searching the database
Your data matches 109 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000010
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00111: Graphs —complement⟶ Graphs
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
St000010: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
St000010: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [1]
=> 1
([],2)
=> ([(0,1)],2)
=> [2]
=> 1
([(0,1)],2)
=> ([],2)
=> [1,1]
=> 2
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [3]
=> 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> [1,1,1]
=> 3
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 2
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [4]
=> 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> [1,1,1,1]
=> 4
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 2
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> [2,2,1]
=> 3
Description
The length of the partition.
Matching statistic: St000147
Mp00111: Graphs —complement⟶ Graphs
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000147: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000147: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [1]
=> [1]
=> 1
([],2)
=> ([(0,1)],2)
=> [2]
=> [1,1]
=> 1
([(0,1)],2)
=> ([],2)
=> [1,1]
=> [2]
=> 2
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> [2,1]
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> [1,1,1]
=> [3]
=> 3
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 1
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 2
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,1,1,1]
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> [2,2]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> [1,1,1,1]
=> [4]
=> 4
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 2
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> [2,2,1]
=> [3,2]
=> 3
Description
The largest part of an integer partition.
Matching statistic: St000378
Mp00111: Graphs —complement⟶ Graphs
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00322: Integer partitions —Loehr-Warrington⟶ Integer partitions
St000378: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00322: Integer partitions —Loehr-Warrington⟶ Integer partitions
St000378: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [1]
=> [1]
=> 1
([],2)
=> ([(0,1)],2)
=> [2]
=> [1,1]
=> 1
([(0,1)],2)
=> ([],2)
=> [1,1]
=> [2]
=> 2
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> [3]
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> [1,1,1]
=> [2,1]
=> 3
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 1
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 2
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,1,1,1]
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> [4]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> [2,2]
=> 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> [1,1,1,1]
=> [3,1]
=> 4
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 2
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [5]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [4,1]
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> [4,1]
=> 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [5]
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,2,1]
=> 3
Description
The diagonal inversion number of an integer partition.
The dinv of a partition is the number of cells c in the diagram of an integer partition λ for which arm(c)−leg(c)∈{0,1}.
See also exercise 3.19 of [2].
This statistic is equidistributed with the length of the partition, see [3].
Matching statistic: St000733
Mp00111: Graphs —complement⟶ Graphs
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
St000733: Standard tableaux ⟶ ℤResult quality: 89% ●values known / values provided: 99%●distinct values known / distinct values provided: 89%
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
St000733: Standard tableaux ⟶ ℤResult quality: 89% ●values known / values provided: 99%●distinct values known / distinct values provided: 89%
Values
([],1)
=> ([],1)
=> [1]
=> [[1]]
=> 1
([],2)
=> ([(0,1)],2)
=> [2]
=> [[1,2]]
=> 1
([(0,1)],2)
=> ([],2)
=> [1,1]
=> [[1],[2]]
=> 2
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [[1,2,3]]
=> 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [3]
=> [[1,2,3]]
=> 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> [[1,2],[3]]
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> [1,1,1]
=> [[1],[2],[3]]
=> 3
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 1
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> 2
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 4
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> 2
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 3
([],0)
=> ([],0)
=> []
=> []
=> ? = 0
([(0,10),(1,7),(2,7),(3,8),(4,9),(5,6),(6,10),(7,9),(8,9),(8,10)],11)
=> ([(0,3),(0,4),(0,5),(0,7),(0,8),(0,9),(0,10),(1,2),(1,4),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,5),(2,6),(2,7),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> [11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> ? = 1
([(0,10),(1,8),(2,8),(3,7),(4,7),(5,6),(6,10),(7,9),(8,9),(9,10)],11)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,8),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> [11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> ? = 1
([(0,8),(1,8),(2,9),(3,7),(4,7),(5,6),(6,10),(7,10),(8,9),(9,10)],11)
=> ([(0,2),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,3),(1,4),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,9),(3,10),(4,5),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> [11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> ? = 1
([(0,10),(1,9),(2,9),(3,7),(4,8),(5,8),(6,9),(6,10),(7,8),(7,10)],11)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,9),(0,10),(1,2),(1,3),(1,5),(1,6),(1,8),(1,9),(1,10),(2,3),(2,4),(2,7),(2,8),(2,9),(2,10),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> [11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> ? = 1
([(0,9),(1,9),(2,8),(3,8),(4,7),(5,7),(6,9),(6,10),(7,10),(8,10)],11)
=> ([(0,3),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,2),(1,3),(1,4),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,6),(2,9),(2,10),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> [11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> ? = 1
([(0,10),(1,9),(2,7),(3,7),(4,8),(5,8),(6,9),(6,10),(7,9),(8,10)],11)
=> ([(0,1),(0,3),(0,5),(0,6),(0,7),(0,8),(0,10),(1,2),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,9),(2,10),(3,4),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> [11]
=> [[1,2,3,4,5,6,7,8,9,10,11]]
=> ? = 1
([(0,12),(1,8),(2,8),(3,9),(4,10),(5,11),(6,7),(7,12),(8,10),(9,11),(9,12),(10,11)],13)
=> ([(0,1),(0,4),(0,5),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,3),(1,5),(1,6),(1,7),(1,9),(1,10),(1,11),(1,12),(2,3),(2,4),(2,5),(2,6),(2,8),(2,9),(2,10),(2,11),(2,12),(3,4),(3,6),(3,7),(3,8),(3,9),(3,11),(3,12),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> [13]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13]]
=> ? = 1
([(0,12),(1,9),(2,9),(3,8),(4,8),(5,10),(6,7),(7,12),(8,11),(9,11),(10,11),(10,12)],13)
=> ([(0,2),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,4),(2,7),(2,8),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,6),(3,9),(3,10),(3,11),(3,12),(4,5),(4,6),(4,7),(4,8),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> [13]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13]]
=> ? = 1
([(0,12),(1,8),(2,8),(3,9),(4,9),(5,10),(6,7),(7,12),(8,11),(9,10),(10,11),(11,12)],13)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,2),(1,3),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,4),(2,7),(2,8),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,6),(3,7),(3,8),(3,11),(3,12),(4,5),(4,6),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> [13]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13]]
=> ? = 1
([(0,9),(1,9),(2,10),(3,11),(4,8),(5,8),(6,7),(7,12),(8,12),(9,11),(10,11),(10,12)],13)
=> ([(0,1),(0,4),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,3),(1,5),(1,6),(1,8),(1,9),(1,10),(1,11),(1,12),(2,3),(2,4),(2,5),(2,7),(2,8),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,11),(4,12),(5,6),(5,7),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> [13]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13]]
=> ? = 1
([(0,10),(1,10),(2,9),(3,9),(4,8),(5,8),(6,7),(7,12),(8,12),(9,11),(10,11),(11,12)],13)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(1,12),(2,3),(2,4),(2,5),(2,6),(2,7),(2,10),(2,11),(2,12),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,12),(4,5),(4,8),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> [13]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13]]
=> ? = 1
([(0,8),(1,8),(2,9),(3,9),(4,11),(5,10),(6,7),(7,12),(8,10),(9,11),(10,12),(11,12)],13)
=> ([(0,3),(0,4),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,2),(1,4),(1,5),(1,7),(1,8),(1,9),(1,10),(1,11),(1,12),(2,3),(2,5),(2,6),(2,8),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,11),(4,12),(5,6),(5,7),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> [13]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13]]
=> ? = 1
([(0,12),(1,11),(2,11),(3,8),(4,8),(5,9),(6,10),(7,11),(7,12),(8,10),(9,10),(9,12)],13)
=> ([(0,3),(0,4),(0,5),(0,6),(0,8),(0,9),(0,10),(0,11),(0,12),(1,2),(1,4),(1,5),(1,7),(1,8),(1,9),(1,10),(1,11),(1,12),(2,3),(2,4),(2,6),(2,7),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,6),(4,7),(4,8),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> [13]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13]]
=> ? = 1
([(0,11),(1,12),(2,12),(3,9),(4,9),(5,8),(6,8),(7,11),(7,12),(8,10),(9,10),(10,11)],13)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,2),(1,3),(1,4),(1,7),(1,8),(1,9),(1,10),(1,11),(1,12),(2,3),(2,4),(2,5),(2,6),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,6),(3,7),(3,8),(3,11),(3,12),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> [13]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13]]
=> ? = 1
([(0,11),(1,11),(2,9),(3,9),(4,10),(5,8),(6,8),(7,11),(7,12),(8,12),(9,10),(10,12)],13)
=> ([(0,2),(0,4),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,3),(1,4),(1,5),(1,7),(1,8),(1,9),(1,10),(1,11),(1,12),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,11),(2,12),(3,4),(3,5),(3,6),(3,9),(3,10),(3,11),(3,12),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> [13]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13]]
=> ? = 1
([(0,12),(1,11),(2,9),(3,9),(4,10),(5,8),(6,8),(7,11),(7,12),(8,11),(9,10),(10,12)],13)
=> ([(0,2),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,2),(1,3),(1,4),(1,6),(1,7),(1,8),(1,9),(1,10),(1,12),(2,3),(2,6),(2,7),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,8),(3,9),(3,10),(3,11),(3,12),(4,5),(4,6),(4,7),(4,8),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> [13]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13]]
=> ? = 1
([(0,11),(1,9),(2,9),(3,8),(4,8),(5,10),(6,10),(7,11),(7,12),(8,12),(9,12),(10,11)],13)
=> ([(0,1),(0,4),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,2),(1,3),(1,7),(1,8),(1,9),(1,10),(1,11),(1,12),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,11),(2,12),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> [13]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13]]
=> ? = 1
([(0,15),(1,11),(2,10),(3,13),(3,15),(4,14),(4,15),(5,10),(5,13),(6,11),(6,14),(7,8),(7,9),(7,12),(8,10),(8,13),(9,11),(9,14),(12,13),(12,14),(12,15)],16)
=> ([(0,4),(0,5),(0,6),(0,7),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,11),(1,12),(1,14),(1,15),(2,3),(2,5),(2,6),(2,7),(2,8),(2,10),(2,12),(2,13),(2,14),(2,15),(3,4),(3,6),(3,7),(3,8),(3,9),(3,11),(3,13),(3,14),(3,15),(4,5),(4,6),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(4,15),(5,7),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(5,15),(6,7),(6,8),(6,9),(6,10),(6,11),(6,13),(6,14),(7,8),(7,9),(7,10),(7,12),(7,13),(7,15),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,10),(9,11),(9,12),(9,13),(9,14),(9,15),(10,11),(10,12),(10,13),(10,14),(10,15),(11,12),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15)],16)
=> [16]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]]
=> ? = 1
([(0,11),(1,10),(2,8),(2,9),(3,10),(3,13),(4,11),(4,14),(5,13),(5,14),(6,8),(6,10),(6,13),(7,9),(7,11),(7,14),(8,12),(9,12),(12,13),(12,14)],15)
=> ([(0,3),(0,4),(0,5),(0,6),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(1,2),(1,4),(1,5),(1,6),(1,7),(1,8),(1,11),(1,12),(1,13),(1,14),(2,3),(2,5),(2,6),(2,7),(2,8),(2,10),(2,12),(2,13),(2,14),(3,4),(3,5),(3,7),(3,9),(3,10),(3,11),(3,12),(3,13),(3,14),(4,6),(4,8),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,7),(5,8),(5,9),(5,10),(5,12),(5,13),(6,7),(6,8),(6,9),(6,11),(6,12),(6,14),(7,8),(7,9),(7,10),(7,11),(7,13),(7,14),(8,9),(8,10),(8,11),(8,13),(8,14),(9,10),(9,11),(9,12),(9,13),(9,14),(10,11),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14),(12,13),(12,14),(13,14)],15)
=> [15]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]]
=> ? = 1
([(0,4),(0,5),(0,6),(0,7),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,11),(1,12),(1,14),(1,15),(2,3),(2,5),(2,6),(2,7),(2,8),(2,10),(2,12),(2,13),(2,14),(2,15),(3,4),(3,6),(3,7),(3,8),(3,9),(3,11),(3,13),(3,14),(3,15),(4,5),(4,6),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(4,15),(5,7),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(5,15),(6,7),(6,8),(6,9),(6,10),(6,11),(6,13),(6,14),(7,8),(7,9),(7,10),(7,12),(7,13),(7,15),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,10),(9,11),(9,12),(9,13),(9,14),(9,15),(10,11),(10,12),(10,13),(10,14),(10,15),(11,12),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15)],16)
=> ([(0,15),(1,11),(2,10),(3,13),(3,15),(4,14),(4,15),(5,10),(5,13),(6,11),(6,14),(7,8),(7,9),(7,12),(8,10),(8,13),(9,11),(9,14),(12,13),(12,14),(12,15)],16)
=> [16]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]]
=> ? = 1
([(0,3),(0,4),(0,5),(0,6),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(1,2),(1,4),(1,5),(1,6),(1,7),(1,8),(1,11),(1,12),(1,13),(1,14),(2,3),(2,5),(2,6),(2,7),(2,8),(2,10),(2,12),(2,13),(2,14),(3,4),(3,5),(3,7),(3,9),(3,10),(3,11),(3,12),(3,13),(3,14),(4,6),(4,8),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,7),(5,8),(5,9),(5,10),(5,12),(5,13),(6,7),(6,8),(6,9),(6,11),(6,12),(6,14),(7,8),(7,9),(7,10),(7,11),(7,13),(7,14),(8,9),(8,10),(8,11),(8,13),(8,14),(9,10),(9,11),(9,12),(9,13),(9,14),(10,11),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14),(12,13),(12,14),(13,14)],15)
=> ([(0,11),(1,10),(2,8),(2,9),(3,10),(3,13),(4,11),(4,14),(5,13),(5,14),(6,8),(6,10),(6,13),(7,9),(7,11),(7,14),(8,12),(9,12),(12,13),(12,14)],15)
=> [15]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]]
=> ? = 1
Description
The row containing the largest entry of a standard tableau.
Matching statistic: St000288
Mp00111: Graphs —complement⟶ Graphs
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
St000288: Binary words ⟶ ℤResult quality: 89% ●values known / values provided: 98%●distinct values known / distinct values provided: 89%
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
St000288: Binary words ⟶ ℤResult quality: 89% ●values known / values provided: 98%●distinct values known / distinct values provided: 89%
Values
([],1)
=> ([],1)
=> [1]
=> 10 => 1
([],2)
=> ([(0,1)],2)
=> [2]
=> 100 => 1
([(0,1)],2)
=> ([],2)
=> [1,1]
=> 110 => 2
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1000 => 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [3]
=> 1000 => 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 1010 => 2
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> [1,1,1]
=> 1110 => 3
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 10000 => 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 10000 => 1
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 10000 => 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 10010 => 2
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 10000 => 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [4]
=> 10000 => 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 10000 => 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1]
=> 10010 => 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> 1100 => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 10110 => 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> [1,1,1,1]
=> 11110 => 4
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 100000 => 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 100000 => 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 100000 => 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 100000 => 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 100010 => 2
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> 100000 => 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 100000 => 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> 100000 => 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 100000 => 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 100000 => 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 100000 => 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 100010 => 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> 100000 => 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> 100000 => 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 100000 => 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 100000 => 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 100010 => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> 10100 => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 100000 => 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> 100000 => 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> 100000 => 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> 100010 => 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> 100000 => 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> 100000 => 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> 100010 => 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> 100000 => 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 100000 => 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 100010 => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> 10100 => 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> [2,2,1]
=> 11010 => 3
([],0)
=> ([],0)
=> []
=> => ? = 0
([(0,10),(1,7),(2,7),(3,8),(4,9),(5,6),(6,10),(7,9),(8,9),(8,10)],11)
=> ([(0,3),(0,4),(0,5),(0,7),(0,8),(0,9),(0,10),(1,2),(1,4),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,5),(2,6),(2,7),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> [11]
=> 100000000000 => ? = 1
([(0,10),(1,8),(2,8),(3,7),(4,7),(5,6),(6,10),(7,9),(8,9),(9,10)],11)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,8),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> [11]
=> 100000000000 => ? = 1
([(0,8),(1,8),(2,9),(3,7),(4,7),(5,6),(6,10),(7,10),(8,9),(9,10)],11)
=> ([(0,2),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,3),(1,4),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,9),(3,10),(4,5),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> [11]
=> 100000000000 => ? = 1
([(0,10),(1,9),(2,9),(3,7),(4,8),(5,8),(6,9),(6,10),(7,8),(7,10)],11)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,9),(0,10),(1,2),(1,3),(1,5),(1,6),(1,8),(1,9),(1,10),(2,3),(2,4),(2,7),(2,8),(2,9),(2,10),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> [11]
=> 100000000000 => ? = 1
([(0,9),(1,9),(2,8),(3,8),(4,7),(5,7),(6,9),(6,10),(7,10),(8,10)],11)
=> ([(0,3),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,2),(1,3),(1,4),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,6),(2,9),(2,10),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> [11]
=> 100000000000 => ? = 1
([(0,10),(1,9),(2,7),(3,7),(4,8),(5,8),(6,9),(6,10),(7,9),(8,10)],11)
=> ([(0,1),(0,3),(0,5),(0,6),(0,7),(0,8),(0,10),(1,2),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,9),(2,10),(3,4),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> [11]
=> 100000000000 => ? = 1
([(0,12),(1,8),(2,8),(3,9),(4,10),(5,11),(6,7),(7,12),(8,10),(9,11),(9,12),(10,11)],13)
=> ([(0,1),(0,4),(0,5),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,3),(1,5),(1,6),(1,7),(1,9),(1,10),(1,11),(1,12),(2,3),(2,4),(2,5),(2,6),(2,8),(2,9),(2,10),(2,11),(2,12),(3,4),(3,6),(3,7),(3,8),(3,9),(3,11),(3,12),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> [13]
=> 10000000000000 => ? = 1
([(0,12),(1,9),(2,9),(3,8),(4,8),(5,10),(6,7),(7,12),(8,11),(9,11),(10,11),(10,12)],13)
=> ([(0,2),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,4),(2,7),(2,8),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,6),(3,9),(3,10),(3,11),(3,12),(4,5),(4,6),(4,7),(4,8),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> [13]
=> 10000000000000 => ? = 1
([(0,12),(1,8),(2,8),(3,9),(4,9),(5,10),(6,7),(7,12),(8,11),(9,10),(10,11),(11,12)],13)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,2),(1,3),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,4),(2,7),(2,8),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,6),(3,7),(3,8),(3,11),(3,12),(4,5),(4,6),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> [13]
=> 10000000000000 => ? = 1
([(0,9),(1,9),(2,10),(3,11),(4,8),(5,8),(6,7),(7,12),(8,12),(9,11),(10,11),(10,12)],13)
=> ([(0,1),(0,4),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,3),(1,5),(1,6),(1,8),(1,9),(1,10),(1,11),(1,12),(2,3),(2,4),(2,5),(2,7),(2,8),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,11),(4,12),(5,6),(5,7),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> [13]
=> 10000000000000 => ? = 1
([(0,10),(1,10),(2,9),(3,9),(4,8),(5,8),(6,7),(7,12),(8,12),(9,11),(10,11),(11,12)],13)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(1,12),(2,3),(2,4),(2,5),(2,6),(2,7),(2,10),(2,11),(2,12),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,12),(4,5),(4,8),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> [13]
=> 10000000000000 => ? = 1
([(0,8),(1,8),(2,9),(3,9),(4,11),(5,10),(6,7),(7,12),(8,10),(9,11),(10,12),(11,12)],13)
=> ([(0,3),(0,4),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,2),(1,4),(1,5),(1,7),(1,8),(1,9),(1,10),(1,11),(1,12),(2,3),(2,5),(2,6),(2,8),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,11),(4,12),(5,6),(5,7),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> [13]
=> 10000000000000 => ? = 1
([(0,12),(1,11),(2,11),(3,8),(4,8),(5,9),(6,10),(7,11),(7,12),(8,10),(9,10),(9,12)],13)
=> ([(0,3),(0,4),(0,5),(0,6),(0,8),(0,9),(0,10),(0,11),(0,12),(1,2),(1,4),(1,5),(1,7),(1,8),(1,9),(1,10),(1,11),(1,12),(2,3),(2,4),(2,6),(2,7),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,6),(4,7),(4,8),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> [13]
=> 10000000000000 => ? = 1
([(0,11),(1,12),(2,12),(3,9),(4,9),(5,8),(6,8),(7,11),(7,12),(8,10),(9,10),(10,11)],13)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,2),(1,3),(1,4),(1,7),(1,8),(1,9),(1,10),(1,11),(1,12),(2,3),(2,4),(2,5),(2,6),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,6),(3,7),(3,8),(3,11),(3,12),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> [13]
=> 10000000000000 => ? = 1
([(0,11),(1,11),(2,9),(3,9),(4,10),(5,8),(6,8),(7,11),(7,12),(8,12),(9,10),(10,12)],13)
=> ([(0,2),(0,4),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,3),(1,4),(1,5),(1,7),(1,8),(1,9),(1,10),(1,11),(1,12),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,11),(2,12),(3,4),(3,5),(3,6),(3,9),(3,10),(3,11),(3,12),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> [13]
=> 10000000000000 => ? = 1
([(0,12),(1,11),(2,9),(3,9),(4,10),(5,8),(6,8),(7,11),(7,12),(8,11),(9,10),(10,12)],13)
=> ([(0,2),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,2),(1,3),(1,4),(1,6),(1,7),(1,8),(1,9),(1,10),(1,12),(2,3),(2,6),(2,7),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,8),(3,9),(3,10),(3,11),(3,12),(4,5),(4,6),(4,7),(4,8),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> [13]
=> 10000000000000 => ? = 1
([(0,11),(1,9),(2,9),(3,8),(4,8),(5,10),(6,10),(7,11),(7,12),(8,12),(9,12),(10,11)],13)
=> ([(0,1),(0,4),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,2),(1,3),(1,7),(1,8),(1,9),(1,10),(1,11),(1,12),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,11),(2,12),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> [13]
=> 10000000000000 => ? = 1
([(0,15),(1,11),(2,10),(3,13),(3,15),(4,14),(4,15),(5,10),(5,13),(6,11),(6,14),(7,8),(7,9),(7,12),(8,10),(8,13),(9,11),(9,14),(12,13),(12,14),(12,15)],16)
=> ([(0,4),(0,5),(0,6),(0,7),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,11),(1,12),(1,14),(1,15),(2,3),(2,5),(2,6),(2,7),(2,8),(2,10),(2,12),(2,13),(2,14),(2,15),(3,4),(3,6),(3,7),(3,8),(3,9),(3,11),(3,13),(3,14),(3,15),(4,5),(4,6),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(4,15),(5,7),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(5,15),(6,7),(6,8),(6,9),(6,10),(6,11),(6,13),(6,14),(7,8),(7,9),(7,10),(7,12),(7,13),(7,15),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,10),(9,11),(9,12),(9,13),(9,14),(9,15),(10,11),(10,12),(10,13),(10,14),(10,15),(11,12),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15)],16)
=> [16]
=> 10000000000000000 => ? = 1
([(0,11),(1,10),(2,9),(3,8),(4,8),(4,9),(4,10),(5,8),(5,9),(5,11),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11)],12)
=> ([(0,1),(0,2),(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,3),(1,6),(1,8),(1,10),(1,11),(2,3),(2,5),(2,8),(2,9),(2,11),(3,4),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> [12]
=> 1000000000000 => ? = 1
([(0,11),(1,10),(2,8),(2,9),(3,10),(3,13),(4,11),(4,14),(5,13),(5,14),(6,8),(6,10),(6,13),(7,9),(7,11),(7,14),(8,12),(9,12),(12,13),(12,14)],15)
=> ([(0,3),(0,4),(0,5),(0,6),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(1,2),(1,4),(1,5),(1,6),(1,7),(1,8),(1,11),(1,12),(1,13),(1,14),(2,3),(2,5),(2,6),(2,7),(2,8),(2,10),(2,12),(2,13),(2,14),(3,4),(3,5),(3,7),(3,9),(3,10),(3,11),(3,12),(3,13),(3,14),(4,6),(4,8),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,7),(5,8),(5,9),(5,10),(5,12),(5,13),(6,7),(6,8),(6,9),(6,11),(6,12),(6,14),(7,8),(7,9),(7,10),(7,11),(7,13),(7,14),(8,9),(8,10),(8,11),(8,13),(8,14),(9,10),(9,11),(9,12),(9,13),(9,14),(10,11),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14),(12,13),(12,14),(13,14)],15)
=> [15]
=> 1000000000000000 => ? = 1
([(0,4),(0,5),(0,6),(0,7),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,11),(1,12),(1,14),(1,15),(2,3),(2,5),(2,6),(2,7),(2,8),(2,10),(2,12),(2,13),(2,14),(2,15),(3,4),(3,6),(3,7),(3,8),(3,9),(3,11),(3,13),(3,14),(3,15),(4,5),(4,6),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(4,15),(5,7),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(5,15),(6,7),(6,8),(6,9),(6,10),(6,11),(6,13),(6,14),(7,8),(7,9),(7,10),(7,12),(7,13),(7,15),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,10),(9,11),(9,12),(9,13),(9,14),(9,15),(10,11),(10,12),(10,13),(10,14),(10,15),(11,12),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15)],16)
=> ([(0,15),(1,11),(2,10),(3,13),(3,15),(4,14),(4,15),(5,10),(5,13),(6,11),(6,14),(7,8),(7,9),(7,12),(8,10),(8,13),(9,11),(9,14),(12,13),(12,14),(12,15)],16)
=> [16]
=> 10000000000000000 => ? = 1
([(0,1),(0,2),(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,3),(1,6),(1,8),(1,10),(1,11),(2,3),(2,5),(2,8),(2,9),(2,11),(3,4),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ([(0,11),(1,10),(2,9),(3,8),(4,8),(4,9),(4,10),(5,8),(5,9),(5,11),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11)],12)
=> [12]
=> 1000000000000 => ? = 1
([(0,3),(0,4),(0,5),(0,6),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(1,2),(1,4),(1,5),(1,6),(1,7),(1,8),(1,11),(1,12),(1,13),(1,14),(2,3),(2,5),(2,6),(2,7),(2,8),(2,10),(2,12),(2,13),(2,14),(3,4),(3,5),(3,7),(3,9),(3,10),(3,11),(3,12),(3,13),(3,14),(4,6),(4,8),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,7),(5,8),(5,9),(5,10),(5,12),(5,13),(6,7),(6,8),(6,9),(6,11),(6,12),(6,14),(7,8),(7,9),(7,10),(7,11),(7,13),(7,14),(8,9),(8,10),(8,11),(8,13),(8,14),(9,10),(9,11),(9,12),(9,13),(9,14),(10,11),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14),(12,13),(12,14),(13,14)],15)
=> ([(0,11),(1,10),(2,8),(2,9),(3,10),(3,13),(4,11),(4,14),(5,13),(5,14),(6,8),(6,10),(6,13),(7,9),(7,11),(7,14),(8,12),(9,12),(12,13),(12,14)],15)
=> [15]
=> 1000000000000000 => ? = 1
Description
The number of ones in a binary word.
This is also known as the Hamming weight of the word.
Matching statistic: St000382
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00111: Graphs —complement⟶ Graphs
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00038: Integer compositions —reverse⟶ Integer compositions
St000382: Integer compositions ⟶ ℤResult quality: 89% ●values known / values provided: 98%●distinct values known / distinct values provided: 89%
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00038: Integer compositions —reverse⟶ Integer compositions
St000382: Integer compositions ⟶ ℤResult quality: 89% ●values known / values provided: 98%●distinct values known / distinct values provided: 89%
Values
([],1)
=> ([],1)
=> [1] => [1] => 1
([],2)
=> ([(0,1)],2)
=> [1,1] => [1,1] => 1
([(0,1)],2)
=> ([],2)
=> [2] => [2] => 2
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,2] => 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [1,1,1] => [1,1,1] => 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [1,2] => [2,1] => 2
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> [3] => [3] => 3
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [1,3] => 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,2] => 1
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1] => 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [2,2] => [2,2] => 2
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [1,2,1] => 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1] => 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,2,1] => 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [1,1,2] => [2,1,1] => 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [2,2] => [2,2] => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [1,3] => [3,1] => 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> [4] => [4] => 4
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [1,4] => 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,3] => 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,1,2] => 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,1,2,1] => 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [2,3] => 2
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [2,1,2] => 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,1,2,1] => 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [1,2,1,1] => 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [2,1,1,1] => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [2,1,2] => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [2,3] => [3,2] => 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [1,2,1,1] => 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [2,2,1] => 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [1,2,2] => 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [2,1,1,1] => 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,3,1] => 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [2,2,1] => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [1,1,3] => [3,1,1] => 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [2,1,1,1] => 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> [2,3] => [3,2] => 3
([],0)
=> ([],0)
=> [] => [] => ? = 0
([(0,1),(0,2),(0,7),(0,8),(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(3,8),(3,9),(4,5),(4,7),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,5),(1,6),(1,8),(1,9),(2,3),(2,4),(2,8),(2,9),(3,6),(3,7),(3,9),(4,5),(4,7),(4,8),(5,7),(5,9),(6,7),(6,8)],10)
=> [1,2,1,2,2,1,1] => [1,1,2,2,1,2,1] => ? = 1
([(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,8),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> ([(0,3),(0,6),(0,7),(0,9),(1,2),(1,4),(1,5),(1,9),(2,6),(2,7),(2,9),(3,4),(3,5),(3,9),(4,7),(4,8),(5,6),(5,8),(6,8),(7,8),(8,9)],10)
=> [1,1,3,1,3,1] => [1,3,1,3,1,1] => ? = 1
([(0,3),(0,4),(0,8),(0,9),(1,2),(1,4),(1,5),(1,7),(2,3),(2,5),(2,6),(3,6),(3,8),(4,7),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,6),(1,8),(1,9),(2,5),(2,7),(2,9),(3,5),(3,6),(3,7),(4,5),(4,6),(4,8),(5,8),(5,9),(6,7),(6,9),(7,8)],10)
=> [2,1,2,2,2,1] => [1,2,2,2,1,2] => ? = 1
([(0,3),(0,7),(0,8),(0,9),(1,2),(1,4),(1,6),(1,8),(2,4),(2,5),(2,7),(3,5),(3,6),(3,9),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ([(0,5),(0,8),(0,9),(1,4),(1,7),(1,9),(2,3),(2,7),(2,8),(3,6),(3,9),(4,6),(4,8),(5,6),(5,7),(6,8),(6,9),(7,8),(7,9)],10)
=> [1,2,1,1,2,2,1] => [1,2,2,1,1,2,1] => ? = 1
([(0,7),(0,8),(0,9),(1,2),(1,3),(1,5),(1,6),(1,9),(2,3),(2,4),(2,6),(2,8),(3,4),(3,5),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ([(0,5),(0,8),(0,9),(1,4),(1,7),(1,9),(2,3),(2,6),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,9),(7,9),(8,9)],10)
=> [1,2,1,1,2,2,1] => [1,2,2,1,1,2,1] => ? = 1
([(0,10),(1,8),(2,8),(3,7),(4,7),(5,6),(6,10),(7,9),(8,9),(9,10)],11)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,8),(2,9),(2,10),(3,4),(3,5),(3,6),(3,7),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> [1,1,1,2,1,1,1,1,1,1] => [1,1,1,1,1,1,2,1,1,1] => ? = 1
([(0,8),(1,8),(2,9),(3,7),(4,7),(5,6),(6,10),(7,10),(8,9),(9,10)],11)
=> ([(0,2),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,3),(1,4),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,9),(3,10),(4,5),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> [1,1,1,2,1,1,1,1,1,1] => [1,1,1,1,1,1,2,1,1,1] => ? = 1
([(0,10),(1,9),(2,9),(3,7),(4,8),(5,8),(6,9),(6,10),(7,8),(7,10)],11)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,9),(0,10),(1,2),(1,3),(1,5),(1,6),(1,8),(1,9),(1,10),(2,3),(2,4),(2,7),(2,8),(2,9),(2,10),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> [1,1,1,2,1,1,1,1,1,1] => [1,1,1,1,1,1,2,1,1,1] => ? = 1
([(0,9),(1,9),(2,8),(3,8),(4,7),(5,7),(6,9),(6,10),(7,10),(8,10)],11)
=> ([(0,3),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,2),(1,3),(1,4),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,5),(2,6),(2,9),(2,10),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> [1,1,3,1,1,1,1,1,1] => [1,1,1,1,1,1,3,1,1] => ? = 1
([(0,10),(1,9),(2,7),(3,7),(4,8),(5,8),(6,9),(6,10),(7,9),(8,10)],11)
=> ([(0,1),(0,3),(0,5),(0,6),(0,7),(0,8),(0,10),(1,2),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,9),(2,10),(3,4),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> [1,1,1,2,1,1,1,1,1,1] => [1,1,1,1,1,1,2,1,1,1] => ? = 1
([(0,12),(1,8),(2,8),(3,9),(4,10),(5,11),(6,7),(7,12),(8,10),(9,11),(9,12),(10,11)],13)
=> ([(0,1),(0,4),(0,5),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,3),(1,5),(1,6),(1,7),(1,9),(1,10),(1,11),(1,12),(2,3),(2,4),(2,5),(2,6),(2,8),(2,9),(2,10),(2,11),(2,12),(3,4),(3,6),(3,7),(3,8),(3,9),(3,11),(3,12),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> [1,1,1,1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1,1,1,1] => ? = 1
([(0,12),(1,9),(2,9),(3,8),(4,8),(5,10),(6,7),(7,12),(8,11),(9,11),(10,11),(10,12)],13)
=> ([(0,2),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,4),(2,7),(2,8),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,6),(3,9),(3,10),(3,11),(3,12),(4,5),(4,6),(4,7),(4,8),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> [1,1,1,1,2,1,1,1,1,1,1,1] => ? => ? = 1
([(0,12),(1,8),(2,8),(3,9),(4,9),(5,10),(6,7),(7,12),(8,11),(9,10),(10,11),(11,12)],13)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,2),(1,3),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(2,3),(2,4),(2,7),(2,8),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,6),(3,7),(3,8),(3,11),(3,12),(4,5),(4,6),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> [1,1,1,1,2,1,1,1,1,1,1,1] => ? => ? = 1
([(0,9),(1,9),(2,10),(3,11),(4,8),(5,8),(6,7),(7,12),(8,12),(9,11),(10,11),(10,12)],13)
=> ([(0,1),(0,4),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,3),(1,5),(1,6),(1,8),(1,9),(1,10),(1,11),(1,12),(2,3),(2,4),(2,5),(2,7),(2,8),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,11),(4,12),(5,6),(5,7),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> [1,1,1,1,2,1,1,1,1,1,1,1] => ? => ? = 1
([(0,10),(1,10),(2,9),(3,9),(4,8),(5,8),(6,7),(7,12),(8,12),(9,11),(10,11),(11,12)],13)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(1,10),(1,11),(1,12),(2,3),(2,4),(2,5),(2,6),(2,7),(2,10),(2,11),(2,12),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,12),(4,5),(4,8),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> [1,1,1,3,1,1,1,1,1,1,1] => ? => ? = 1
([(0,8),(1,8),(2,9),(3,9),(4,11),(5,10),(6,7),(7,12),(8,10),(9,11),(10,12),(11,12)],13)
=> ([(0,3),(0,4),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,2),(1,4),(1,5),(1,7),(1,8),(1,9),(1,10),(1,11),(1,12),(2,3),(2,5),(2,6),(2,8),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,11),(4,12),(5,6),(5,7),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> [1,1,1,1,2,1,1,1,1,1,1,1] => ? => ? = 1
([(0,12),(1,11),(2,11),(3,8),(4,8),(5,9),(6,10),(7,11),(7,12),(8,10),(9,10),(9,12)],13)
=> ([(0,3),(0,4),(0,5),(0,6),(0,8),(0,9),(0,10),(0,11),(0,12),(1,2),(1,4),(1,5),(1,7),(1,8),(1,9),(1,10),(1,11),(1,12),(2,3),(2,4),(2,6),(2,7),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,6),(4,7),(4,8),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> [1,1,1,1,2,1,1,1,1,1,1,1] => ? => ? = 1
([(0,11),(1,12),(2,12),(3,9),(4,9),(5,8),(6,8),(7,11),(7,12),(8,10),(9,10),(10,11)],13)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,2),(1,3),(1,4),(1,7),(1,8),(1,9),(1,10),(1,11),(1,12),(2,3),(2,4),(2,5),(2,6),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,6),(3,7),(3,8),(3,11),(3,12),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> [1,1,1,3,1,1,1,1,1,1,1] => ? => ? = 1
([(0,11),(1,11),(2,9),(3,9),(4,10),(5,8),(6,8),(7,11),(7,12),(8,12),(9,10),(10,12)],13)
=> ([(0,2),(0,4),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,3),(1,4),(1,5),(1,7),(1,8),(1,9),(1,10),(1,11),(1,12),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,11),(2,12),(3,4),(3,5),(3,6),(3,9),(3,10),(3,11),(3,12),(4,6),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> [1,1,1,3,1,1,1,1,1,1,1] => ? => ? = 1
([(0,12),(1,11),(2,9),(3,9),(4,10),(5,8),(6,8),(7,11),(7,12),(8,11),(9,10),(10,12)],13)
=> ([(0,2),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,2),(1,3),(1,4),(1,6),(1,7),(1,8),(1,9),(1,10),(1,12),(2,3),(2,6),(2,7),(2,9),(2,10),(2,11),(2,12),(3,4),(3,5),(3,8),(3,9),(3,10),(3,11),(3,12),(4,5),(4,6),(4,7),(4,8),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> [1,1,1,1,2,1,1,1,1,1,1,1] => ? => ? = 1
([(0,11),(1,9),(2,9),(3,8),(4,8),(5,10),(6,10),(7,11),(7,12),(8,12),(9,12),(10,11)],13)
=> ([(0,1),(0,4),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,2),(1,3),(1,7),(1,8),(1,9),(1,10),(1,11),(1,12),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,11),(2,12),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,8),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> [1,1,1,3,1,1,1,1,1,1,1] => ? => ? = 1
([(0,15),(1,11),(2,10),(3,13),(3,15),(4,14),(4,15),(5,10),(5,13),(6,11),(6,14),(7,8),(7,9),(7,12),(8,10),(8,13),(9,11),(9,14),(12,13),(12,14),(12,15)],16)
=> ([(0,4),(0,5),(0,6),(0,7),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,11),(1,12),(1,14),(1,15),(2,3),(2,5),(2,6),(2,7),(2,8),(2,10),(2,12),(2,13),(2,14),(2,15),(3,4),(3,6),(3,7),(3,8),(3,9),(3,11),(3,13),(3,14),(3,15),(4,5),(4,6),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(4,15),(5,7),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(5,15),(6,7),(6,8),(6,9),(6,10),(6,11),(6,13),(6,14),(7,8),(7,9),(7,10),(7,12),(7,13),(7,15),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,10),(9,11),(9,12),(9,13),(9,14),(9,15),(10,11),(10,12),(10,13),(10,14),(10,15),(11,12),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15)],16)
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => ? = 1
([(0,11),(1,10),(2,9),(3,8),(4,8),(4,9),(4,10),(5,8),(5,9),(5,11),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11)],12)
=> ([(0,1),(0,2),(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,3),(1,6),(1,8),(1,10),(1,11),(2,3),(2,5),(2,8),(2,9),(2,11),(3,4),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> [3,1,3,3,1,1] => ? => ? = 1
([(0,11),(1,10),(2,8),(2,9),(3,10),(3,13),(4,11),(4,14),(5,13),(5,14),(6,8),(6,10),(6,13),(7,9),(7,11),(7,14),(8,12),(9,12),(12,13),(12,14)],15)
=> ([(0,3),(0,4),(0,5),(0,6),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(1,2),(1,4),(1,5),(1,6),(1,7),(1,8),(1,11),(1,12),(1,13),(1,14),(2,3),(2,5),(2,6),(2,7),(2,8),(2,10),(2,12),(2,13),(2,14),(3,4),(3,5),(3,7),(3,9),(3,10),(3,11),(3,12),(3,13),(3,14),(4,6),(4,8),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,7),(5,8),(5,9),(5,10),(5,12),(5,13),(6,7),(6,8),(6,9),(6,11),(6,12),(6,14),(7,8),(7,9),(7,10),(7,11),(7,13),(7,14),(8,9),(8,10),(8,11),(8,13),(8,14),(9,10),(9,11),(9,12),(9,13),(9,14),(10,11),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14),(12,13),(12,14),(13,14)],15)
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => ? = 1
([(0,7),(0,8),(0,9),(1,5),(1,6),(1,8),(1,9),(2,3),(2,4),(2,8),(2,9),(3,6),(3,7),(3,9),(4,5),(4,7),(4,8),(5,7),(5,9),(6,7),(6,8)],10)
=> ([(0,1),(0,2),(0,7),(0,8),(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(3,8),(3,9),(4,5),(4,7),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,2,2,1,2,1,1] => [1,1,2,1,2,2,1] => ? = 1
([(0,3),(0,6),(0,7),(0,9),(1,2),(1,4),(1,5),(1,9),(2,6),(2,7),(2,9),(3,4),(3,5),(3,9),(4,7),(4,8),(5,6),(5,8),(6,8),(7,8),(8,9)],10)
=> ([(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,8),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> [3,1,3,1,1,1] => [1,1,1,3,1,3] => ? = 1
([(0,7),(0,8),(0,9),(1,6),(1,8),(1,9),(2,5),(2,7),(2,9),(3,5),(3,6),(3,7),(4,5),(4,6),(4,8),(5,8),(5,9),(6,7),(6,9),(7,8)],10)
=> ([(0,3),(0,4),(0,8),(0,9),(1,2),(1,4),(1,5),(1,7),(2,3),(2,5),(2,6),(3,6),(3,8),(4,7),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [2,2,2,1,2,1] => [1,2,1,2,2,2] => ? = 1
([(0,4),(0,5),(0,6),(0,7),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,11),(1,12),(1,14),(1,15),(2,3),(2,5),(2,6),(2,7),(2,8),(2,10),(2,12),(2,13),(2,14),(2,15),(3,4),(3,6),(3,7),(3,8),(3,9),(3,11),(3,13),(3,14),(3,15),(4,5),(4,6),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(4,15),(5,7),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(5,15),(6,7),(6,8),(6,9),(6,10),(6,11),(6,13),(6,14),(7,8),(7,9),(7,10),(7,12),(7,13),(7,15),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,10),(9,11),(9,12),(9,13),(9,14),(9,15),(10,11),(10,12),(10,13),(10,14),(10,15),(11,12),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15)],16)
=> ([(0,15),(1,11),(2,10),(3,13),(3,15),(4,14),(4,15),(5,10),(5,13),(6,11),(6,14),(7,8),(7,9),(7,12),(8,10),(8,13),(9,11),(9,14),(12,13),(12,14),(12,15)],16)
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => ? = 1
([(0,1),(0,2),(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,3),(1,6),(1,8),(1,10),(1,11),(2,3),(2,5),(2,8),(2,9),(2,11),(3,4),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ([(0,11),(1,10),(2,9),(3,8),(4,8),(4,9),(4,10),(5,8),(5,9),(5,11),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11)],12)
=> [1,3,3,1,3,1] => [1,3,1,3,3,1] => ? = 1
([(0,3),(0,4),(0,5),(0,6),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(1,2),(1,4),(1,5),(1,6),(1,7),(1,8),(1,11),(1,12),(1,13),(1,14),(2,3),(2,5),(2,6),(2,7),(2,8),(2,10),(2,12),(2,13),(2,14),(3,4),(3,5),(3,7),(3,9),(3,10),(3,11),(3,12),(3,13),(3,14),(4,6),(4,8),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,7),(5,8),(5,9),(5,10),(5,12),(5,13),(6,7),(6,8),(6,9),(6,11),(6,12),(6,14),(7,8),(7,9),(7,10),(7,11),(7,13),(7,14),(8,9),(8,10),(8,11),(8,13),(8,14),(9,10),(9,11),(9,12),(9,13),(9,14),(10,11),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14),(12,13),(12,14),(13,14)],15)
=> ([(0,11),(1,10),(2,8),(2,9),(3,10),(3,13),(4,11),(4,14),(5,13),(5,14),(6,8),(6,10),(6,13),(7,9),(7,11),(7,14),(8,12),(9,12),(12,13),(12,14)],15)
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => ? = 1
Description
The first part of an integer composition.
Matching statistic: St000383
(load all 13 compositions to match this statistic)
(load all 13 compositions to match this statistic)
Mp00111: Graphs —complement⟶ Graphs
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00314: Integer compositions —Foata bijection⟶ Integer compositions
St000383: Integer compositions ⟶ ℤResult quality: 78% ●values known / values provided: 93%●distinct values known / distinct values provided: 78%
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00314: Integer compositions —Foata bijection⟶ Integer compositions
St000383: Integer compositions ⟶ ℤResult quality: 78% ●values known / values provided: 93%●distinct values known / distinct values provided: 78%
Values
([],1)
=> ([],1)
=> [1] => [1] => 1
([],2)
=> ([(0,1)],2)
=> [1,1] => [1,1] => 1
([(0,1)],2)
=> ([],2)
=> [2] => [2] => 2
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1] => 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [1,1,1] => [1,1,1] => 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [1,2] => [1,2] => 2
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> [3] => [3] => 3
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [3,1] => 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,2,1] => 1
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1] => 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [2,2] => [2,2] => 2
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [2,1,1] => 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1] => 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [2,1,1] => 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [1,1,2] => [1,1,2] => 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [2,2] => [2,2] => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [1,3] => [1,3] => 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> [4] => [4] => 4
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [4,1] => 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,3,1] => 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,2,1] => 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,2,1,1] => 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [3,2] => 2
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1] => 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1] => 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [2,1,2] => 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,2,1,1] => 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [2,1,1,1] => 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [1,1,1,2] => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [2,1,2] => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [2,3] => [2,3] => 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [2,1,1,1] => 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [1,2,2] => 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [2,2,1] => 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [1,1,1,2] => 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [3,1,1] => 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [1,2,2] => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [1,1,3] => [1,1,3] => 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [1,1,1,2] => 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> [2,3] => [2,3] => 3
([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,2] => [6,2] => ? = 2
([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> ([(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,4,1,1,1] => [1,1,4,1,1] => ? = 1
([(0,8),(1,6),(2,6),(3,7),(4,5),(5,8),(6,7),(7,8)],9)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,7),(1,8),(2,3),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => ? = 1
([(0,6),(1,6),(2,7),(3,7),(4,8),(5,7),(5,8),(6,8)],9)
=> ([(0,2),(0,4),(0,5),(0,7),(0,8),(1,2),(1,3),(1,6),(1,7),(1,8),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,2,1,1,1,1,1] => [1,1,1,1,2,1,1,1] => ? = 1
([(0,7),(1,7),(2,6),(3,6),(4,5),(5,8),(6,8),(7,8)],9)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,8),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,2,1,1,1,1,1] => [1,1,1,1,2,1,1,1] => ? = 1
([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> ([(0,1),(0,3),(0,4),(0,5),(0,6),(0,8),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => ? = 1
([],0)
=> ([],0)
=> [] => ? => ? = 0
([(0,1),(0,4),(0,5),(0,7),(0,8),(1,2),(1,3),(1,7),(1,8),(2,3),(2,5),(2,6),(2,8),(3,4),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,7),(0,8),(1,5),(1,6),(2,3),(2,4),(3,6),(3,8),(4,5),(4,7),(5,8),(6,7)],9)
=> [1,2,1,2,2,1] => [2,2,1,1,2,1] => ? = 1
([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> [4,5,1] => [4,5,1] => ? = 1
([(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,6),(1,7),(1,8),(2,3),(2,5),(2,7),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,6),(5,8),(6,8),(7,8)],9)
=> ([(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7)],9)
=> [1,3,3,2] => [3,1,3,2] => ? = 2
([(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,8),(2,3),(2,6),(2,8),(3,4),(3,5),(3,7),(3,8),(4,5),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,8),(1,6),(1,7),(2,3),(2,4),(2,5),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => ? = 1
([(0,3),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,8),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,8),(1,5),(1,7),(2,4),(2,7),(3,4),(3,5),(3,8),(4,6),(5,6),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => ? = 1
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,5),(2,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,8),(6,7),(7,8)],9)
=> ([(0,3),(0,7),(0,8),(1,2),(1,5),(1,6),(2,7),(2,8),(3,5),(3,6),(4,5),(4,6),(4,7),(4,8),(5,8),(6,7)],9)
=> [1,1,1,1,2,1,1,1] => [1,1,2,1,1,1,1,1] => ? = 1
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,6),(2,8),(3,5),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,7),(0,8),(1,5),(1,6),(2,6),(2,8),(3,5),(3,7),(4,5),(4,6),(4,7),(4,8),(5,8),(6,7)],9)
=> [1,2,2,1,2,1] => [2,2,1,2,1,1] => ? = 1
([(0,3),(0,5),(0,8),(1,2),(1,4),(1,7),(2,3),(2,6),(2,7),(3,6),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,7),(0,8),(1,6),(1,8),(2,5),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,8),(5,8),(6,7),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => ? = 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,7),(1,8),(2,3),(2,6),(2,8),(3,4),(3,6),(4,7),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,5),(0,7),(0,8),(1,4),(1,6),(1,8),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(4,7),(4,8),(5,6),(5,8)],9)
=> [1,1,1,1,2,1,1,1] => [1,1,2,1,1,1,1,1] => ? = 1
([(0,1),(0,6),(0,7),(1,4),(1,5),(2,3),(2,5),(2,7),(2,8),(3,4),(3,6),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,7),(0,8),(1,4),(1,6),(1,8),(2,3),(2,6),(2,7),(3,5),(3,8),(4,5),(4,7),(5,7),(5,8),(6,7),(6,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => ? = 1
([(0,6),(0,7),(0,8),(1,2),(1,4),(1,5),(1,7),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(3,8),(4,5),(4,7),(4,8),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,6),(0,7),(1,2),(1,3),(1,8),(2,5),(2,7),(3,4),(3,6),(4,7),(4,8),(5,6),(5,8),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => ? = 1
([(0,5),(0,7),(0,8),(1,2),(1,4),(1,6),(1,8),(2,3),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,5),(0,8),(1,4),(1,7),(2,3),(2,6),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> [1,1,1,2,1,1,1,1] => [1,1,1,2,1,1,1,1] => ? = 1
([(0,3),(0,4),(0,7),(1,2),(1,5),(1,7),(1,8),(2,3),(2,6),(2,8),(3,6),(3,8),(4,5),(4,6),(4,7),(5,6),(5,7),(5,8),(6,8),(7,8)],9)
=> ([(0,7),(0,8),(1,4),(1,6),(1,8),(2,3),(2,4),(2,6),(3,5),(3,8),(4,5),(4,7),(5,7),(5,8),(6,7),(6,8)],9)
=> [1,1,1,1,2,1,1,1] => [1,1,2,1,1,1,1,1] => ? = 1
([(0,1),(0,5),(0,7),(0,8),(1,4),(1,7),(1,8),(2,3),(2,4),(2,6),(2,7),(3,5),(3,6),(3,8),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,7),(0,8),(1,4),(1,6),(2,3),(2,5),(3,4),(3,6),(3,7),(4,5),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> [2,2,2,2,1] => [2,2,2,2,1] => ? = 1
([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(3,6),(3,8),(4,5),(4,7),(5,8),(6,7)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(3,6),(3,8),(4,5),(4,7),(5,8),(6,7)],9)
=> [4,4,1] => [4,4,1] => ? = 1
([(0,1),(0,2),(0,7),(0,8),(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(3,8),(3,9),(4,5),(4,7),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,5),(1,6),(1,8),(1,9),(2,3),(2,4),(2,8),(2,9),(3,6),(3,7),(3,9),(4,5),(4,7),(4,8),(5,7),(5,9),(6,7),(6,8)],10)
=> [1,2,1,2,2,1,1] => [1,2,2,1,1,2,1] => ? = 1
([(0,1),(0,6),(0,7),(0,9),(1,4),(1,5),(1,8),(2,3),(2,5),(2,7),(2,8),(2,9),(3,4),(3,6),(3,8),(3,9),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,9),(7,9),(8,9)],10)
=> ([(0,6),(0,7),(0,9),(1,4),(1,5),(1,8),(2,5),(2,7),(2,8),(2,9),(3,4),(3,6),(3,8),(3,9),(4,7),(4,9),(5,6),(5,9),(6,8),(7,8)],10)
=> [1,1,1,1,1,1,2,1,1] => [1,2,1,1,1,1,1,1,1] => ? = 1
([(0,4),(0,5),(1,2),(1,3),(1,7),(1,8),(2,3),(2,6),(2,8),(3,6),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,7),(0,8),(1,6),(1,8),(2,5),(2,8),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,8),(6,8),(7,8)],9)
=> [1,1,2,1,1,2,1] => [2,1,2,1,1,1,1] => ? = 1
([(0,4),(0,5),(0,8),(1,2),(1,3),(1,4),(1,7),(2,3),(2,4),(2,6),(3,6),(3,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,4),(0,6),(0,7),(1,5),(1,7),(1,8),(2,5),(2,6),(2,8),(3,4),(3,5),(3,6),(3,7),(4,5),(4,8),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => ? = 1
([(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(2,3),(2,5),(2,7),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,7),(0,8),(1,4),(1,6),(1,8),(2,3),(2,6),(2,8),(3,5),(3,8),(4,5),(4,8),(5,7),(6,7),(7,8)],9)
=> [1,2,1,1,2,1,1] => [1,2,1,2,1,1,1] => ? = 1
([(0,3),(0,6),(0,7),(1,2),(1,4),(1,5),(2,4),(2,6),(2,8),(3,5),(3,7),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,7),(0,8),(1,4),(1,6),(1,7),(2,3),(2,6),(2,8),(3,5),(3,7),(4,5),(4,8),(5,6),(5,8),(6,7),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => ? = 1
([(0,2),(0,3),(1,4),(1,5),(1,6),(1,7),(2,6),(2,7),(2,8),(3,4),(3,5),(3,8),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,7),(0,8),(1,4),(1,6),(1,8),(2,3),(2,6),(2,8),(3,5),(3,8),(4,5),(4,8),(5,6),(5,7),(6,7),(7,8)],9)
=> [1,1,1,1,2,1,1,1] => [1,1,2,1,1,1,1,1] => ? = 1
([(0,1),(0,4),(0,8),(1,3),(1,7),(2,3),(2,4),(2,5),(2,6),(3,5),(3,7),(4,6),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,6),(0,7),(0,8),(1,5),(1,7),(1,8),(2,4),(2,5),(2,8),(3,4),(3,6),(3,7),(4,7),(4,8),(5,6),(5,7),(6,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => ? = 1
([(0,3),(0,4),(0,8),(0,9),(1,2),(1,4),(1,5),(1,7),(2,3),(2,5),(2,6),(3,6),(3,8),(4,7),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,6),(1,8),(1,9),(2,5),(2,7),(2,9),(3,5),(3,6),(3,7),(4,5),(4,6),(4,8),(5,8),(5,9),(6,7),(6,9),(7,8)],10)
=> [2,1,2,2,2,1] => [2,2,1,2,2,1] => ? = 1
([(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,7),(4,8),(5,7),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,2),(1,4),(1,6),(1,7),(2,3),(2,5),(2,7),(3,5),(3,6),(3,8),(4,5),(4,6),(4,8),(7,8)],9)
=> [1,2,2,3,1] => [2,1,2,3,1] => ? = 1
([(0,3),(0,7),(0,8),(0,9),(1,2),(1,4),(1,6),(1,8),(2,4),(2,5),(2,7),(3,5),(3,6),(3,9),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ([(0,5),(0,8),(0,9),(1,4),(1,7),(1,9),(2,3),(2,7),(2,8),(3,6),(3,9),(4,6),(4,8),(5,6),(5,7),(6,8),(6,9),(7,8),(7,9)],10)
=> [1,2,1,1,2,2,1] => [2,1,2,1,1,2,1] => ? = 1
([(0,7),(0,8),(0,9),(1,2),(1,3),(1,5),(1,6),(1,9),(2,3),(2,4),(2,6),(2,8),(3,4),(3,5),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ([(0,5),(0,8),(0,9),(1,4),(1,7),(1,9),(2,3),(2,6),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,9),(7,9),(8,9)],10)
=> [1,2,1,1,2,2,1] => [2,1,2,1,1,2,1] => ? = 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([],8)
=> [8] => [8] => ? = 8
([(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(3,7),(4,7),(5,7),(6,7)],8)
=> [1,3,4] => [1,3,4] => ? = 4
([(0,6),(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,2,1,3] => [2,1,1,1,3] => ? = 3
([(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,1,3,2] => [3,1,1,1,2] => ? = 2
([(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,1,2,3] => [1,1,1,2,3] => ? = 3
([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,1,1,1,1,2] => [1,1,1,1,1,1,2] => ? = 2
([(0,6),(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,1,1,1,3] => [1,1,2,1,3] => ? = 3
([(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,2,1,1,3] => [1,2,1,1,3] => ? = 3
([(0,6),(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,1,1,1,3] => [1,1,1,1,1,3] => ? = 3
([(0,7),(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [4,1,1,2] => [1,1,4,2] => ? = 2
([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,5] => [3,5] => ? = 5
([(0,5),(0,6),(0,7),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,7),(5,7),(6,7)],8)
=> ([(1,4),(1,5),(2,3),(2,6),(2,7),(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8)
=> [1,1,1,1,1,1,2] => [1,1,1,1,1,1,2] => ? = 2
([(0,4),(0,6),(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,5),(2,5),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(6,7)],8)
=> [1,1,1,1,1,1,2] => [1,1,1,1,1,1,2] => ? = 2
([(0,5),(0,6),(0,7),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(2,3),(2,7),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,1,1,1,3] => [1,1,1,1,1,3] => ? = 3
([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,1,4] => [3,1,4] => ? = 4
([(0,6),(0,7),(1,5),(1,7),(2,3),(2,4),(2,7),(3,5),(3,7),(4,6),(4,7),(5,7),(6,7)],8)
=> ([(1,2),(1,4),(1,5),(1,7),(2,3),(2,5),(2,6),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,1,1,1,1,2] => [1,1,1,1,1,1,2] => ? = 2
Description
The last part of an integer composition.
Matching statistic: St000273
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> [1] => ([],1)
=> 1
([],2)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 1
([(0,1)],2)
=> ([],2)
=> [2] => ([],2)
=> 2
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [1,2] => ([(1,2)],3)
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> [3] => ([],3)
=> 3
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 2
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [1,3] => ([(2,3)],4)
=> 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> [4] => ([],4)
=> 4
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [2,3] => ([(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> [2,3] => ([(2,4),(3,4)],5)
=> 3
([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,4),(0,5),(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,1),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ([(0,2),(0,3),(0,4),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,5),(2,6),(2,7),(3,5),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ([(0,3),(0,4),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 2
([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> ([(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,4,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8)
=> ([(0,2),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,3,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,8),(1,6),(2,6),(3,7),(4,5),(5,8),(6,7),(7,8)],9)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,7),(1,8),(2,3),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
([(0,6),(1,6),(2,7),(3,7),(4,8),(5,7),(5,8),(6,8)],9)
=> ([(0,2),(0,4),(0,5),(0,7),(0,8),(1,2),(1,3),(1,6),(1,7),(1,8),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,2,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
([(0,7),(1,7),(2,6),(3,6),(4,5),(5,8),(6,8),(7,8)],9)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,8),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,2,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> ([(0,1),(0,3),(0,4),(0,5),(0,6),(0,8),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
([],0)
=> ([],0)
=> [] => ?
=> ? = 0
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,5),(1,6),(1,7),(2,3),(2,4),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,7),(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,2),(0,3),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,6),(0,7),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,7),(5,6)],8)
=> [2,1,2,2,1] => ([(0,7),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,1),(0,4),(0,5),(0,7),(0,8),(1,2),(1,3),(1,7),(1,8),(2,3),(2,5),(2,6),(2,8),(3,4),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,7),(0,8),(1,5),(1,6),(2,3),(2,4),(3,6),(3,8),(4,5),(4,7),(5,8),(6,7)],9)
=> [1,2,1,2,2,1] => ([(0,8),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> [4,5,1] => ([(0,9),(1,9),(2,9),(3,9),(4,8),(4,9),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 1
([(0,1),(0,2),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,5),(4,6),(4,7)],8)
=> [1,2,1,2,2] => ([(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,6),(1,7),(2,3),(2,5),(2,7),(3,4),(3,7),(4,5),(4,6),(5,6)],8)
=> ([(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6)],8)
=> [1,3,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,6),(1,7),(1,8),(2,3),(2,5),(2,7),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,6),(5,8),(6,8),(7,8)],9)
=> ([(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7)],9)
=> [1,3,3,2] => ([(1,8),(2,8),(3,7),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 2
([(0,2),(0,5),(0,7),(1,2),(1,4),(1,6),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,7),(1,6),(2,5),(2,6),(3,5),(3,7),(4,5),(4,6),(4,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,5),(0,6),(1,2),(1,4),(1,7),(2,3),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,7),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,1),(0,2),(0,6),(0,7),(1,2),(1,5),(1,7),(2,5),(2,6),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,7),(1,6),(2,5),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> [1,2,1,1,2,1] => ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,3),(0,6),(0,7),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ([(0,6),(0,7),(1,2),(1,3),(1,4),(2,5),(2,7),(3,5),(3,6),(4,6),(4,7),(5,6),(5,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,5),(0,6),(1,2),(1,4),(1,6),(1,7),(2,3),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,7),(1,5),(1,6),(2,3),(2,4),(3,6),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,3),(0,6),(0,7),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,7),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,7),(1,4),(1,5),(2,3),(2,6),(3,4),(3,7),(4,6),(5,6),(5,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,5),(0,6),(1,2),(1,4),(1,6),(1,7),(2,3),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ([(0,7),(1,2),(1,5),(1,6),(2,3),(2,4),(3,6),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,8),(2,3),(2,6),(2,8),(3,4),(3,5),(3,7),(3,8),(4,5),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,8),(1,6),(1,7),(2,3),(2,4),(2,5),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
([(0,3),(0,4),(0,5),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(3,4),(3,7),(4,6),(5,6),(5,7),(6,7)],8)
=> ([(0,5),(0,7),(1,4),(1,7),(2,3),(2,4),(2,5),(3,6),(3,7),(4,6),(5,6),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,5),(0,6),(0,7),(1,3),(1,4),(1,7),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,5),(1,4),(1,7),(2,3),(2,7),(3,6),(4,6),(5,6),(5,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,3),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,8),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,8),(1,5),(1,7),(2,4),(2,7),(3,4),(3,5),(3,8),(4,6),(5,6),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,5),(2,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,8),(6,7),(7,8)],9)
=> ([(0,3),(0,7),(0,8),(1,2),(1,5),(1,6),(2,7),(2,8),(3,5),(3,6),(4,5),(4,6),(4,7),(4,8),(5,8),(6,7)],9)
=> [1,1,1,1,2,1,1,1] => ([(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,9),(3,5),(3,6),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8),(7,9),(8,9)],10)
=> ([(0,9),(1,4),(1,7),(1,8),(2,3),(2,5),(2,6),(3,7),(3,8),(4,5),(4,6),(5,8),(5,9),(6,7),(6,9),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 1
([(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5),(3,6),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,6),(2,8),(3,5),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,7),(0,8),(1,5),(1,6),(2,6),(2,8),(3,5),(3,7),(4,5),(4,6),(4,7),(4,8),(5,8),(6,7)],9)
=> [1,2,2,1,2,1] => ([(0,8),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
([(0,2),(0,5),(1,3),(1,4),(1,7),(2,4),(2,6),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,5),(0,7),(1,6),(1,7),(2,3),(2,4),(2,7),(3,5),(3,7),(4,5),(4,6),(5,6),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,4),(0,7),(1,2),(1,3),(1,6),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,6),(0,7),(1,4),(1,7),(2,3),(2,6),(3,5),(3,7),(4,5),(4,6),(5,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,1),(0,3),(0,7),(1,2),(1,6),(2,4),(2,6),(3,5),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,5),(0,7),(1,4),(1,6),(2,4),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,7),(5,6)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,3),(0,5),(0,8),(1,2),(1,4),(1,7),(2,3),(2,6),(2,7),(3,6),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,7),(0,8),(1,6),(1,8),(2,5),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,8),(5,8),(6,7),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
([(0,3),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,7),(6,7)],8)
=> [1,2,1,2,1,1] => ([(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(2,3),(2,5),(2,7),(3,4),(3,7),(4,5),(4,6),(5,6),(6,7)],8)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,5),(2,7),(3,4),(3,7),(4,7),(5,7),(6,7)],8)
=> [1,1,2,1,2,1] => ([(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,7),(1,8),(2,3),(2,6),(2,8),(3,4),(3,6),(4,7),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,5),(0,7),(0,8),(1,4),(1,6),(1,8),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(4,7),(4,8),(5,6),(5,8)],9)
=> [1,1,1,1,2,1,1,1] => ([(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
([(0,1),(0,6),(0,7),(1,4),(1,5),(2,3),(2,5),(2,7),(2,8),(3,4),(3,6),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,7),(0,8),(1,4),(1,6),(1,8),(2,3),(2,6),(2,7),(3,5),(3,8),(4,5),(4,7),(5,7),(5,8),(6,7),(6,8)],9)
=> [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
([(0,1),(0,5),(0,6),(0,8),(1,4),(1,6),(1,7),(2,3),(2,4),(2,5),(2,9),(3,6),(3,7),(3,8),(3,9),(4,5),(4,7),(4,9),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ([(0,8),(0,9),(1,5),(1,7),(1,9),(2,4),(2,7),(2,8),(3,4),(3,5),(3,7),(4,6),(4,9),(5,6),(5,8),(6,8),(6,9),(7,8),(7,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 1
Description
The domination number of a graph.
The domination number of a graph is given by the minimum size of a dominating set of vertices. A dominating set of vertices is a subset of the vertex set of such that every vertex is either in this subset or adjacent to an element of this subset.
Matching statistic: St000544
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> [1] => ([],1)
=> 1
([],2)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 1
([(0,1)],2)
=> ([],2)
=> [2] => ([],2)
=> 2
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [1,2] => ([(1,2)],3)
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> [3] => ([],3)
=> 3
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 2
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [1,3] => ([(2,3)],4)
=> 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> [4] => ([],4)
=> 4
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [2,3] => ([(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> [2,3] => ([(2,4),(3,4)],5)
=> 3
([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,4),(0,5),(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,1),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ([(0,2),(0,3),(0,4),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,5),(2,6),(2,7),(3,5),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ([(0,3),(0,4),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 2
([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> ([(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,4,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8)
=> ([(0,2),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,3,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,8),(1,6),(2,6),(3,7),(4,5),(5,8),(6,7),(7,8)],9)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,7),(1,8),(2,3),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
([(0,6),(1,6),(2,7),(3,7),(4,8),(5,7),(5,8),(6,8)],9)
=> ([(0,2),(0,4),(0,5),(0,7),(0,8),(1,2),(1,3),(1,6),(1,7),(1,8),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,2,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
([(0,7),(1,7),(2,6),(3,6),(4,5),(5,8),(6,8),(7,8)],9)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,8),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,2,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> ([(0,1),(0,3),(0,4),(0,5),(0,6),(0,8),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
([],0)
=> ([],0)
=> [] => ?
=> ? = 0
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,5),(1,6),(1,7),(2,3),(2,4),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,7),(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,2),(0,3),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,6),(0,7),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,7),(5,6)],8)
=> [2,1,2,2,1] => ([(0,7),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,1),(0,4),(0,5),(0,7),(0,8),(1,2),(1,3),(1,7),(1,8),(2,3),(2,5),(2,6),(2,8),(3,4),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,7),(0,8),(1,5),(1,6),(2,3),(2,4),(3,6),(3,8),(4,5),(4,7),(5,8),(6,7)],9)
=> [1,2,1,2,2,1] => ([(0,8),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> [4,5,1] => ([(0,9),(1,9),(2,9),(3,9),(4,8),(4,9),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 1
([(0,1),(0,2),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,5),(4,6),(4,7)],8)
=> [1,2,1,2,2] => ([(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,6),(1,7),(2,3),(2,5),(2,7),(3,4),(3,7),(4,5),(4,6),(5,6)],8)
=> ([(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6)],8)
=> [1,3,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,6),(1,7),(1,8),(2,3),(2,5),(2,7),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,6),(5,8),(6,8),(7,8)],9)
=> ([(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7)],9)
=> [1,3,3,2] => ([(1,8),(2,8),(3,7),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 2
([(0,2),(0,5),(0,7),(1,2),(1,4),(1,6),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,7),(1,6),(2,5),(2,6),(3,5),(3,7),(4,5),(4,6),(4,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,5),(0,6),(1,2),(1,4),(1,7),(2,3),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,7),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,1),(0,2),(0,6),(0,7),(1,2),(1,5),(1,7),(2,5),(2,6),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,7),(1,6),(2,5),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> [1,2,1,1,2,1] => ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,3),(0,6),(0,7),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ([(0,6),(0,7),(1,2),(1,3),(1,4),(2,5),(2,7),(3,5),(3,6),(4,6),(4,7),(5,6),(5,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,5),(0,6),(1,2),(1,4),(1,6),(1,7),(2,3),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,7),(1,5),(1,6),(2,3),(2,4),(3,6),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,3),(0,6),(0,7),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,7),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,7),(1,4),(1,5),(2,3),(2,6),(3,4),(3,7),(4,6),(5,6),(5,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,5),(0,6),(1,2),(1,4),(1,6),(1,7),(2,3),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ([(0,7),(1,2),(1,5),(1,6),(2,3),(2,4),(3,6),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,8),(2,3),(2,6),(2,8),(3,4),(3,5),(3,7),(3,8),(4,5),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,8),(1,6),(1,7),(2,3),(2,4),(2,5),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
([(0,3),(0,4),(0,5),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(3,4),(3,7),(4,6),(5,6),(5,7),(6,7)],8)
=> ([(0,5),(0,7),(1,4),(1,7),(2,3),(2,4),(2,5),(3,6),(3,7),(4,6),(5,6),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,5),(0,6),(0,7),(1,3),(1,4),(1,7),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,5),(1,4),(1,7),(2,3),(2,7),(3,6),(4,6),(5,6),(5,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,3),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,8),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,8),(1,5),(1,7),(2,4),(2,7),(3,4),(3,5),(3,8),(4,6),(5,6),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,5),(2,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,8),(6,7),(7,8)],9)
=> ([(0,3),(0,7),(0,8),(1,2),(1,5),(1,6),(2,7),(2,8),(3,5),(3,6),(4,5),(4,6),(4,7),(4,8),(5,8),(6,7)],9)
=> [1,1,1,1,2,1,1,1] => ([(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,9),(3,5),(3,6),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8),(7,9),(8,9)],10)
=> ([(0,9),(1,4),(1,7),(1,8),(2,3),(2,5),(2,6),(3,7),(3,8),(4,5),(4,6),(5,8),(5,9),(6,7),(6,9),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 1
([(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5),(3,6),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,6),(2,8),(3,5),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,7),(0,8),(1,5),(1,6),(2,6),(2,8),(3,5),(3,7),(4,5),(4,6),(4,7),(4,8),(5,8),(6,7)],9)
=> [1,2,2,1,2,1] => ([(0,8),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
([(0,2),(0,5),(1,3),(1,4),(1,7),(2,4),(2,6),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,5),(0,7),(1,6),(1,7),(2,3),(2,4),(2,7),(3,5),(3,7),(4,5),(4,6),(5,6),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,4),(0,7),(1,2),(1,3),(1,6),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,6),(0,7),(1,4),(1,7),(2,3),(2,6),(3,5),(3,7),(4,5),(4,6),(5,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,1),(0,3),(0,7),(1,2),(1,6),(2,4),(2,6),(3,5),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,5),(0,7),(1,4),(1,6),(2,4),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,7),(5,6)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,3),(0,5),(0,8),(1,2),(1,4),(1,7),(2,3),(2,6),(2,7),(3,6),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,7),(0,8),(1,6),(1,8),(2,5),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,8),(5,8),(6,7),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
([(0,3),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,7),(6,7)],8)
=> [1,2,1,2,1,1] => ([(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(2,3),(2,5),(2,7),(3,4),(3,7),(4,5),(4,6),(5,6),(6,7)],8)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,5),(2,7),(3,4),(3,7),(4,7),(5,7),(6,7)],8)
=> [1,1,2,1,2,1] => ([(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,7),(1,8),(2,3),(2,6),(2,8),(3,4),(3,6),(4,7),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,5),(0,7),(0,8),(1,4),(1,6),(1,8),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(4,7),(4,8),(5,6),(5,8)],9)
=> [1,1,1,1,2,1,1,1] => ([(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
([(0,1),(0,6),(0,7),(1,4),(1,5),(2,3),(2,5),(2,7),(2,8),(3,4),(3,6),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,7),(0,8),(1,4),(1,6),(1,8),(2,3),(2,6),(2,7),(3,5),(3,8),(4,5),(4,7),(5,7),(5,8),(6,7),(6,8)],9)
=> [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
([(0,1),(0,5),(0,6),(0,8),(1,4),(1,6),(1,7),(2,3),(2,4),(2,5),(2,9),(3,6),(3,7),(3,8),(3,9),(4,5),(4,7),(4,9),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ([(0,8),(0,9),(1,5),(1,7),(1,9),(2,4),(2,7),(2,8),(3,4),(3,5),(3,7),(4,6),(4,9),(5,6),(5,8),(6,8),(6,9),(7,8),(7,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 1
Description
The cop number of a graph.
This is the minimal number of cops needed to catch the robber. The algorithm is from [2].
Matching statistic: St000916
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> [1] => ([],1)
=> 1
([],2)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 1
([(0,1)],2)
=> ([],2)
=> [2] => ([],2)
=> 2
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [1,2] => ([(1,2)],3)
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> [3] => ([],3)
=> 3
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 2
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [1,3] => ([(2,3)],4)
=> 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> [4] => ([],4)
=> 4
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [2,3] => ([(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> [2,3] => ([(2,4),(3,4)],5)
=> 3
([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,4),(0,5),(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,1),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ([(0,2),(0,3),(0,4),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,5),(2,6),(2,7),(3,5),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ([(0,3),(0,4),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 2
([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> ([(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,4,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8)
=> ([(0,2),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,3,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,8),(1,6),(2,6),(3,7),(4,5),(5,8),(6,7),(7,8)],9)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,7),(1,8),(2,3),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
([(0,6),(1,6),(2,7),(3,7),(4,8),(5,7),(5,8),(6,8)],9)
=> ([(0,2),(0,4),(0,5),(0,7),(0,8),(1,2),(1,3),(1,6),(1,7),(1,8),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,2,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
([(0,7),(1,7),(2,6),(3,6),(4,5),(5,8),(6,8),(7,8)],9)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,8),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,2,1,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> ([(0,1),(0,3),(0,4),(0,5),(0,6),(0,8),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
([],0)
=> ([],0)
=> [] => ?
=> ? = 0
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,5),(1,6),(1,7),(2,3),(2,4),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,7),(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,2),(0,3),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,6),(0,7),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,7),(5,6)],8)
=> [2,1,2,2,1] => ([(0,7),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,1),(0,4),(0,5),(0,7),(0,8),(1,2),(1,3),(1,7),(1,8),(2,3),(2,5),(2,6),(2,8),(3,4),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,7),(0,8),(1,5),(1,6),(2,3),(2,4),(3,6),(3,8),(4,5),(4,7),(5,8),(6,7)],9)
=> [1,2,1,2,2,1] => ([(0,8),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> [4,5,1] => ([(0,9),(1,9),(2,9),(3,9),(4,8),(4,9),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 1
([(0,1),(0,2),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,5),(4,6),(4,7)],8)
=> [1,2,1,2,2] => ([(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,6),(1,7),(2,3),(2,5),(2,7),(3,4),(3,7),(4,5),(4,6),(5,6)],8)
=> ([(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6)],8)
=> [1,3,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,6),(1,7),(1,8),(2,3),(2,5),(2,7),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,6),(5,8),(6,8),(7,8)],9)
=> ([(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7)],9)
=> [1,3,3,2] => ([(1,8),(2,8),(3,7),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 2
([(0,2),(0,5),(0,7),(1,2),(1,4),(1,6),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,7),(1,6),(2,5),(2,6),(3,5),(3,7),(4,5),(4,6),(4,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,5),(0,6),(1,2),(1,4),(1,7),(2,3),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,7),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,1),(0,2),(0,6),(0,7),(1,2),(1,5),(1,7),(2,5),(2,6),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,7),(1,6),(2,5),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> [1,2,1,1,2,1] => ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,3),(0,6),(0,7),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ([(0,6),(0,7),(1,2),(1,3),(1,4),(2,5),(2,7),(3,5),(3,6),(4,6),(4,7),(5,6),(5,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,5),(0,6),(1,2),(1,4),(1,6),(1,7),(2,3),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,7),(1,5),(1,6),(2,3),(2,4),(3,6),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,3),(0,6),(0,7),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,7),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,7),(1,4),(1,5),(2,3),(2,6),(3,4),(3,7),(4,6),(5,6),(5,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,5),(0,6),(1,2),(1,4),(1,6),(1,7),(2,3),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ([(0,7),(1,2),(1,5),(1,6),(2,3),(2,4),(3,6),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,8),(2,3),(2,6),(2,8),(3,4),(3,5),(3,7),(3,8),(4,5),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,8),(1,6),(1,7),(2,3),(2,4),(2,5),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
([(0,3),(0,4),(0,5),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(3,4),(3,7),(4,6),(5,6),(5,7),(6,7)],8)
=> ([(0,5),(0,7),(1,4),(1,7),(2,3),(2,4),(2,5),(3,6),(3,7),(4,6),(5,6),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,5),(0,6),(0,7),(1,3),(1,4),(1,7),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,5),(1,4),(1,7),(2,3),(2,7),(3,6),(4,6),(5,6),(5,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,3),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,8),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,8),(1,5),(1,7),(2,4),(2,7),(3,4),(3,5),(3,8),(4,6),(5,6),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,5),(2,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,8),(6,7),(7,8)],9)
=> ([(0,3),(0,7),(0,8),(1,2),(1,5),(1,6),(2,7),(2,8),(3,5),(3,6),(4,5),(4,6),(4,7),(4,8),(5,8),(6,7)],9)
=> [1,1,1,1,2,1,1,1] => ([(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,9),(3,5),(3,6),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8),(7,9),(8,9)],10)
=> ([(0,9),(1,4),(1,7),(1,8),(2,3),(2,5),(2,6),(3,7),(3,8),(4,5),(4,6),(5,8),(5,9),(6,7),(6,9),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 1
([(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5),(3,6),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,6),(2,8),(3,5),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,7),(0,8),(1,5),(1,6),(2,6),(2,8),(3,5),(3,7),(4,5),(4,6),(4,7),(4,8),(5,8),(6,7)],9)
=> [1,2,2,1,2,1] => ([(0,8),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
([(0,2),(0,5),(1,3),(1,4),(1,7),(2,4),(2,6),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,5),(0,7),(1,6),(1,7),(2,3),(2,4),(2,7),(3,5),(3,7),(4,5),(4,6),(5,6),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,4),(0,7),(1,2),(1,3),(1,6),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,6),(0,7),(1,4),(1,7),(2,3),(2,6),(3,5),(3,7),(4,5),(4,6),(5,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,1),(0,3),(0,7),(1,2),(1,6),(2,4),(2,6),(3,5),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,5),(0,7),(1,4),(1,6),(2,4),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,7),(5,6)],8)
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,3),(0,5),(0,8),(1,2),(1,4),(1,7),(2,3),(2,6),(2,7),(3,6),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,7),(0,8),(1,6),(1,8),(2,5),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,8),(5,8),(6,7),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
([(0,3),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,7),(6,7)],8)
=> [1,2,1,2,1,1] => ([(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(2,3),(2,5),(2,7),(3,4),(3,7),(4,5),(4,6),(5,6),(6,7)],8)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,5),(2,7),(3,4),(3,7),(4,7),(5,7),(6,7)],8)
=> [1,1,2,1,2,1] => ([(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,7),(1,8),(2,3),(2,6),(2,8),(3,4),(3,6),(4,7),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,5),(0,7),(0,8),(1,4),(1,6),(1,8),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(4,7),(4,8),(5,6),(5,8)],9)
=> [1,1,1,1,2,1,1,1] => ([(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
([(0,1),(0,6),(0,7),(1,4),(1,5),(2,3),(2,5),(2,7),(2,8),(3,4),(3,6),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ([(0,7),(0,8),(1,4),(1,6),(1,8),(2,3),(2,6),(2,7),(3,5),(3,8),(4,5),(4,7),(5,7),(5,8),(6,7),(6,8)],9)
=> [1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
([(0,1),(0,5),(0,6),(0,8),(1,4),(1,6),(1,7),(2,3),(2,4),(2,5),(2,9),(3,6),(3,7),(3,8),(3,9),(4,5),(4,7),(4,9),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ([(0,8),(0,9),(1,5),(1,7),(1,9),(2,4),(2,7),(2,8),(3,4),(3,5),(3,7),(4,6),(4,9),(5,6),(5,8),(6,8),(6,9),(7,8),(7,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 1
Description
The packing number of a graph.
This is the size of a largest subset of vertices of a graph, such that any two distinct vertices in the subset have disjoint closed neighbourhoods, or, equivalently, have distance greater than two.
The following 99 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001829The common independence number of a graph. St001363The Euler characteristic of a graph according to Knill. St000287The number of connected components of a graph. St000553The number of blocks of a graph. St001828The Euler characteristic of a graph. St000286The number of connected components of the complement of a graph. St001322The size of a minimal independent dominating set in a graph. St001339The irredundance number of a graph. St000456The monochromatic index of a connected graph. St000781The number of proper colouring schemes of a Ferrers diagram. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St000326The position of the first one in a binary word after appending a 1 at the end. St000847The number of standard Young tableaux whose descent set is the binary word. St000913The number of ways to refine the partition into singletons. St001385The number of conjugacy classes of subgroups with connected subgroups of sizes prescribed by an integer partition. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000290The major index of a binary word. St000291The number of descents of a binary word. St000293The number of inversions of a binary word. St000296The length of the symmetric border of a binary word. St000347The inversion sum of a binary word. St000629The defect of a binary word. St000687The dimension of Hom(I,P) for the LNakayama algebra of a Dyck path. St000752The Grundy value for the game 'Couples are forever' on an integer partition. St000875The semilength of the longest Dyck word in the Catalan factorisation of a binary word. St000921The number of internal inversions of a binary word. St001107The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. St001371The length of the longest Yamanouchi prefix of a binary word. St001421Half the length of a longest factor which is its own reverse-complement and begins with a one of a binary word. St001436The index of a given binary word in the lex-order among all its cyclic shifts. St001485The modular major index of a binary word. St001695The natural comajor index of a standard Young tableau. St001698The comajor index of a standard tableau minus the weighted size of its shape. St001699The major index of a standard tableau minus the weighted size of its shape. St001712The number of natural descents of a standard Young tableau. St001063Numbers of 3-torsionfree simple modules in the corresponding Nakayama algebra. St001064Number of simple modules in the corresponding Nakayama algebra that are 3-syzygy modules. St001256Number of simple reflexive modules that are 2-stable reflexive. St001493The number of simple modules with maximal even projective dimension in the corresponding Nakayama algebra. St001722The number of minimal chains with small intervals between a binary word and the top element. St001025Number of simple modules with projective dimension 4 in the Nakayama algebra corresponding to the Dyck path. St001193The dimension of Ext1A(A/AeA,A) in the corresponding Nakayama algebra A such that eA is a minimal faithful projective-injective module. St001292The injective dimension of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001198The number of simple modules in the algebra eAe with projective dimension at most 1 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001206The maximal dimension of an indecomposable projective eAe-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module eA. St001487The number of inner corners of a skew partition. St001490The number of connected components of a skew partition. St001435The number of missing boxes in the first row. St001438The number of missing boxes of a skew partition. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St001570The minimal number of edges to add to make a graph Hamiltonian. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St000264The girth of a graph, which is not a tree. St001060The distinguishing index of a graph. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St000455The second largest eigenvalue of a graph if it is integral. St001568The smallest positive integer that does not appear twice in the partition. St000929The constant term of the character polynomial of an integer partition. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St000618The number of self-evacuating tableaux of given shape. St001432The order dimension of the partition. St001592The maximal number of simple paths between any two different vertices of a graph. St001609The number of coloured trees such that the multiplicities of colours are given by a partition. St001780The order of promotion on the set of standard tableaux of given shape. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001924The number of cells in an integer partition whose arm and leg length coincide. St001936The number of transitive factorisations of a permutation of given cycle type into star transpositions. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000225Difference between largest and smallest parts in a partition. St000379The number of Hamiltonian cycles in a graph. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St001175The size of a partition minus the hook length of the base cell. St001178Twelve times the variance of the major index among all standard Young tableaux of a partition. St001586The number of odd parts smaller than the largest even part in an integer partition. St001599The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on rooted trees. St000944The 3-degree of an integer partition. St000773The multiplicity of the largest Laplacian eigenvalue in a graph. St001621The number of atoms of a lattice. St001330The hat guessing number of a graph. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000284The Plancherel distribution on integer partitions. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000901The cube of the number of standard Young tableaux with shape given by the partition. St001128The exponens consonantiae of a partition. St000514The number of invariant simple graphs when acting with a permutation of given cycle type. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St000941The number of characters of the symmetric group whose value on the partition is even. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St000699The toughness times the least common multiple of 1,.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!