searching the database
Your data matches 72 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001116
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 2 + 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3 = 2 + 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 3 = 2 + 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 3 = 2 + 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 3 = 2 + 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 3 = 2 + 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> 3 = 2 + 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 3 = 2 + 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 3 = 2 + 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> 3 = 2 + 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 2 + 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 3 = 2 + 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,1),(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 3 = 2 + 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5)],7)
=> 3 = 2 + 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,1),(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 3 = 2 + 1
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 3 = 2 + 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 3 = 2 + 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 3 = 2 + 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 3 = 2 + 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> 3 = 2 + 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7)
=> 3 = 2 + 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 3 = 2 + 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> 3 = 2 + 1
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,6),(1,2),(1,3),(2,5),(3,4),(4,6),(5,6)],7)
=> 3 = 2 + 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> 3 = 2 + 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 3 = 2 + 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 3 = 2 + 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7)
=> 3 = 2 + 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5)],7)
=> 3 = 2 + 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 3 = 2 + 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7)
=> 3 = 2 + 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,1),(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 3 = 2 + 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7)
=> 3 = 2 + 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 3 = 2 + 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 3 = 2 + 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6)],7)
=> 3 = 2 + 1
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> 3 = 2 + 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7)
=> 3 = 2 + 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,1),(0,6),(1,5),(2,4),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> 3 = 2 + 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> 3 = 2 + 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> 3 = 2 + 1
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,4),(0,6),(1,3),(1,5),(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> 3 = 2 + 1
Description
The game chromatic number of a graph.
Two players, Alice and Bob, take turns colouring properly any uncolored vertex of the graph. Alice begins. If it is not possible for either player to colour a vertex, then Bob wins. If the graph is completely colored, Alice wins.
The game chromatic number is the smallest number of colours such that Alice has a winning strategy.
Matching statistic: St000260
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 2
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> 2
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> 2
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> 2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 2
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,1),(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,1),(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> 2
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> 2
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> 2
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> 2
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7)
=> ([(0,1),(0,2),(0,6),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7)
=> 2
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> ([(0,1),(0,4),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7)
=> 2
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,6),(1,2),(1,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,4),(0,6),(1,3),(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7)
=> 2
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7)
=> 2
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7)
=> ([(0,1),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7)
=> 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(5,6)],7)
=> 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,1),(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> 2
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7)
=> ([(0,1),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> 2
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7)
=> 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6)],7)
=> ([(0,1),(0,2),(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> 2
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7)
=> ([(0,1),(0,2),(0,6),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,1),(0,6),(1,5),(2,4),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,2),(0,6),(1,3),(1,4),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> 2
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> 2
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,4),(0,6),(1,3),(1,5),(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
Description
The radius of a connected graph.
This is the minimum eccentricity of any vertex.
Matching statistic: St001674
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 2 + 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 3 = 2 + 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3 = 2 + 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3 = 2 + 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> 3 = 2 + 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3 = 2 + 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> 3 = 2 + 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)
=> 3 = 2 + 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,1),(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> 3 = 2 + 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,1),(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> 3 = 2 + 1
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> 3 = 2 + 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> 3 = 2 + 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> 3 = 2 + 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7)
=> ([(0,1),(0,2),(0,6),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7)
=> 3 = 2 + 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> ([(0,1),(0,4),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7)
=> 3 = 2 + 1
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,6),(1,2),(1,3),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> 3 = 2 + 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,4),(0,6),(1,3),(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7)
=> 3 = 2 + 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7)
=> 3 = 2 + 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7)
=> ([(0,1),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> 3 = 2 + 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(0,1),(0,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7)
=> 3 = 2 + 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(5,6)],7)
=> 3 = 2 + 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,1),(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> 3 = 2 + 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7)
=> ([(0,1),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> 3 = 2 + 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7)
=> 3 = 2 + 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6)],7)
=> ([(0,1),(0,2),(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> 3 = 2 + 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7)
=> ([(0,1),(0,2),(0,6),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,1),(0,6),(1,5),(2,4),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> ([(0,2),(0,6),(1,3),(1,4),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> 3 = 2 + 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> 3 = 2 + 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7)
=> 3 = 2 + 1
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,4),(0,6),(1,3),(1,5),(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
Description
The number of vertices of the largest induced star graph in the graph.
Matching statistic: St000781
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00263: Lattices —join irreducibles⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000781: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 99%●distinct values known / distinct values provided: 50%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000781: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 99%●distinct values known / distinct values provided: 50%
Values
([],1)
=> ([],0)
=> ?
=> ? = 0 - 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> [3]
=> 1 = 2 - 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(1,2)],3)
=> [2,1]
=> 1 = 2 - 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2)],3)
=> [2,1]
=> 1 = 2 - 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 1 = 2 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(2,3)],4)
=> [2,1,1]
=> 1 = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(1,2),(1,3)],4)
=> [2,1,1]
=> 1 = 2 - 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> 1 = 2 - 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> 1 = 2 - 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1 = 2 - 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(1,2),(2,3)],4)
=> [3,1]
=> 1 = 2 - 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([],3)
=> [1,1,1]
=> 1 = 2 - 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> 1 = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> 1 = 2 - 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> [2,1]
=> 1 = 2 - 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 1 = 2 - 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 1 = 2 - 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([(2,3),(2,4)],5)
=> [2,1,1,1]
=> 1 = 2 - 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> 1 = 2 - 1
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> 1 = 2 - 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> 1 = 2 - 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> 1 = 2 - 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> 1 = 2 - 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> 1 = 2 - 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> 1 = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(1,2),(1,3)],4)
=> [2,1,1]
=> 1 = 2 - 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> 1 = 2 - 1
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> 1 = 2 - 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> 1 = 2 - 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(2,3),(3,4)],5)
=> [3,1,1]
=> 1 = 2 - 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> 1 = 2 - 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([],4)
=> [1,1,1,1]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(1,3),(2,3)],4)
=> [2,1,1]
=> 1 = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([],4)
=> [1,1,1,1]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(2,3)],4)
=> [2,1,1]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([],3)
=> [1,1,1]
=> 1 = 2 - 1
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(2,3)],4)
=> [2,1,1]
=> 1 = 2 - 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> 1 = 2 - 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(1,4),(2,3)],5)
=> [2,2,1]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(2,3)],4)
=> [2,1,1]
=> 1 = 2 - 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(1,2),(2,3)],4)
=> [3,1]
=> 1 = 2 - 1
Description
The number of proper colouring schemes of a Ferrers diagram.
A colouring of a Ferrers diagram is proper if no two cells in a row or in a column have the same colour. The minimal number of colours needed is the maximum of the length and the first part of the partition, because we can restrict a latin square to the shape. We can associate to each colouring the integer partition recording how often each colour is used, see [1].
This statistic is the number of distinct such integer partitions that occur.
Matching statistic: St000993
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00193: Lattices —to poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000993: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 99%●distinct values known / distinct values provided: 50%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000993: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 99%●distinct values known / distinct values provided: 50%
Values
([],1)
=> ([],1)
=> [1]
=> ? = 0 - 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 1 = 2 - 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [4,1]
=> 1 = 2 - 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> 1 = 2 - 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 1 = 2 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> [4,1,1]
=> 1 = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> [4,1,1]
=> 1 = 2 - 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> [4,1,1]
=> 1 = 2 - 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> [5,1]
=> 1 = 2 - 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> 1 = 2 - 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> [5,1]
=> 1 = 2 - 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [5,1]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> [4,1,1]
=> 1 = 2 - 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [5,1]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> [4,1,1]
=> 1 = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [4,2]
=> 1 = 2 - 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 1 = 2 - 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> 1 = 2 - 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> [5,1]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> [4,1,1,1]
=> 1 = 2 - 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> [4,1,1,1]
=> 1 = 2 - 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> [4,1,1,1]
=> 1 = 2 - 1
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> [4,1,1,1]
=> 1 = 2 - 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> [5,1,1]
=> 1 = 2 - 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> [5,1,1]
=> 1 = 2 - 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> [5,1,1]
=> 1 = 2 - 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> [5,1,1]
=> 1 = 2 - 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> [5,1,1]
=> 1 = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> [5,1,1]
=> 1 = 2 - 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> [6,1]
=> 1 = 2 - 1
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> [5,2]
=> 1 = 2 - 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [5,2]
=> 1 = 2 - 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> [5,1,1]
=> 1 = 2 - 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> [5,1,1]
=> 1 = 2 - 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> [5,1,1]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> [4,1,1,1]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> [5,1,1]
=> 1 = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> [5,2]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> [4,1,1,1]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> [5,1,1]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> [4,1,1,1]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> [4,2,1]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> [4,2,1]
=> 1 = 2 - 1
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> [6,1]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> [5,1,1]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> [4,2,1]
=> 1 = 2 - 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> [5,1,1]
=> 1 = 2 - 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> [4,2,1]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> [4,2,1]
=> 1 = 2 - 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> [5,2]
=> 1 = 2 - 1
Description
The multiplicity of the largest part of an integer partition.
Matching statistic: St001496
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Values
([],1)
=> ([],0)
=> ?
=> ? = 0 - 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1 = 2 - 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 1 = 2 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1 = 2 - 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 1 = 2 - 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 1 = 2 - 1
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 1 = 2 - 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 2 - 1
Description
The number of graphs with the same Laplacian spectrum as the given graph.
Matching statistic: St000095
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
=> ([],0)
=> ?
=> ? = 0 - 2
([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 2 - 2
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 0 = 2 - 2
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 2 - 2
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 2 - 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 0 = 2 - 2
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 2 - 2
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 0 = 2 - 2
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([],3)
=> ([],3)
=> 0 = 2 - 2
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 0 = 2 - 2
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 0 = 2 - 2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 2 - 2
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(3,4)],5)
=> ([(3,4)],5)
=> 0 = 2 - 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 0 = 2 - 2
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 0 = 2 - 2
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 0 = 2 - 2
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 0 = 2 - 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 2 - 2
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 2 - 2
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([],4)
=> ([],4)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 0 = 2 - 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([],4)
=> ([],4)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 0 = 2 - 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([],3)
=> ([],3)
=> 0 = 2 - 2
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 0 = 2 - 2
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 0 = 2 - 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 0 = 2 - 2
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 2 - 2
Description
The number of triangles of a graph.
A triangle $T$ of a graph $G$ is a collection of three vertices $\{u,v,w\} \in G$ such that they form $K_3$, the complete graph on three vertices.
Matching statistic: St000322
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Values
([],1)
=> ([],0)
=> ?
=> ? = 0 - 2
([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0 = 2 - 2
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 2 - 2
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> 0 = 2 - 2
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0 = 2 - 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 0 = 2 - 2
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> 0 = 2 - 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0 = 2 - 2
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 0 = 2 - 2
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 2 - 2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = 2 - 2
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 0 = 2 - 2
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 0 = 2 - 2
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 0 = 2 - 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0 = 2 - 2
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0 = 2 - 2
Description
The skewness of a graph.
For a graph $G$, the '''skewness''' of $G$ is the minimum number of edges of $G$ whose removal results in a planar graph.
Matching statistic: St000323
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Values
([],1)
=> ([],0)
=> ?
=> ? = 0 - 2
([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0 = 2 - 2
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 2 - 2
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> 0 = 2 - 2
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0 = 2 - 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 0 = 2 - 2
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> 0 = 2 - 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0 = 2 - 2
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 0 = 2 - 2
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 2 - 2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = 2 - 2
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 0 = 2 - 2
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 0 = 2 - 2
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 0 = 2 - 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0 = 2 - 2
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0 = 2 - 2
Description
The minimal crossing number of a graph.
A '''drawing''' of a graph $G$ is a drawing in $\mathbb{R}^2$ such that
* the vertices of $G$ are distinct points,
* the edges of $G$ are simple curves joining their endpoints,
* no edge passes through a vertex, and
* no three edges cross in a common point.
The '''minimal crossing number''' of $G$ is then the minimal number of crossings of edges in a drawing of $G$.
In particular, a graph is planar if and only if its minimal crossing number is $0$.
It is moreover conjectured that the crossing number of the complete graph $K_n$ [1] is
$$\frac{1}{4}\lfloor \frac{n}{2} \rfloor\lfloor \frac{n-1}{2} \rfloor\lfloor \frac{n-2}{2} \rfloor\lfloor \frac{n-3}{2} \rfloor,$$
and the crossing number of the complete bipartite graph $K_{n,m}$ [2] is
$$\lfloor \frac{n}{2} \rfloor\lfloor \frac{n-1}{2} \rfloor\lfloor \frac{m}{2} \rfloor\lfloor \frac{m-1}{2} \rfloor.$$
A general algorithm to compute the crossing number is e.g. given in [3].
This statistics data was provided by Markus Chimani [6].
Matching statistic: St000370
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Values
([],1)
=> ([],0)
=> ?
=> ? = 0 - 2
([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0 = 2 - 2
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 2 - 2
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> 0 = 2 - 2
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0 = 2 - 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 0 = 2 - 2
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> ([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> 0 = 2 - 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0 = 2 - 2
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 0 = 2 - 2
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 2 - 2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = 2 - 2
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)
=> ([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)
=> ([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)
=> ([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)
=> ([(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)
=> ([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 0 = 2 - 2
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 0 = 2 - 2
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)
=> ([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)
=> ([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 0 = 2 - 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0 = 2 - 2
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)
=> ([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0 = 2 - 2
Description
The genus of a graph.
This is the smallest genus of an oriented surface on which the graph can be embedded without crossings. One can indeed compute the genus as the sum of the genuses for the connected components.
The following 62 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000379The number of Hamiltonian cycles in a graph. St000449The number of pairs of vertices of a graph with distance 4. St000699The toughness times the least common multiple of 1,. St000929The constant term of the character polynomial of an integer partition. St001281The normalized isoperimetric number of a graph. St001309The number of four-cliques in a graph. St001310The number of induced diamond graphs in a graph. St001325The minimal number of occurrences of the comparability-pattern in a linear ordering of the vertices of the graph. St001334The minimal number of occurrences of the 3-colorable pattern in a linear ordering of the vertices of the graph. St001336The minimal number of vertices in a graph whose complement is triangle-free. St001573The minimal number of edges to remove to make a graph triangle-free. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St001690The length of a longest path in a graph such that after removing the paths edges, every vertex of the path has distance two from some other vertex of the path. St001793The difference between the clique number and the chromatic number of a graph. St001845The number of join irreducibles minus the rank of a lattice. St001871The number of triconnected components of a graph. St000264The girth of a graph, which is not a tree. St000762The sum of the positions of the weak records of an integer composition. St000785The number of distinct colouring schemes of a graph. St001498The normalised height of a Nakayama algebra with magnitude 1. St001518The number of graphs with the same ordinary spectrum as the given graph. St000478Another weight of a partition according to Alladi. St000713The dimension of the irreducible representation of Sp(4) labelled by an integer partition. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000716The dimension of the irreducible representation of Sp(6) labelled by an integer partition. St000790The number of pairs of centered tunnels, one strictly containing the other, of a Dyck path. St000791The number of pairs of left tunnels, one strictly containing the other, of a Dyck path. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St001107The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. St001307The number of induced stars on four vertices in a graph. St001651The Frankl number of a lattice. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001890The maximum magnitude of the Möbius function of a poset. St000914The sum of the values of the Möbius function of a poset. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St001095The number of non-isomorphic posets with precisely one further covering relation. St001175The size of a partition minus the hook length of the base cell. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001568The smallest positive integer that does not appear twice in the partition. St000635The number of strictly order preserving maps of a poset into itself. St000455The second largest eigenvalue of a graph if it is integral. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001875The number of simple modules with projective dimension at most 1. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001625The Möbius invariant of a lattice. St000454The largest eigenvalue of a graph if it is integral. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St001881The number of factors of a lattice as a Cartesian product of lattices. St001626The number of maximal proper sublattices of a lattice. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St000422The energy of a graph, if it is integral. St000718The largest Laplacian eigenvalue of a graph if it is integral. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!