 7
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [5,4]
=> 1010000 => 9
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [4,2,2]
=> 1001100 => 8
([(0,2),(0,4),(3,1),(4,3)],5)
=> [5,4]
=> 1010000 => 9
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [3,2,2,2,2]
=> 10111100 => 11
([(0,3),(3,4),(4,1),(4,2)],5)
=> [5,2]
=> 1000100 => 7
([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 1000000 => 6
([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,3,3]
=> 1011000 => 10
([(0,4),(1,2),(2,3),(3,4)],5)
=> [5,4]
=> 1010000 => 9
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> 1000100 => 7
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> [5,2,2]
=> 10001100 => 9
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [5,2,2]
=> 10001100 => 9
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> [5,2,2]
=> 10001100 => 9
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [5,3,3]
=> 10011000 => 11
([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 10000100 => 8
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> [5,2,2]
=> 10001100 => 9
Description
The number of inversions of a binary word.
Matching statistic: St000300
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> 2
([],2)
=> ([(0,1)],2)
=> ([],2)
=> 4
([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 3
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 8
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 6
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 5
([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 4
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 5
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 12
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 9
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 7
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 8
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 9
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 9
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 8
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 7
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 5
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 7
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 12
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 10
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 9
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 8
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 16
([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 12
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
([(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 12
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 8
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 11
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 9
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 8
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 9
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 11
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 10
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 9
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 9
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 9
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 9
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 11
([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 9
Description
The number of independent sets of vertices of a graph.
An independent set of vertices of a graph $G$ is a subset $U \subset V(G)$ such that no two vertices in $U$ are adjacent.
This is also the number of vertex covers of $G$ as the map $U \mapsto V(G)\setminus U$ is a bijection between independent sets of vertices and vertex covers.
The size of the largest independent set, also called independence number of $G$, is [[St000093]]
Matching statistic: St001034
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001034: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001034: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [2]
=> [1,0,1,0]
=> 2
([],2)
=> [2,2]
=> [1,1,1,0,0,0]
=> 4
([(0,1)],2)
=> [3]
=> [1,0,1,0,1,0]
=> 3
([],3)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> 8
([(1,2)],3)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
([(0,1),(0,2)],3)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 5
([(0,2),(2,1)],3)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 4
([(0,2),(1,2)],3)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 5
([(2,3)],4)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> 12
([(0,1),(0,2),(0,3)],4)
=> [3,2,2,2]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 9
([(0,2),(0,3),(3,1)],4)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 7
([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 6
([(1,2),(2,3)],4)
=> [4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> 8
([(0,3),(3,1),(3,2)],4)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 6
([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 6
([(0,3),(1,3),(2,3)],4)
=> [3,2,2,2]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 9
([(0,3),(1,2)],4)
=> [3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> 9
([(0,3),(1,2),(1,3)],4)
=> [5,3]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> 8
([(0,2),(0,3),(1,2),(1,3)],4)
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> 7
([(0,3),(2,1),(3,2)],4)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
([(0,3),(1,2),(2,3)],4)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 7
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [4,2,2,2]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> 10
([(1,2),(1,3),(2,4),(3,4)],5)
=> [4,4,2,2]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> 12
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 7
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 10
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> 9
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 8
([(2,3),(3,4)],5)
=> [4,4,4,4]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 16
([(1,4),(4,2),(4,3)],5)
=> [4,4,2,2]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> 12
([(0,4),(4,1),(4,2),(4,3)],5)
=> [4,2,2,2]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> 10
([(1,4),(2,4),(4,3)],5)
=> [4,4,2,2]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> 12
([(0,4),(1,4),(4,2),(4,3)],5)
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 8
([(0,4),(1,4),(2,4),(4,3)],5)
=> [4,2,2,2]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> 10
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2,2,2,2]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> 11
([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 7
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> 9
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 8
([(0,2),(0,4),(3,1),(4,3)],5)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> 9
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [3,2,2,2,2]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> 11
([(0,3),(3,4),(4,1),(4,2)],5)
=> [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 7
([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 10
([(0,4),(1,2),(2,3),(3,4)],5)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> 9
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 7
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> 9
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> 9
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> 9
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [5,3,3]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> 11
([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> 8
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> 9
Description
The area of the parallelogram polyomino associated with the Dyck path.
The (bivariate) generating function is given in [1].
Matching statistic: St000290
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
Mp00316: Binary words —inverse Foata bijection⟶ Binary words
St000290: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00095: Integer partitions —to binary word⟶ Binary words
Mp00316: Binary words —inverse Foata bijection⟶ Binary words
St000290: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [2]
=> 100 => 010 => 2
([],2)
=> [2,2]
=> 1100 => 1010 => 4
([(0,1)],2)
=> [3]
=> 1000 => 0010 => 3
([],3)
=> [2,2,2,2]
=> 111100 => 111010 => 8
([(1,2)],3)
=> [6]
=> 1000000 => 0000010 => 6
([(0,1),(0,2)],3)
=> [3,2]
=> 10100 => 10010 => 5
([(0,2),(2,1)],3)
=> [4]
=> 10000 => 00010 => 4
([(0,2),(1,2)],3)
=> [3,2]
=> 10100 => 10010 => 5
([(2,3)],4)
=> [6,6]
=> 11000000 => 00001010 => 12
([(0,1),(0,2),(0,3)],4)
=> [3,2,2,2]
=> 1011100 => 1110010 => 9
([(0,2),(0,3),(3,1)],4)
=> [7]
=> 10000000 => 00000010 => 7
([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> 100100 => 100010 => 6
([(1,2),(2,3)],4)
=> [4,4]
=> 110000 => 001010 => 8
([(0,3),(3,1),(3,2)],4)
=> [4,2]
=> 100100 => 100010 => 6
([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 100100 => 100010 => 6
([(0,3),(1,3),(2,3)],4)
=> [3,2,2,2]
=> 1011100 => 1110010 => 9
([(0,3),(1,2)],4)
=> [3,3,3]
=> 111000 => 101010 => 9
([(0,3),(1,2),(1,3)],4)
=> [5,3]
=> 1001000 => 0100010 => 8
([(0,2),(0,3),(1,2),(1,3)],4)
=> [3,2,2]
=> 101100 => 110010 => 7
([(0,3),(2,1),(3,2)],4)
=> [5]
=> 100000 => 000010 => 5
([(0,3),(1,2),(2,3)],4)
=> [7]
=> 10000000 => 00000010 => 7
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [4,2,2,2]
=> 10011100 => 11100010 => 10
([(1,2),(1,3),(2,4),(3,4)],5)
=> [4,4,2,2]
=> 11001100 => 00111010 => 12
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> 1000100 => 1000010 => 7
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,3,3]
=> 1011000 => 1010010 => 10
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [5,4]
=> 1010000 => 0010010 => 9
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [4,2,2]
=> 1001100 => 1100010 => 8
([(2,3),(3,4)],5)
=> [4,4,4,4]
=> 11110000 => 10101010 => 16
([(1,4),(4,2),(4,3)],5)
=> [4,4,2,2]
=> 11001100 => 00111010 => 12
([(0,4),(4,1),(4,2),(4,3)],5)
=> [4,2,2,2]
=> 10011100 => 11100010 => 10
([(1,4),(2,4),(4,3)],5)
=> [4,4,2,2]
=> 11001100 => 00111010 => 12
([(0,4),(1,4),(4,2),(4,3)],5)
=> [4,2,2]
=> 1001100 => 1100010 => 8
([(0,4),(1,4),(2,4),(4,3)],5)
=> [4,2,2,2]
=> 10011100 => 11100010 => 10
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2,2,2,2]
=> 10111100 => 11110010 => 11
([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> 1000100 => 1000010 => 7
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [5,4]
=> 1010000 => 0010010 => 9
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [4,2,2]
=> 1001100 => 1100010 => 8
([(0,2),(0,4),(3,1),(4,3)],5)
=> [5,4]
=> 1010000 => 0010010 => 9
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [3,2,2,2,2]
=> 10111100 => 11110010 => 11
([(0,3),(3,4),(4,1),(4,2)],5)
=> [5,2]
=> 1000100 => 1000010 => 7
([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 1000000 => 0000010 => 6
([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,3,3]
=> 1011000 => 1010010 => 10
([(0,4),(1,2),(2,3),(3,4)],5)
=> [5,4]
=> 1010000 => 0010010 => 9
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> 1000100 => 1000010 => 7
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> [5,2,2]
=> 10001100 => 11000010 => 9
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [5,2,2]
=> 10001100 => 11000010 => 9
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> [5,2,2]
=> 10001100 => 11000010 => 9
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [5,3,3]
=> 10011000 => 10100010 => 11
([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 10000100 => 10000010 => 8
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> [5,2,2]
=> 10001100 => 11000010 => 9
Description
The major index of a binary word.
This is the sum of the positions of descents, i.e., a one followed by a zero.
For words of length $n$ with $a$ zeros, the generating function for the major index is the $q$-binomial coefficient $\binom{n}{a}_q$.
Matching statistic: St000395
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
St000395: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
St000395: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2
([],2)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 4
([(0,1)],2)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3
([],3)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 8
([(1,2)],3)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 6
([(0,1),(0,2)],3)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 5
([(0,2),(2,1)],3)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 4
([(0,2),(1,2)],3)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 5
([(2,3)],4)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 12
([(0,1),(0,2),(0,3)],4)
=> [3,2,2,2]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 9
([(0,2),(0,3),(3,1)],4)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 7
([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 6
([(1,2),(2,3)],4)
=> [4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 8
([(0,3),(3,1),(3,2)],4)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 6
([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 6
([(0,3),(1,3),(2,3)],4)
=> [3,2,2,2]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 9
([(0,3),(1,2)],4)
=> [3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 9
([(0,3),(1,2),(1,3)],4)
=> [5,3]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 8
([(0,2),(0,3),(1,2),(1,3)],4)
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 7
([(0,3),(2,1),(3,2)],4)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 5
([(0,3),(1,2),(2,3)],4)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 7
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [4,2,2,2]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> 10
([(1,2),(1,3),(2,4),(3,4)],5)
=> [4,4,2,2]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> 12
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 7
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 10
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 9
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 8
([(2,3),(3,4)],5)
=> [4,4,4,4]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> 16
([(1,4),(4,2),(4,3)],5)
=> [4,4,2,2]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> 12
([(0,4),(4,1),(4,2),(4,3)],5)
=> [4,2,2,2]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> 10
([(1,4),(2,4),(4,3)],5)
=> [4,4,2,2]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> 12
([(0,4),(1,4),(4,2),(4,3)],5)
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 8
([(0,4),(1,4),(2,4),(4,3)],5)
=> [4,2,2,2]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> 10
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2,2,2,2]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> 11
([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 7
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 9
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 8
([(0,2),(0,4),(3,1),(4,3)],5)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 9
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [3,2,2,2,2]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> 11
([(0,3),(3,4),(4,1),(4,2)],5)
=> [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 7
([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 6
([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 10
([(0,4),(1,2),(2,3),(3,4)],5)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 9
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 7
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> 9
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> 9
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> 9
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [5,3,3]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> 11
([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> 8
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> 9
Description
The sum of the heights of the peaks of a Dyck path.
Matching statistic: St000070
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
=> 2
([],2)
=> 4
([(0,1)],2)
=> 3
([],3)
=> 8
([(1,2)],3)
=> 6
([(0,1),(0,2)],3)
=> 5
([(0,2),(2,1)],3)
=> 4
([(0,2),(1,2)],3)
=> 5
([(2,3)],4)
=> 12
([(0,1),(0,2),(0,3)],4)
=> 9
([(0,2),(0,3),(3,1)],4)
=> 7
([(0,1),(0,2),(1,3),(2,3)],4)
=> 6
([(1,2),(2,3)],4)
=> 8
([(0,3),(3,1),(3,2)],4)
=> 6
([(0,3),(1,3),(3,2)],4)
=> 6
([(0,3),(1,3),(2,3)],4)
=> 9
([(0,3),(1,2)],4)
=> 9
([(0,3),(1,2),(1,3)],4)
=> 8
([(0,2),(0,3),(1,2),(1,3)],4)
=> 7
([(0,3),(2,1),(3,2)],4)
=> 5
([(0,3),(1,2),(2,3)],4)
=> 7
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 10
([(1,2),(1,3),(2,4),(3,4)],5)
=> 12
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 7
([(0,3),(0,4),(3,2),(4,1)],5)
=> 10
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 9
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 8
([(2,3),(3,4)],5)
=> 16
([(1,4),(4,2),(4,3)],5)
=> 12
([(0,4),(4,1),(4,2),(4,3)],5)
=> 10
([(1,4),(2,4),(4,3)],5)
=> 12
([(0,4),(1,4),(4,2),(4,3)],5)
=> 8
([(0,4),(1,4),(2,4),(4,3)],5)
=> 10
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 11
([(0,4),(1,4),(2,3),(4,2)],5)
=> 7
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> 9
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> 8
([(0,2),(0,4),(3,1),(4,3)],5)
=> 9
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> 11
([(0,3),(3,4),(4,1),(4,2)],5)
=> 7
([(0,4),(2,3),(3,1),(4,2)],5)
=> 6
([(0,3),(1,2),(2,4),(3,4)],5)
=> 10
([(0,4),(1,2),(2,3),(3,4)],5)
=> 9
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 7
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> 9
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 9
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> 9
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> 11
([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> 8
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> 9
([(0,2),(0,3),(2,4),(2,6),(3,4),(3,6),(4,5),(6,1),(6,5)],7)
=> ? = 12
([(0,6),(1,6),(3,5),(4,2),(4,5),(6,3),(6,4)],7)
=> ? = 12
([(0,5),(0,6),(1,5),(1,6),(2,3),(4,3),(5,4),(6,2),(6,4)],7)
=> ? = 12
([(0,5),(1,4),(1,5),(4,6),(5,6),(6,2),(6,3)],7)
=> ? = 12
([(0,2),(0,3),(1,5),(1,6),(2,4),(3,1),(3,4),(4,5),(4,6)],7)
=> ? = 12
([(0,6),(1,2),(1,6),(2,4),(2,5),(4,3),(5,3),(6,4),(6,5)],7)
=> ? = 12
([(0,6),(1,3),(1,6),(3,5),(4,2),(5,4),(6,5)],7)
=> ? = 11
([(0,4),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3)],7)
=> ? = 11
Description
The number of antichains in a poset.
An antichain in a poset $P$ is a subset of elements of $P$ which are pairwise incomparable.
An order ideal is a subset $I$ of $P$ such that $a\in I$ and $b \leq_P a$ implies $b \in I$. Since there is a one-to-one correspondence between antichains and order ideals, this statistic is also the number of order ideals in a poset.
Matching statistic: St000228
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000228: Integer partitions ⟶ ℤResult quality: 64% ●values known / values provided: 64%●distinct values known / distinct values provided: 69%
St000228: Integer partitions ⟶ ℤResult quality: 64% ●values known / values provided: 64%●distinct values known / distinct values provided: 69%
Values
([],1)
=> [2]
=> 2
([],2)
=> [2,2]
=> 4
([(0,1)],2)
=> [3]
=> 3
([],3)
=> [2,2,2,2]
=> 8
([(1,2)],3)
=> [6]
=> 6
([(0,1),(0,2)],3)
=> [3,2]
=> 5
([(0,2),(2,1)],3)
=> [4]
=> 4
([(0,2),(1,2)],3)
=> [3,2]
=> 5
([(2,3)],4)
=> [6,6]
=> ? = 12
([(0,1),(0,2),(0,3)],4)
=> [3,2,2,2]
=> 9
([(0,2),(0,3),(3,1)],4)
=> [7]
=> 7
([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> 6
([(1,2),(2,3)],4)
=> [4,4]
=> 8
([(0,3),(3,1),(3,2)],4)
=> [4,2]
=> 6
([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 6
([(0,3),(1,3),(2,3)],4)
=> [3,2,2,2]
=> 9
([(0,3),(1,2)],4)
=> [3,3,3]
=> 9
([(0,3),(1,2),(1,3)],4)
=> [5,3]
=> 8
([(0,2),(0,3),(1,2),(1,3)],4)
=> [3,2,2]
=> 7
([(0,3),(2,1),(3,2)],4)
=> [5]
=> 5
([(0,3),(1,2),(2,3)],4)
=> [7]
=> 7
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [4,2,2,2]
=> 10
([(1,2),(1,3),(2,4),(3,4)],5)
=> [4,4,2,2]
=> ? = 12
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> 7
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,3,3]
=> 10
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [5,4]
=> 9
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [4,2,2]
=> 8
([(2,3),(3,4)],5)
=> [4,4,4,4]
=> ? = 16
([(1,4),(4,2),(4,3)],5)
=> [4,4,2,2]
=> ? = 12
([(0,4),(4,1),(4,2),(4,3)],5)
=> [4,2,2,2]
=> 10
([(1,4),(2,4),(4,3)],5)
=> [4,4,2,2]
=> ? = 12
([(0,4),(1,4),(4,2),(4,3)],5)
=> [4,2,2]
=> 8
([(0,4),(1,4),(2,4),(4,3)],5)
=> [4,2,2,2]
=> 10
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2,2,2,2]
=> ? = 11
([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> 7
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [5,4]
=> 9
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [4,2,2]
=> 8
([(0,2),(0,4),(3,1),(4,3)],5)
=> [5,4]
=> 9
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [3,2,2,2,2]
=> ? = 11
([(0,3),(3,4),(4,1),(4,2)],5)
=> [5,2]
=> 7
([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 6
([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,3,3]
=> 10
([(0,4),(1,2),(2,3),(3,4)],5)
=> [5,4]
=> 9
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> 7
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> [5,2,2]
=> 9
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [5,2,2]
=> 9
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> [5,2,2]
=> 9
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [5,3,3]
=> ? = 11
([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> 8
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> [5,2,2]
=> 9
([(0,5),(1,2),(1,5),(2,3),(2,4),(5,3),(5,4)],6)
=> [5,4,2]
=> ? = 11
([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> [5,5]
=> 10
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6)
=> [4,3,3,2]
=> ? = 12
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2),(5,3)],6)
=> [5,4,2]
=> ? = 11
([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6)
=> [4,2,2,2]
=> 10
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> [5,4,2]
=> ? = 11
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6)
=> [5,2,2]
=> 9
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [5,5]
=> 10
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> [6,4]
=> 10
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [6,2]
=> 8
([(0,4),(1,3),(1,5),(4,5),(5,2)],6)
=> [5,5,3]
=> ? = 13
([(0,5),(1,4),(4,2),(4,5),(5,3)],6)
=> [6,6]
=> ? = 12
([(1,5),(3,4),(4,2),(5,3)],6)
=> [6,6]
=> ? = 12
([(0,4),(3,5),(4,3),(5,1),(5,2)],6)
=> [6,2]
=> 8
([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [5,3,3]
=> ? = 11
([(0,5),(1,4),(4,2),(5,3)],6)
=> [4,4,4,4]
=> ? = 16
([(0,5),(3,4),(4,2),(5,1),(5,3)],6)
=> [6,4]
=> 10
([(0,3),(1,2),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,3,3,2]
=> ? = 12
([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6)
=> [5,4,2]
=> ? = 11
([(0,5),(3,2),(4,1),(5,3),(5,4)],6)
=> [5,3,3]
=> ? = 11
([(0,5),(1,4),(3,2),(4,3),(4,5)],6)
=> [5,5,3]
=> ? = 13
([(0,2),(0,3),(2,4),(2,6),(3,4),(3,6),(4,5),(6,1),(6,5)],7)
=> [5,5,2]
=> ? = 12
([(0,6),(1,6),(3,5),(4,2),(4,5),(6,3),(6,4)],7)
=> [5,5,2]
=> ? = 12
([(0,5),(0,6),(1,5),(1,6),(2,3),(4,3),(5,4),(6,2),(6,4)],7)
=> [5,5,2]
=> ? = 12
([(0,5),(1,4),(1,5),(4,6),(5,6),(6,2),(6,3)],7)
=> [5,5,2]
=> ? = 12
([(0,2),(0,3),(1,5),(1,6),(2,4),(3,1),(3,4),(4,5),(4,6)],7)
=> [5,5,2]
=> ? = 12
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> [6,5]
=> ? = 11
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [6,5]
=> ? = 11
([(0,6),(1,2),(1,6),(2,4),(2,5),(4,3),(5,3),(6,4),(6,5)],7)
=> [5,5,2]
=> ? = 12
([(0,6),(1,3),(1,6),(3,5),(4,2),(5,4),(6,5)],7)
=> [6,5]
=> ? = 11
([(0,4),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3)],7)
=> [6,5]
=> ? = 11
Description
The size of a partition.
This statistic is the constant statistic of the level sets.
Matching statistic: St001616
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
=> ([(0,1)],2)
=> 2
([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 3
([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 8
([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? = 12
([(0,1),(0,2),(0,3)],4)
=> ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9)
=> 9
([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 7
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 6
([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 8
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 6
([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 6
([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> 9
([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> 9
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> 8
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 7
([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 7
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ? = 10
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,9),(1,10),(2,8),(2,10),(3,7),(4,6),(5,1),(5,2),(5,6),(6,8),(6,9),(8,11),(9,11),(10,3),(10,11),(11,7)],12)
=> ? = 12
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 7
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 10
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> 9
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> 8
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,6),(1,7),(2,1),(2,9),(2,10),(3,8),(3,12),(4,8),(4,11),(5,2),(5,11),(5,12),(6,14),(7,14),(8,13),(9,6),(9,15),(10,7),(10,15),(11,9),(11,13),(12,10),(12,13),(13,15),(15,14)],16)
=> ? = 16
([(1,4),(4,2),(4,3)],5)
=> ([(0,3),(0,4),(1,6),(1,9),(2,6),(2,8),(3,7),(4,5),(4,7),(5,1),(5,2),(5,10),(6,11),(7,10),(8,11),(9,11),(10,8),(10,9)],12)
=> ? = 12
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,7),(1,8),(2,6),(2,8),(3,6),(3,7),(4,5),(5,1),(5,2),(5,3),(6,9),(7,9),(8,9)],10)
=> ? = 10
([(1,4),(2,4),(4,3)],5)
=> ([(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(3,7),(3,8),(4,6),(4,8),(5,1),(5,9),(6,11),(7,11),(8,5),(8,11),(9,10),(11,9)],12)
=> ? = 12
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> 8
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(0,3),(0,4),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,1),(6,9),(7,9),(8,9),(9,5)],10)
=> ? = 10
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(7,10),(8,10),(9,10),(10,1),(10,2)],11)
=> ? = 11
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 7
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> 9
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> 8
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> 9
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,4),(0,5),(1,7),(1,8),(2,6),(2,8),(3,6),(3,7),(4,9),(5,9),(6,10),(7,10),(8,10),(9,1),(9,2),(9,3)],11)
=> ? = 11
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> 7
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 10
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> 9
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 7
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(0,6),(1,8),(2,8),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(8,5)],9)
=> 9
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,6),(1,8),(2,8),(3,7),(4,7),(6,1),(6,2),(7,5),(8,3),(8,4)],9)
=> 9
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> ([(0,3),(0,4),(1,7),(2,7),(3,8),(4,8),(5,6),(6,1),(6,2),(8,5)],9)
=> 9
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,6),(2,9),(3,8),(4,3),(4,7),(5,2),(5,7),(6,4),(6,5),(7,8),(7,9),(8,10),(9,10),(10,1)],11)
=> ? = 11
([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> 8
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> ([(0,4),(0,5),(2,8),(3,8),(4,7),(5,7),(6,2),(6,3),(7,6),(8,1)],9)
=> 9
([(0,5),(1,2),(1,5),(2,3),(2,4),(5,3),(5,4)],6)
=> ([(0,5),(0,6),(1,10),(2,7),(3,7),(4,8),(5,9),(6,4),(6,9),(8,10),(9,1),(9,8),(10,2),(10,3)],11)
=> ? = 11
([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> ([(0,4),(0,6),(1,8),(3,7),(4,9),(5,2),(6,3),(6,9),(7,8),(8,5),(9,1),(9,7)],10)
=> ? = 10
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6)
=> ([(0,3),(0,4),(1,10),(2,9),(3,7),(4,7),(5,2),(5,8),(6,1),(6,8),(7,5),(7,6),(8,9),(8,10),(9,11),(10,11)],12)
=> ? = 12
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2),(5,3)],6)
=> ([(0,4),(0,5),(1,8),(2,10),(3,7),(4,9),(5,9),(6,3),(6,10),(7,8),(9,2),(9,6),(10,1),(10,7)],11)
=> ? = 11
([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6)
=> ([(0,5),(0,6),(1,7),(2,7),(3,8),(4,8),(5,9),(6,9),(8,1),(8,2),(9,3),(9,4)],10)
=> ? = 10
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> ([(0,3),(0,4),(1,7),(2,8),(3,10),(4,10),(5,6),(5,7),(6,2),(6,9),(7,9),(9,8),(10,1),(10,5)],11)
=> ? = 11
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(2,7),(3,7),(4,8),(5,8),(6,1),(7,6),(8,2),(8,3)],9)
=> 9
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? = 10
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
=> ? = 10
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> 8
([(0,4),(1,3),(1,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(1,8),(2,9),(3,10),(4,1),(4,11),(5,2),(5,7),(6,3),(6,7),(7,9),(7,10),(9,12),(10,4),(10,12),(11,8),(12,11)],13)
=> ? = 13
([(0,5),(1,4),(4,2),(4,5),(5,3)],6)
=> ([(0,3),(0,6),(1,8),(2,9),(3,7),(4,2),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,5),(11,9)],12)
=> ? = 12
([(1,5),(3,4),(4,2),(5,3)],6)
=> ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 12
([(0,4),(3,5),(4,3),(5,1),(5,2)],6)
=> ([(0,5),(1,7),(2,7),(3,4),(4,6),(5,3),(6,1),(6,2)],8)
=> 8
([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 11
([(0,5),(1,4),(4,2),(5,3)],6)
=> ([(0,5),(0,6),(1,4),(1,15),(2,3),(2,14),(3,8),(4,9),(5,2),(5,13),(6,1),(6,13),(8,10),(9,11),(10,7),(11,7),(12,10),(12,11),(13,14),(13,15),(14,8),(14,12),(15,9),(15,12)],16)
=> ? = 16
([(0,5),(3,4),(4,2),(5,1),(5,3)],6)
=> ([(0,5),(1,7),(2,8),(3,4),(3,7),(4,2),(4,9),(5,6),(6,1),(6,3),(7,9),(9,8)],10)
=> ? = 10
([(0,3),(1,2),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(0,6),(1,10),(2,9),(3,7),(4,7),(5,2),(5,8),(6,1),(6,8),(8,9),(8,10),(9,11),(10,11),(11,3),(11,4)],12)
=> ? = 12
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> 8
([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 10
([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6)
=> ([(0,4),(0,6),(1,10),(2,7),(3,7),(4,8),(5,1),(5,9),(6,5),(6,8),(8,9),(9,10),(10,2),(10,3)],11)
=> ? = 11
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6)
=> ([(0,5),(1,8),(2,8),(3,7),(4,7),(5,6),(6,1),(6,2),(8,3),(8,4)],9)
=> 9
([(0,4),(2,5),(3,1),(3,5),(4,2),(4,3)],6)
=> ([(0,5),(1,8),(2,9),(3,7),(4,3),(4,9),(5,6),(6,2),(6,4),(7,8),(9,1),(9,7)],10)
=> ? = 10
([(0,5),(3,2),(4,1),(5,3),(5,4)],6)
=> ([(0,5),(1,9),(2,8),(3,2),(3,7),(4,1),(4,7),(5,6),(6,3),(6,4),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 11
([(0,5),(1,4),(3,2),(4,3),(4,5)],6)
=> ([(0,3),(0,6),(1,9),(2,10),(3,7),(4,5),(4,12),(5,1),(5,8),(6,4),(6,7),(7,12),(8,9),(8,10),(9,11),(10,11),(12,2),(12,8)],13)
=> ? = 13
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> 8
([(0,2),(0,3),(2,4),(2,6),(3,4),(3,6),(4,5),(6,1),(6,5)],7)
=> ([(0,7),(1,9),(2,11),(3,10),(4,10),(5,8),(6,5),(6,11),(7,3),(7,4),(8,9),(10,2),(10,6),(11,1),(11,8)],12)
=> ? = 12
([(0,6),(1,6),(3,5),(4,2),(4,5),(6,3),(6,4)],7)
=> ([(0,4),(0,5),(1,10),(2,11),(3,8),(4,9),(5,9),(6,3),(6,11),(7,2),(7,6),(8,10),(9,7),(11,1),(11,8)],12)
=> ? = 12
([(0,5),(0,6),(1,5),(1,6),(2,3),(4,3),(5,4),(6,2),(6,4)],7)
=> ([(0,5),(0,6),(1,8),(3,11),(4,9),(5,10),(6,10),(7,1),(7,11),(8,9),(9,2),(10,3),(10,7),(11,4),(11,8)],12)
=> ? = 12
([(0,5),(1,4),(1,5),(4,6),(5,6),(6,2),(6,3)],7)
=> ([(0,5),(0,6),(1,10),(2,8),(3,8),(4,9),(5,11),(6,4),(6,11),(7,2),(7,3),(9,10),(10,7),(11,1),(11,9)],12)
=> ? = 12
([(0,2),(0,3),(1,5),(1,6),(2,4),(3,1),(3,4),(4,5),(4,6)],7)
=> ([(0,7),(1,11),(2,10),(3,8),(4,8),(5,9),(6,5),(6,10),(7,2),(7,6),(9,11),(10,1),(10,9),(11,3),(11,4)],12)
=> ? = 12
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ? = 11
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ? = 11
([(0,6),(1,2),(1,6),(2,4),(2,5),(4,3),(5,3),(6,4),(6,5)],7)
=> ([(0,6),(0,7),(1,8),(2,9),(3,9),(5,11),(6,10),(7,1),(7,10),(8,11),(9,4),(10,5),(10,8),(11,2),(11,3)],12)
=> ? = 12
([(0,6),(1,3),(1,6),(3,5),(4,2),(5,4),(6,5)],7)
=> ([(0,4),(0,7),(1,9),(3,8),(4,10),(5,2),(6,5),(7,3),(7,10),(8,9),(9,6),(10,1),(10,8)],11)
=> ? = 11
([(0,4),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3)],7)
=> ([(0,6),(1,9),(2,10),(3,8),(4,7),(5,3),(5,10),(6,4),(7,2),(7,5),(8,9),(10,1),(10,8)],11)
=> ? = 11
Description
The number of neutral elements in a lattice.
An element $e$ of the lattice $L$ is neutral if the sublattice generated by $e$, $x$ and $y$ is distributive for all $x, y \in L$.
Matching statistic: St001622
Values
([],1)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 2
([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 4
([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,2),(2,6),(2,7),(2,8),(3,17),(4,16),(5,15),(6,12),(6,13),(7,12),(7,14),(8,13),(8,14),(9,19),(10,19),(11,19),(12,5),(12,18),(13,4),(13,18),(14,3),(14,18),(15,9),(15,10),(16,9),(16,11),(17,10),(17,11),(18,15),(18,16),(18,17),(19,1)],20)
=> ? = 8
([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> 6
([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 5
([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 5
([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ?
=> ? = 12
([(0,1),(0,2),(0,3)],4)
=> ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9)
=> ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9)
=> ?
=> ? = 9
([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> 7
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> 6
([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 8
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> 6
([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> 6
([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ?
=> ? = 9
([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> ? = 9
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,8),(2,13),(3,11),(4,9),(5,10),(6,3),(6,10),(7,4),(7,12),(8,5),(8,6),(9,13),(10,7),(10,11),(11,12),(12,2),(12,9),(13,1)],14)
=> ? = 8
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,7),(2,9),(3,9),(4,8),(5,8),(6,2),(6,3),(7,4),(7,5),(8,6),(9,1)],10)
=> 7
([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> 7
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ?
=> ? = 10
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,9),(1,10),(2,8),(2,10),(3,7),(4,6),(5,1),(5,2),(5,6),(6,8),(6,9),(8,11),(9,11),(10,3),(10,11),(11,7)],12)
=> ([(0,4),(0,5),(1,9),(1,10),(2,8),(2,10),(3,7),(4,6),(5,1),(5,2),(5,6),(6,8),(6,9),(8,11),(9,11),(10,3),(10,11),(11,7)],12)
=> ?
=> ? = 12
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(2,8),(3,8),(4,1),(5,4),(6,7),(7,2),(7,3),(8,5)],9)
=> 7
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ?
=> ? = 10
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,8),(2,14),(3,12),(4,10),(5,11),(6,3),(6,11),(7,4),(7,13),(8,9),(9,5),(9,6),(10,14),(11,7),(11,12),(12,13),(13,2),(13,10),(14,1)],15)
=> 9
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ([(0,6),(1,10),(2,10),(4,9),(5,9),(6,7),(7,4),(7,5),(8,1),(8,2),(9,8),(10,3)],11)
=> ? = 8
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,6),(1,7),(2,1),(2,9),(2,10),(3,8),(3,12),(4,8),(4,11),(5,2),(5,11),(5,12),(6,14),(7,14),(8,13),(9,6),(9,15),(10,7),(10,15),(11,9),(11,13),(12,10),(12,13),(13,15),(15,14)],16)
=> ([(0,3),(0,4),(0,5),(1,6),(1,7),(2,1),(2,9),(2,10),(3,8),(3,12),(4,8),(4,11),(5,2),(5,11),(5,12),(6,14),(7,14),(8,13),(9,6),(9,15),(10,7),(10,15),(11,9),(11,13),(12,10),(12,13),(13,15),(15,14)],16)
=> ?
=> ? = 16
([(1,4),(4,2),(4,3)],5)
=> ([(0,3),(0,4),(1,6),(1,9),(2,6),(2,8),(3,7),(4,5),(4,7),(5,1),(5,2),(5,10),(6,11),(7,10),(8,11),(9,11),(10,8),(10,9)],12)
=> ([(0,3),(0,4),(1,6),(1,9),(2,6),(2,8),(3,7),(4,5),(4,7),(5,1),(5,2),(5,10),(6,11),(7,10),(8,11),(9,11),(10,8),(10,9)],12)
=> ?
=> ? = 12
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,7),(1,8),(2,6),(2,8),(3,6),(3,7),(4,5),(5,1),(5,2),(5,3),(6,9),(7,9),(8,9)],10)
=> ([(0,4),(1,7),(1,8),(2,6),(2,8),(3,6),(3,7),(4,5),(5,1),(5,2),(5,3),(6,9),(7,9),(8,9)],10)
=> ?
=> ? = 10
([(1,4),(2,4),(4,3)],5)
=> ([(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(3,7),(3,8),(4,6),(4,8),(5,1),(5,9),(6,11),(7,11),(8,5),(8,11),(9,10),(11,9)],12)
=> ([(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(3,7),(3,8),(4,6),(4,8),(5,1),(5,9),(6,11),(7,11),(8,5),(8,11),(9,10),(11,9)],12)
=> ?
=> ? = 12
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ([(0,8),(2,10),(3,10),(4,9),(5,9),(6,7),(7,2),(7,3),(8,4),(8,5),(9,6),(10,1)],11)
=> ? = 8
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(0,3),(0,4),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,1),(6,9),(7,9),(8,9),(9,5)],10)
=> ([(0,2),(0,3),(0,4),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,1),(6,9),(7,9),(8,9),(9,5)],10)
=> ?
=> ? = 10
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(7,10),(8,10),(9,10),(10,1),(10,2)],11)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(7,10),(8,10),(9,10),(10,1),(10,2)],11)
=> ?
=> ? = 11
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,7),(2,8),(3,8),(4,5),(5,1),(6,4),(7,2),(7,3),(8,6)],9)
=> 7
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ([(0,9),(1,12),(2,13),(4,11),(5,10),(6,1),(6,11),(7,3),(8,5),(8,14),(9,4),(9,6),(10,13),(11,8),(11,12),(12,14),(13,7),(14,2),(14,10)],15)
=> ? = 9
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> ([(0,8),(2,9),(3,9),(4,10),(5,10),(6,1),(7,4),(7,5),(8,2),(8,3),(9,7),(10,6)],11)
=> ? = 8
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(0,8),(1,15),(3,14),(4,13),(5,12),(6,7),(6,13),(7,5),(7,10),(8,9),(9,4),(9,6),(10,12),(10,14),(11,15),(12,11),(13,3),(13,10),(14,1),(14,11),(15,2)],16)
=> 9
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,4),(0,5),(1,7),(1,8),(2,6),(2,8),(3,6),(3,7),(4,9),(5,9),(6,10),(7,10),(8,10),(9,1),(9,2),(9,3)],11)
=> ([(0,4),(0,5),(1,7),(1,8),(2,6),(2,8),(3,6),(3,7),(4,9),(5,9),(6,10),(7,10),(8,10),(9,1),(9,2),(9,3)],11)
=> ?
=> ? = 11
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,6),(1,8),(2,8),(4,5),(5,7),(6,4),(7,1),(7,2),(8,3)],9)
=> 7
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ?
=> ? = 10
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,9),(2,15),(3,14),(4,11),(5,13),(6,7),(6,14),(7,5),(7,10),(8,1),(9,3),(9,6),(10,13),(10,15),(11,8),(12,11),(13,12),(14,2),(14,10),(15,4),(15,12)],16)
=> ? = 9
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9)
=> 7
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(0,6),(1,8),(2,8),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(8,5)],9)
=> ([(0,6),(1,8),(2,8),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(8,5)],9)
=> ?
=> ? = 9
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,6),(1,8),(2,8),(3,7),(4,7),(6,1),(6,2),(7,5),(8,3),(8,4)],9)
=> ([(0,6),(1,8),(2,8),(3,7),(4,7),(6,1),(6,2),(7,5),(8,3),(8,4)],9)
=> ?
=> ? = 9
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> ([(0,3),(0,4),(1,7),(2,7),(3,8),(4,8),(5,6),(6,1),(6,2),(8,5)],9)
=> ([(0,3),(0,4),(1,7),(2,7),(3,8),(4,8),(5,6),(6,1),(6,2),(8,5)],9)
=> ?
=> ? = 9
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,6),(2,9),(3,8),(4,3),(4,7),(5,2),(5,7),(6,4),(6,5),(7,8),(7,9),(8,10),(9,10),(10,1)],11)
=> ([(0,6),(2,9),(3,8),(4,3),(4,7),(5,2),(5,7),(6,4),(6,5),(7,8),(7,9),(8,10),(9,10),(10,1)],11)
=> ?
=> ? = 11
([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ?
=> ? = 8
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> ([(0,4),(0,5),(2,8),(3,8),(4,7),(5,7),(6,2),(6,3),(7,6),(8,1)],9)
=> ([(0,4),(0,5),(2,8),(3,8),(4,7),(5,7),(6,2),(6,3),(7,6),(8,1)],9)
=> ?
=> ? = 9
([(0,5),(1,2),(1,5),(2,3),(2,4),(5,3),(5,4)],6)
=> ([(0,5),(0,6),(1,10),(2,7),(3,7),(4,8),(5,9),(6,4),(6,9),(8,10),(9,1),(9,8),(10,2),(10,3)],11)
=> ?
=> ?
=> ? = 11
([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> ([(0,4),(0,6),(1,8),(3,7),(4,9),(5,2),(6,3),(6,9),(7,8),(8,5),(9,1),(9,7)],10)
=> ?
=> ?
=> ? = 10
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6)
=> ([(0,3),(0,4),(1,10),(2,9),(3,7),(4,7),(5,2),(5,8),(6,1),(6,8),(7,5),(7,6),(8,9),(8,10),(9,11),(10,11)],12)
=> ?
=> ?
=> ? = 12
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2),(5,3)],6)
=> ([(0,4),(0,5),(1,8),(2,10),(3,7),(4,9),(5,9),(6,3),(6,10),(7,8),(9,2),(9,6),(10,1),(10,7)],11)
=> ?
=> ?
=> ? = 11
([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6)
=> ([(0,5),(0,6),(1,7),(2,7),(3,8),(4,8),(5,9),(6,9),(8,1),(8,2),(9,3),(9,4)],10)
=> ?
=> ?
=> ? = 10
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> ([(0,3),(0,4),(1,7),(2,8),(3,10),(4,10),(5,6),(5,7),(6,2),(6,9),(7,9),(9,8),(10,1),(10,5)],11)
=> ?
=> ?
=> ? = 11
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(2,7),(3,7),(4,8),(5,8),(6,1),(7,6),(8,2),(8,3)],9)
=> ([(0,4),(0,5),(2,7),(3,7),(4,8),(5,8),(6,1),(7,6),(8,2),(8,3)],9)
=> ?
=> ? = 9
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(0,9),(1,13),(2,14),(4,12),(5,11),(6,1),(6,12),(7,3),(8,5),(8,15),(9,10),(10,4),(10,6),(11,14),(12,8),(12,13),(13,15),(14,7),(15,2),(15,11)],16)
=> 10
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
=> ([(0,6),(2,9),(3,7),(4,2),(4,8),(5,4),(5,7),(6,3),(6,5),(7,8),(8,9),(9,1)],10)
=> ?
=> ? = 10
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> ?
=> ? = 8
([(0,4),(1,3),(1,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(1,8),(2,9),(3,10),(4,1),(4,11),(5,2),(5,7),(6,3),(6,7),(7,9),(7,10),(9,12),(10,4),(10,12),(11,8),(12,11)],13)
=> ?
=> ?
=> ? = 13
([(0,5),(1,4),(4,2),(4,5),(5,3)],6)
=> ([(0,3),(0,6),(1,8),(2,9),(3,7),(4,2),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,5),(11,9)],12)
=> ?
=> ?
=> ? = 12
([(1,5),(3,4),(4,2),(5,3)],6)
=> ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ?
=> ?
=> ? = 12
([(0,4),(3,5),(4,3),(5,1),(5,2)],6)
=> ([(0,5),(1,7),(2,7),(3,4),(4,6),(5,3),(6,1),(6,2)],8)
=> ([(0,5),(1,7),(2,7),(3,4),(4,6),(5,3),(6,1),(6,2)],8)
=> ?
=> ? = 8
([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ?
=> ? = 11
([(0,5),(1,4),(4,2),(5,3)],6)
=> ([(0,5),(0,6),(1,4),(1,15),(2,3),(2,14),(3,8),(4,9),(5,2),(5,13),(6,1),(6,13),(8,10),(9,11),(10,7),(11,7),(12,10),(12,11),(13,14),(13,15),(14,8),(14,12),(15,9),(15,12)],16)
=> ?
=> ?
=> ? = 16
([(0,5),(3,4),(4,2),(5,1),(5,3)],6)
=> ([(0,5),(1,7),(2,8),(3,4),(3,7),(4,2),(4,9),(5,6),(6,1),(6,3),(7,9),(9,8)],10)
=> ([(0,5),(1,7),(2,8),(3,4),(3,7),(4,2),(4,9),(5,6),(6,1),(6,3),(7,9),(9,8)],10)
=> ?
=> ? = 10
([(0,3),(1,2),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(0,6),(1,10),(2,9),(3,7),(4,7),(5,2),(5,8),(6,1),(6,8),(8,9),(8,10),(9,11),(10,11),(11,3),(11,4)],12)
=> ?
=> ?
=> ? = 12
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(0,7),(2,9),(3,9),(4,1),(5,8),(6,4),(7,5),(8,2),(8,3),(9,6)],10)
=> 8
([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ?
=> ? = 10
([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6)
=> ([(0,4),(0,6),(1,10),(2,7),(3,7),(4,8),(5,1),(5,9),(6,5),(6,8),(8,9),(9,10),(10,2),(10,3)],11)
=> ?
=> ?
=> ? = 11
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6)
=> ([(0,5),(1,8),(2,8),(3,7),(4,7),(5,6),(6,1),(6,2),(8,3),(8,4)],9)
=> ([(0,5),(1,8),(2,8),(3,7),(4,7),(5,6),(6,1),(6,2),(8,3),(8,4)],9)
=> ?
=> ? = 9
([(0,4),(2,5),(3,1),(3,5),(4,2),(4,3)],6)
=> ([(0,5),(1,8),(2,9),(3,7),(4,3),(4,9),(5,6),(6,2),(6,4),(7,8),(9,1),(9,7)],10)
=> ?
=> ?
=> ? = 10
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> 7
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11)
=> ([(0,10),(1,15),(2,14),(4,13),(5,12),(6,3),(7,1),(7,12),(8,4),(8,16),(9,6),(10,11),(11,5),(11,7),(12,8),(12,15),(13,14),(14,9),(15,16),(16,2),(16,13)],17)
=> 11
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11)
=> ([(0,10),(1,15),(3,14),(4,13),(5,12),(6,11),(7,1),(7,12),(8,2),(9,4),(9,16),(10,6),(11,5),(11,7),(12,9),(12,15),(13,14),(14,8),(15,16),(16,3),(16,13)],17)
=> 11
Description
The number of join-irreducible elements of a lattice.
An element $j$ of a lattice $L$ is '''join irreducible''' if it is not the least element and if $j=x\vee y$, then $j\in\{x,y\}$ for all $x,y\in L$.
The following 16 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000479The Ramsey number of a graph. St000550The number of modular elements of a lattice. St000551The number of left modular elements of a lattice. St001614The cyclic permutation representation number of a skew partition. St001318The number of vertices of the largest induced subforest with the same number of connected components of a graph. St001321The number of vertices of the largest induced subforest of a graph. St001342The number of vertices in the center of a graph. St000987The number of positive eigenvalues of the Laplacian matrix of the graph. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St000656The number of cuts of a poset. St001717The largest size of an interval in a poset. St001300The rank of the boundary operator in degree 1 of the chain complex of the order complex of the poset. St001615The number of join prime elements of a lattice. St001617The dimension of the space of valuations of a lattice. St000189The number of elements in the poset. St001875The number of simple modules with projective dimension at most 1.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!