Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000225
Mp00311: Plane partitions to partitionInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000225: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1]
=> [1]
=> 0
[[1],[1]]
=> [1,1]
=> [2]
=> 0
[[2]]
=> [2]
=> [1,1]
=> 0
[[1,1]]
=> [2]
=> [1,1]
=> 0
[[1],[1],[1]]
=> [1,1,1]
=> [3]
=> 0
[[2],[1]]
=> [2,1]
=> [2,1]
=> 1
[[1,1],[1]]
=> [2,1]
=> [2,1]
=> 1
[[3]]
=> [3]
=> [1,1,1]
=> 0
[[2,1]]
=> [3]
=> [1,1,1]
=> 0
[[1,1,1]]
=> [3]
=> [1,1,1]
=> 0
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [4]
=> 0
[[2],[1],[1]]
=> [2,1,1]
=> [3,1]
=> 2
[[2],[2]]
=> [2,2]
=> [2,2]
=> 0
[[1,1],[1],[1]]
=> [2,1,1]
=> [3,1]
=> 2
[[1,1],[1,1]]
=> [2,2]
=> [2,2]
=> 0
[[3],[1]]
=> [3,1]
=> [2,1,1]
=> 1
[[2,1],[1]]
=> [3,1]
=> [2,1,1]
=> 1
[[1,1,1],[1]]
=> [3,1]
=> [2,1,1]
=> 1
[[4]]
=> [4]
=> [1,1,1,1]
=> 0
[[3,1]]
=> [4]
=> [1,1,1,1]
=> 0
[[2,2]]
=> [4]
=> [1,1,1,1]
=> 0
[[2,1,1]]
=> [4]
=> [1,1,1,1]
=> 0
[[1,1,1,1]]
=> [4]
=> [1,1,1,1]
=> 0
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [5]
=> 0
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [4,1]
=> 3
[[2],[2],[1]]
=> [2,2,1]
=> [3,2]
=> 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [4,1]
=> 3
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [3,2]
=> 1
[[3],[1],[1]]
=> [3,1,1]
=> [3,1,1]
=> 2
[[3],[2]]
=> [3,2]
=> [2,2,1]
=> 1
[[2,1],[1],[1]]
=> [3,1,1]
=> [3,1,1]
=> 2
[[2,1],[2]]
=> [3,2]
=> [2,2,1]
=> 1
[[2,1],[1,1]]
=> [3,2]
=> [2,2,1]
=> 1
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [3,1,1]
=> 2
[[1,1,1],[1,1]]
=> [3,2]
=> [2,2,1]
=> 1
[[4],[1]]
=> [4,1]
=> [2,1,1,1]
=> 1
[[3,1],[1]]
=> [4,1]
=> [2,1,1,1]
=> 1
[[2,2],[1]]
=> [4,1]
=> [2,1,1,1]
=> 1
[[2,1,1],[1]]
=> [4,1]
=> [2,1,1,1]
=> 1
[[1,1,1,1],[1]]
=> [4,1]
=> [2,1,1,1]
=> 1
[[5]]
=> [5]
=> [1,1,1,1,1]
=> 0
[[4,1]]
=> [5]
=> [1,1,1,1,1]
=> 0
[[3,2]]
=> [5]
=> [1,1,1,1,1]
=> 0
[[3,1,1]]
=> [5]
=> [1,1,1,1,1]
=> 0
[[2,2,1]]
=> [5]
=> [1,1,1,1,1]
=> 0
[[2,1,1,1]]
=> [5]
=> [1,1,1,1,1]
=> 0
[[1,1,1,1,1]]
=> [5]
=> [1,1,1,1,1]
=> 0
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [6]
=> 0
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [5,1]
=> 4
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [4,2]
=> 2
Description
Difference between largest and smallest parts in a partition.
Matching statistic: St001804
Mp00311: Plane partitions to partitionInteger partitions
Mp00045: Integer partitions reading tableauStandard tableaux
St001804: Standard tableaux ⟶ ℤResult quality: 30% values known / values provided: 30%distinct values known / distinct values provided: 78%
Values
[[1]]
=> [1]
=> [[1]]
=> 1 = 0 + 1
[[1],[1]]
=> [1,1]
=> [[1],[2]]
=> 1 = 0 + 1
[[2]]
=> [2]
=> [[1,2]]
=> 1 = 0 + 1
[[1,1]]
=> [2]
=> [[1,2]]
=> 1 = 0 + 1
[[1],[1],[1]]
=> [1,1,1]
=> [[1],[2],[3]]
=> 1 = 0 + 1
[[2],[1]]
=> [2,1]
=> [[1,3],[2]]
=> 2 = 1 + 1
[[1,1],[1]]
=> [2,1]
=> [[1,3],[2]]
=> 2 = 1 + 1
[[3]]
=> [3]
=> [[1,2,3]]
=> 1 = 0 + 1
[[2,1]]
=> [3]
=> [[1,2,3]]
=> 1 = 0 + 1
[[1,1,1]]
=> [3]
=> [[1,2,3]]
=> 1 = 0 + 1
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 1 = 0 + 1
[[2],[1],[1]]
=> [2,1,1]
=> [[1,4],[2],[3]]
=> 3 = 2 + 1
[[2],[2]]
=> [2,2]
=> [[1,2],[3,4]]
=> 1 = 0 + 1
[[1,1],[1],[1]]
=> [2,1,1]
=> [[1,4],[2],[3]]
=> 3 = 2 + 1
[[1,1],[1,1]]
=> [2,2]
=> [[1,2],[3,4]]
=> 1 = 0 + 1
[[3],[1]]
=> [3,1]
=> [[1,3,4],[2]]
=> 2 = 1 + 1
[[2,1],[1]]
=> [3,1]
=> [[1,3,4],[2]]
=> 2 = 1 + 1
[[1,1,1],[1]]
=> [3,1]
=> [[1,3,4],[2]]
=> 2 = 1 + 1
[[4]]
=> [4]
=> [[1,2,3,4]]
=> 1 = 0 + 1
[[3,1]]
=> [4]
=> [[1,2,3,4]]
=> 1 = 0 + 1
[[2,2]]
=> [4]
=> [[1,2,3,4]]
=> 1 = 0 + 1
[[2,1,1]]
=> [4]
=> [[1,2,3,4]]
=> 1 = 0 + 1
[[1,1,1,1]]
=> [4]
=> [[1,2,3,4]]
=> 1 = 0 + 1
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1 = 0 + 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 4 = 3 + 1
[[2],[2],[1]]
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> 2 = 1 + 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 4 = 3 + 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> 2 = 1 + 1
[[3],[1],[1]]
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> 3 = 2 + 1
[[3],[2]]
=> [3,2]
=> [[1,2,5],[3,4]]
=> 2 = 1 + 1
[[2,1],[1],[1]]
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> 3 = 2 + 1
[[2,1],[2]]
=> [3,2]
=> [[1,2,5],[3,4]]
=> 2 = 1 + 1
[[2,1],[1,1]]
=> [3,2]
=> [[1,2,5],[3,4]]
=> 2 = 1 + 1
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> 3 = 2 + 1
[[1,1,1],[1,1]]
=> [3,2]
=> [[1,2,5],[3,4]]
=> 2 = 1 + 1
[[4],[1]]
=> [4,1]
=> [[1,3,4,5],[2]]
=> 2 = 1 + 1
[[3,1],[1]]
=> [4,1]
=> [[1,3,4,5],[2]]
=> 2 = 1 + 1
[[2,2],[1]]
=> [4,1]
=> [[1,3,4,5],[2]]
=> 2 = 1 + 1
[[2,1,1],[1]]
=> [4,1]
=> [[1,3,4,5],[2]]
=> 2 = 1 + 1
[[1,1,1,1],[1]]
=> [4,1]
=> [[1,3,4,5],[2]]
=> 2 = 1 + 1
[[5]]
=> [5]
=> [[1,2,3,4,5]]
=> 1 = 0 + 1
[[4,1]]
=> [5]
=> [[1,2,3,4,5]]
=> 1 = 0 + 1
[[3,2]]
=> [5]
=> [[1,2,3,4,5]]
=> 1 = 0 + 1
[[3,1,1]]
=> [5]
=> [[1,2,3,4,5]]
=> 1 = 0 + 1
[[2,2,1]]
=> [5]
=> [[1,2,3,4,5]]
=> 1 = 0 + 1
[[2,1,1,1]]
=> [5]
=> [[1,2,3,4,5]]
=> 1 = 0 + 1
[[1,1,1,1,1]]
=> [5]
=> [[1,2,3,4,5]]
=> 1 = 0 + 1
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 1 = 0 + 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 5 = 4 + 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 3 = 2 + 1
[[1],[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? = 0 + 1
[[2],[1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1,1]
=> [[1,9],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 7 + 1
[[2],[2],[1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3],[4],[5],[6],[8]]
=> ? = 5 + 1
[[2],[2],[2],[1],[1],[1]]
=> [2,2,2,1,1,1]
=> [[1,5],[2,7],[3,9],[4],[6],[8]]
=> ? = 3 + 1
[[2],[2],[2],[2],[1]]
=> [2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8]]
=> ? = 1 + 1
[[1,1],[1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1,1]
=> [[1,9],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 7 + 1
[[1,1],[1,1],[1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3],[4],[5],[6],[8]]
=> ? = 5 + 1
[[1,1],[1,1],[1,1],[1],[1],[1]]
=> [2,2,2,1,1,1]
=> [[1,5],[2,7],[3,9],[4],[6],[8]]
=> ? = 3 + 1
[[1,1],[1,1],[1,1],[1,1],[1]]
=> [2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8]]
=> ? = 1 + 1
[[3],[1],[1],[1],[1],[1],[1]]
=> [3,1,1,1,1,1,1]
=> [[1,8,9],[2],[3],[4],[5],[6],[7]]
=> ? = 6 + 1
[[3],[2],[1],[1],[1],[1]]
=> [3,2,1,1,1,1]
=> [[1,6,9],[2,8],[3],[4],[5],[7]]
=> ? = 5 + 1
[[3],[2],[2],[1],[1]]
=> [3,2,2,1,1]
=> [[1,4,9],[2,6],[3,8],[5],[7]]
=> ? = 4 + 1
[[3],[2],[2],[2]]
=> [3,2,2,2]
=> [[1,2,9],[3,4],[5,6],[7,8]]
=> ? = 3 + 1
[[3],[3],[1],[1],[1]]
=> [3,3,1,1,1]
=> [[1,5,6],[2,8,9],[3],[4],[7]]
=> ? = 3 + 1
[[3],[3],[2],[1]]
=> [3,3,2,1]
=> [[1,3,6],[2,5,9],[4,8],[7]]
=> ? = 2 + 1
[[3],[3],[3]]
=> [3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> ? = 0 + 1
[[2,1],[1],[1],[1],[1],[1],[1]]
=> [3,1,1,1,1,1,1]
=> [[1,8,9],[2],[3],[4],[5],[6],[7]]
=> ? = 6 + 1
[[2,1],[2],[1],[1],[1],[1]]
=> [3,2,1,1,1,1]
=> [[1,6,9],[2,8],[3],[4],[5],[7]]
=> ? = 5 + 1
[[2,1],[2],[2],[1],[1]]
=> [3,2,2,1,1]
=> [[1,4,9],[2,6],[3,8],[5],[7]]
=> ? = 4 + 1
[[2,1],[2],[2],[2]]
=> [3,2,2,2]
=> [[1,2,9],[3,4],[5,6],[7,8]]
=> ? = 3 + 1
[[2,1],[1,1],[1],[1],[1],[1]]
=> [3,2,1,1,1,1]
=> [[1,6,9],[2,8],[3],[4],[5],[7]]
=> ? = 5 + 1
[[2,1],[1,1],[1,1],[1],[1]]
=> [3,2,2,1,1]
=> [[1,4,9],[2,6],[3,8],[5],[7]]
=> ? = 4 + 1
[[2,1],[1,1],[1,1],[1,1]]
=> [3,2,2,2]
=> [[1,2,9],[3,4],[5,6],[7,8]]
=> ? = 3 + 1
[[2,1],[2,1],[1],[1],[1]]
=> [3,3,1,1,1]
=> [[1,5,6],[2,8,9],[3],[4],[7]]
=> ? = 3 + 1
[[2,1],[2,1],[2],[1]]
=> [3,3,2,1]
=> [[1,3,6],[2,5,9],[4,8],[7]]
=> ? = 2 + 1
[[2,1],[2,1],[1,1],[1]]
=> [3,3,2,1]
=> [[1,3,6],[2,5,9],[4,8],[7]]
=> ? = 2 + 1
[[2,1],[2,1],[2,1]]
=> [3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> ? = 0 + 1
[[1,1,1],[1],[1],[1],[1],[1],[1]]
=> [3,1,1,1,1,1,1]
=> [[1,8,9],[2],[3],[4],[5],[6],[7]]
=> ? = 6 + 1
[[1,1,1],[1,1],[1],[1],[1],[1]]
=> [3,2,1,1,1,1]
=> [[1,6,9],[2,8],[3],[4],[5],[7]]
=> ? = 5 + 1
[[1,1,1],[1,1],[1,1],[1],[1]]
=> [3,2,2,1,1]
=> [[1,4,9],[2,6],[3,8],[5],[7]]
=> ? = 4 + 1
[[1,1,1],[1,1],[1,1],[1,1]]
=> [3,2,2,2]
=> [[1,2,9],[3,4],[5,6],[7,8]]
=> ? = 3 + 1
[[1,1,1],[1,1,1],[1],[1],[1]]
=> [3,3,1,1,1]
=> [[1,5,6],[2,8,9],[3],[4],[7]]
=> ? = 3 + 1
[[1,1,1],[1,1,1],[1,1],[1]]
=> [3,3,2,1]
=> [[1,3,6],[2,5,9],[4,8],[7]]
=> ? = 2 + 1
[[1,1,1],[1,1,1],[1,1,1]]
=> [3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> ? = 0 + 1
[[4],[1],[1],[1],[1],[1]]
=> [4,1,1,1,1,1]
=> [[1,7,8,9],[2],[3],[4],[5],[6]]
=> ? = 5 + 1
[[4],[2],[1],[1],[1]]
=> [4,2,1,1,1]
=> [[1,5,8,9],[2,7],[3],[4],[6]]
=> ? = 4 + 1
[[4],[2],[2],[1]]
=> [4,2,2,1]
=> [[1,3,8,9],[2,5],[4,7],[6]]
=> ? = 3 + 1
[[4],[3],[1],[1]]
=> [4,3,1,1]
=> [[1,4,5,9],[2,7,8],[3],[6]]
=> ? = 3 + 1
[[4],[3],[2]]
=> [4,3,2]
=> [[1,2,5,9],[3,4,8],[6,7]]
=> ? = 2 + 1
[[4],[4],[1]]
=> [4,4,1]
=> [[1,3,4,5],[2,7,8,9],[6]]
=> ? = 1 + 1
[[3,1],[1],[1],[1],[1],[1]]
=> [4,1,1,1,1,1]
=> [[1,7,8,9],[2],[3],[4],[5],[6]]
=> ? = 5 + 1
[[3,1],[2],[1],[1],[1]]
=> [4,2,1,1,1]
=> [[1,5,8,9],[2,7],[3],[4],[6]]
=> ? = 4 + 1
[[3,1],[2],[2],[1]]
=> [4,2,2,1]
=> [[1,3,8,9],[2,5],[4,7],[6]]
=> ? = 3 + 1
[[3,1],[1,1],[1],[1],[1]]
=> [4,2,1,1,1]
=> [[1,5,8,9],[2,7],[3],[4],[6]]
=> ? = 4 + 1
[[3,1],[1,1],[1,1],[1]]
=> [4,2,2,1]
=> [[1,3,8,9],[2,5],[4,7],[6]]
=> ? = 3 + 1
[[3,1],[3],[1],[1]]
=> [4,3,1,1]
=> [[1,4,5,9],[2,7,8],[3],[6]]
=> ? = 3 + 1
[[3,1],[3],[2]]
=> [4,3,2]
=> [[1,2,5,9],[3,4,8],[6,7]]
=> ? = 2 + 1
[[3,1],[2,1],[1],[1]]
=> [4,3,1,1]
=> [[1,4,5,9],[2,7,8],[3],[6]]
=> ? = 3 + 1
[[3,1],[2,1],[2]]
=> [4,3,2]
=> [[1,2,5,9],[3,4,8],[6,7]]
=> ? = 2 + 1
[[3,1],[2,1],[1,1]]
=> [4,3,2]
=> [[1,2,5,9],[3,4,8],[6,7]]
=> ? = 2 + 1
Description
The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. A cylindrical tableau associated with a standard Young tableau $T$ is the skew row-strict tableau obtained by gluing two copies of $T$ such that the inner shape is a rectangle. This statistic equals $\max_C\big(\ell(C) - \ell(T)\big)$, where $\ell$ denotes the number of rows of a tableau and the maximum is taken over all cylindrical tableaux.