Processing math: 100%

Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001909
St001909: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 2
([],2)
=> 4
([(0,1)],2)
=> 4
([],3)
=> 8
([(1,2)],3)
=> 8
([(0,1),(0,2)],3)
=> 8
([(0,2),(2,1)],3)
=> 7
([(0,2),(1,2)],3)
=> 8
([],4)
=> 16
([(2,3)],4)
=> 16
([(1,2),(1,3)],4)
=> 16
([(0,1),(0,2),(0,3)],4)
=> 16
([(0,2),(0,3),(3,1)],4)
=> 14
([(0,1),(0,2),(1,3),(2,3)],4)
=> 13
([(1,2),(2,3)],4)
=> 14
([(0,3),(3,1),(3,2)],4)
=> 13
([(1,3),(2,3)],4)
=> 16
([(0,3),(1,3),(3,2)],4)
=> 13
([(0,3),(1,3),(2,3)],4)
=> 16
([(0,3),(1,2)],4)
=> 16
([(0,3),(1,2),(1,3)],4)
=> 16
([(0,2),(0,3),(1,2),(1,3)],4)
=> 16
([(0,3),(2,1),(3,2)],4)
=> 11
([(0,3),(1,2),(2,3)],4)
=> 14
([],5)
=> 32
([(3,4)],5)
=> 32
([(2,3),(2,4)],5)
=> 32
([(1,2),(1,3),(1,4)],5)
=> 32
([(0,1),(0,2),(0,3),(0,4)],5)
=> 32
([(0,2),(0,3),(0,4),(4,1)],5)
=> 28
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> 26
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 25
([(1,3),(1,4),(4,2)],5)
=> 28
([(0,3),(0,4),(4,1),(4,2)],5)
=> 26
([(1,2),(1,3),(2,4),(3,4)],5)
=> 26
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 19
([(0,3),(0,4),(3,2),(4,1)],5)
=> 25
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 24
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 23
([(2,3),(3,4)],5)
=> 28
([(1,4),(4,2),(4,3)],5)
=> 26
([(0,4),(4,1),(4,2),(4,3)],5)
=> 25
([(2,4),(3,4)],5)
=> 32
([(1,4),(2,4),(4,3)],5)
=> 26
([(0,4),(1,4),(4,2),(4,3)],5)
=> 23
([(1,4),(2,4),(3,4)],5)
=> 32
([(0,4),(1,4),(2,4),(4,3)],5)
=> 25
([(0,4),(1,4),(2,4),(3,4)],5)
=> 32
([(0,4),(1,4),(2,3)],5)
=> 32
([(0,4),(1,3),(2,3),(2,4)],5)
=> 32
Description
The number of interval-closed sets of a poset. For a poset P and a subset I of P, we say that I is an ''interval-closed'' set if for all x,yI such that xy, then zI if xzy. There is a bijection between interval-closed sets of a poset P and pairs of disjoint antichains (A,B) of P such that any element in B is in the order ideal Δ(A) generated by A. (Proposition 2.5 of [1]).