searching the database
Your data matches 24 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000971
St000971: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
{{1}}
=> 1
{{1,2}}
=> 2
{{1},{2}}
=> 1
{{1,2,3}}
=> 3
{{1,2},{3}}
=> 2
{{1,3},{2}}
=> 2
{{1},{2,3}}
=> 1
{{1},{2},{3}}
=> 1
{{1,2,3,4}}
=> 4
{{1,2,3},{4}}
=> 3
{{1,2,4},{3}}
=> 3
{{1,2},{3,4}}
=> 2
{{1,2},{3},{4}}
=> 2
{{1,3,4},{2}}
=> 2
{{1,3},{2,4}}
=> 3
{{1,3},{2},{4}}
=> 2
{{1,4},{2,3}}
=> 3
{{1},{2,3,4}}
=> 1
{{1},{2,3},{4}}
=> 1
{{1,4},{2},{3}}
=> 2
{{1},{2,4},{3}}
=> 1
{{1},{2},{3,4}}
=> 1
{{1},{2},{3},{4}}
=> 1
{{1,2,3,4,5}}
=> 5
{{1,2,3,4},{5}}
=> 4
{{1,2,3,5},{4}}
=> 4
{{1,2,3},{4,5}}
=> 3
{{1,2,3},{4},{5}}
=> 3
{{1,2,4,5},{3}}
=> 3
{{1,2,4},{3,5}}
=> 4
{{1,2,4},{3},{5}}
=> 3
{{1,2,5},{3,4}}
=> 4
{{1,2},{3,4,5}}
=> 2
{{1,2},{3,4},{5}}
=> 2
{{1,2,5},{3},{4}}
=> 3
{{1,2},{3,5},{4}}
=> 2
{{1,2},{3},{4,5}}
=> 2
{{1,2},{3},{4},{5}}
=> 2
{{1,3,4,5},{2}}
=> 2
{{1,3,4},{2,5}}
=> 4
{{1,3,4},{2},{5}}
=> 2
{{1,3,5},{2,4}}
=> 4
{{1,3},{2,4,5}}
=> 3
{{1,3},{2,4},{5}}
=> 3
{{1,3,5},{2},{4}}
=> 2
{{1,3},{2,5},{4}}
=> 3
{{1,3},{2},{4,5}}
=> 2
{{1,3},{2},{4},{5}}
=> 2
{{1,4,5},{2,3}}
=> 3
{{1,4},{2,3,5}}
=> 4
Description
The smallest closer of a set partition.
A closer (or right hand endpoint) of a set partition is a number that is maximal in its block. For this statistic, singletons are considered as closers.
In other words, this is the smallest among the maximal elements of the blocks.
Matching statistic: St001784
St001784: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
{{1}}
=> 1
{{1,2}}
=> 2
{{1},{2}}
=> 1
{{1,2,3}}
=> 2
{{1,2},{3}}
=> 2
{{1,3},{2}}
=> 3
{{1},{2,3}}
=> 1
{{1},{2},{3}}
=> 1
{{1,2,3,4}}
=> 2
{{1,2,3},{4}}
=> 2
{{1,2,4},{3}}
=> 2
{{1,2},{3,4}}
=> 2
{{1,2},{3},{4}}
=> 2
{{1,3,4},{2}}
=> 3
{{1,3},{2,4}}
=> 3
{{1,3},{2},{4}}
=> 3
{{1,4},{2,3}}
=> 3
{{1},{2,3,4}}
=> 1
{{1},{2,3},{4}}
=> 1
{{1,4},{2},{3}}
=> 4
{{1},{2,4},{3}}
=> 1
{{1},{2},{3,4}}
=> 1
{{1},{2},{3},{4}}
=> 1
{{1,2,3,4,5}}
=> 2
{{1,2,3,4},{5}}
=> 2
{{1,2,3,5},{4}}
=> 2
{{1,2,3},{4,5}}
=> 2
{{1,2,3},{4},{5}}
=> 2
{{1,2,4,5},{3}}
=> 2
{{1,2,4},{3,5}}
=> 2
{{1,2,4},{3},{5}}
=> 2
{{1,2,5},{3,4}}
=> 2
{{1,2},{3,4,5}}
=> 2
{{1,2},{3,4},{5}}
=> 2
{{1,2,5},{3},{4}}
=> 2
{{1,2},{3,5},{4}}
=> 2
{{1,2},{3},{4,5}}
=> 2
{{1,2},{3},{4},{5}}
=> 2
{{1,3,4,5},{2}}
=> 3
{{1,3,4},{2,5}}
=> 3
{{1,3,4},{2},{5}}
=> 3
{{1,3,5},{2,4}}
=> 3
{{1,3},{2,4,5}}
=> 3
{{1,3},{2,4},{5}}
=> 3
{{1,3,5},{2},{4}}
=> 3
{{1,3},{2,5},{4}}
=> 3
{{1,3},{2},{4,5}}
=> 3
{{1,3},{2},{4},{5}}
=> 3
{{1,4,5},{2,3}}
=> 3
{{1,4},{2,3,5}}
=> 4
Description
The minimum of the smallest closer and the second element of the block containing 1 in a set partition.
A closer of a set partition is the maximal element of a non-singleton block. This statistic is defined as $1$ if $\{1\}$ is a singleton block, and otherwise the minimum of the smallest closer and the second element of the block containing $1$.
Matching statistic: St000054
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
St000054: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
St000054: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => 1
{{1,2}}
=> [2,1] => [2,1] => 2
{{1},{2}}
=> [1,2] => [1,2] => 1
{{1,2,3}}
=> [2,3,1] => [3,1,2] => 3
{{1,2},{3}}
=> [2,1,3] => [2,1,3] => 2
{{1,3},{2}}
=> [3,2,1] => [2,3,1] => 2
{{1},{2,3}}
=> [1,3,2] => [1,3,2] => 1
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => 1
{{1,2,3,4}}
=> [2,3,4,1] => [4,1,2,3] => 4
{{1,2,3},{4}}
=> [2,3,1,4] => [3,1,2,4] => 3
{{1,2,4},{3}}
=> [2,4,3,1] => [3,4,1,2] => 3
{{1,2},{3,4}}
=> [2,1,4,3] => [2,1,4,3] => 2
{{1,2},{3},{4}}
=> [2,1,3,4] => [2,1,3,4] => 2
{{1,3,4},{2}}
=> [3,2,4,1] => [2,4,1,3] => 2
{{1,3},{2,4}}
=> [3,4,1,2] => [3,1,4,2] => 3
{{1,3},{2},{4}}
=> [3,2,1,4] => [2,3,1,4] => 2
{{1,4},{2,3}}
=> [4,3,2,1] => [3,2,4,1] => 3
{{1},{2,3,4}}
=> [1,3,4,2] => [1,4,2,3] => 1
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,3,2,4] => 1
{{1,4},{2},{3}}
=> [4,2,3,1] => [2,3,4,1] => 2
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,3,4,2] => 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,4,3] => 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => 1
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [5,1,2,3,4] => 5
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [4,1,2,3,5] => 4
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [4,5,1,2,3] => 4
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [3,1,2,5,4] => 3
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [3,1,2,4,5] => 3
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [3,5,1,2,4] => 3
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [4,1,2,5,3] => 4
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [3,4,1,2,5] => 3
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [4,3,5,1,2] => 4
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [2,1,5,3,4] => 2
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [2,1,4,3,5] => 2
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [3,4,5,1,2] => 3
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [2,1,4,5,3] => 2
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [2,1,3,5,4] => 2
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [2,1,3,4,5] => 2
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [2,5,1,3,4] => 2
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [4,1,3,5,2] => 4
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [2,4,1,3,5] => 2
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [4,2,5,1,3] => 4
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [3,1,5,2,4] => 3
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [3,1,4,2,5] => 3
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [2,4,5,1,3] => 2
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [3,1,4,5,2] => 3
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [2,3,1,5,4] => 2
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [2,3,1,4,5] => 2
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [3,2,5,1,4] => 3
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [4,1,5,2,3] => 4
Description
The first entry of the permutation.
This can be described as 1 plus the number of occurrences of the vincular pattern ([2,1], {(0,0),(0,1),(0,2)}), i.e., the first column is shaded, see [1].
This statistic is related to the number of deficiencies [[St000703]] as follows: consider the arc diagram of a permutation $\pi$ of $n$, together with its rotations, obtained by conjugating with the long cycle $(1,\dots,n)$. Drawing the labels $1$ to $n$ in this order on a circle, and the arcs $(i, \pi(i))$ as straight lines, the rotation of $\pi$ is obtained by replacing each number $i$ by $(i\bmod n) +1$. Then, $\pi(1)-1$ is the number of rotations of $\pi$ where the arc $(1, \pi(1))$ is a deficiency. In particular, if $O(\pi)$ is the orbit of rotations of $\pi$, then the number of deficiencies of $\pi$ equals
$$
\frac{1}{|O(\pi)|}\sum_{\sigma\in O(\pi)} (\sigma(1)-1).
$$
Matching statistic: St000025
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St000025: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St000025: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => [1,0]
=> 1
{{1,2}}
=> [2,1] => [2,1] => [1,1,0,0]
=> 2
{{1},{2}}
=> [1,2] => [1,2] => [1,0,1,0]
=> 1
{{1,2,3}}
=> [2,3,1] => [3,1,2] => [1,1,1,0,0,0]
=> 3
{{1,2},{3}}
=> [2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> 2
{{1,3},{2}}
=> [3,2,1] => [2,3,1] => [1,1,0,1,0,0]
=> 2
{{1},{2,3}}
=> [1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> 1
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> 1
{{1,2,3,4}}
=> [2,3,4,1] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 4
{{1,2,3},{4}}
=> [2,3,1,4] => [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 3
{{1,2,4},{3}}
=> [2,4,3,1] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 3
{{1,2},{3,4}}
=> [2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 2
{{1,2},{3},{4}}
=> [2,1,3,4] => [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 2
{{1,3,4},{2}}
=> [3,2,4,1] => [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 2
{{1,3},{2,4}}
=> [3,4,1,2] => [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 3
{{1,3},{2},{4}}
=> [3,2,1,4] => [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> 2
{{1,4},{2,3}}
=> [4,3,2,1] => [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> 3
{{1},{2,3,4}}
=> [1,3,4,2] => [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 1
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> 1
{{1,4},{2},{3}}
=> [4,2,3,1] => [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 2
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 1
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> 5
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [4,1,2,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> 4
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [4,5,1,2,3] => [1,1,1,1,0,1,0,0,0,0]
=> 4
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 3
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 3
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [3,5,1,2,4] => [1,1,1,0,1,1,0,0,0,0]
=> 3
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [4,1,2,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> 4
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> 3
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> 4
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> 2
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> 2
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0]
=> 3
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> 2
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> 2
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> 2
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0]
=> 2
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [4,1,3,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> 4
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [2,4,1,3,5] => [1,1,0,1,1,0,0,0,1,0]
=> 2
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [4,2,5,1,3] => [1,1,1,1,0,0,1,0,0,0]
=> 4
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0]
=> 3
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [3,1,4,2,5] => [1,1,1,0,0,1,0,0,1,0]
=> 3
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0]
=> 2
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> 3
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> 2
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> 2
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [3,2,5,1,4] => [1,1,1,0,0,1,1,0,0,0]
=> 3
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [4,1,5,2,3] => [1,1,1,1,0,0,1,0,0,0]
=> 4
Description
The number of initial rises of a Dyck path.
In other words, this is the height of the first peak of $D$.
Matching statistic: St000740
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00064: Permutations —reverse⟶ Permutations
St000740: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00064: Permutations —reverse⟶ Permutations
St000740: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => [1] => 1
{{1,2}}
=> [2,1] => [2,1] => [1,2] => 2
{{1},{2}}
=> [1,2] => [1,2] => [2,1] => 1
{{1,2,3}}
=> [2,3,1] => [3,1,2] => [2,1,3] => 3
{{1,2},{3}}
=> [2,1,3] => [2,1,3] => [3,1,2] => 2
{{1,3},{2}}
=> [3,2,1] => [2,3,1] => [1,3,2] => 2
{{1},{2,3}}
=> [1,3,2] => [1,3,2] => [2,3,1] => 1
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => [3,2,1] => 1
{{1,2,3,4}}
=> [2,3,4,1] => [4,1,2,3] => [3,2,1,4] => 4
{{1,2,3},{4}}
=> [2,3,1,4] => [3,1,2,4] => [4,2,1,3] => 3
{{1,2,4},{3}}
=> [2,4,3,1] => [3,4,1,2] => [2,1,4,3] => 3
{{1,2},{3,4}}
=> [2,1,4,3] => [2,1,4,3] => [3,4,1,2] => 2
{{1,2},{3},{4}}
=> [2,1,3,4] => [2,1,3,4] => [4,3,1,2] => 2
{{1,3,4},{2}}
=> [3,2,4,1] => [2,4,1,3] => [3,1,4,2] => 2
{{1,3},{2,4}}
=> [3,4,1,2] => [3,1,4,2] => [2,4,1,3] => 3
{{1,3},{2},{4}}
=> [3,2,1,4] => [2,3,1,4] => [4,1,3,2] => 2
{{1,4},{2,3}}
=> [4,3,2,1] => [3,2,4,1] => [1,4,2,3] => 3
{{1},{2,3,4}}
=> [1,3,4,2] => [1,4,2,3] => [3,2,4,1] => 1
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,3,2,4] => [4,2,3,1] => 1
{{1,4},{2},{3}}
=> [4,2,3,1] => [2,3,4,1] => [1,4,3,2] => 2
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,3,4,2] => [2,4,3,1] => 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,4,3] => [3,4,2,1] => 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => [4,3,2,1] => 1
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [5,1,2,3,4] => [4,3,2,1,5] => 5
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [4,1,2,3,5] => [5,3,2,1,4] => 4
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [4,5,1,2,3] => [3,2,1,5,4] => 4
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [3,1,2,5,4] => [4,5,2,1,3] => 3
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [3,1,2,4,5] => [5,4,2,1,3] => 3
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [3,5,1,2,4] => [4,2,1,5,3] => 3
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [4,1,2,5,3] => [3,5,2,1,4] => 4
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [3,4,1,2,5] => [5,2,1,4,3] => 3
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [4,3,5,1,2] => [2,1,5,3,4] => 4
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [2,1,5,3,4] => [4,3,5,1,2] => 2
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [2,1,4,3,5] => [5,3,4,1,2] => 2
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [3,4,5,1,2] => [2,1,5,4,3] => 3
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [2,1,4,5,3] => [3,5,4,1,2] => 2
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [2,1,3,5,4] => [4,5,3,1,2] => 2
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [2,1,3,4,5] => [5,4,3,1,2] => 2
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [2,5,1,3,4] => [4,3,1,5,2] => 2
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [4,1,3,5,2] => [2,5,3,1,4] => 4
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [2,4,1,3,5] => [5,3,1,4,2] => 2
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [4,2,5,1,3] => [3,1,5,2,4] => 4
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [3,1,5,2,4] => [4,2,5,1,3] => 3
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [3,1,4,2,5] => [5,2,4,1,3] => 3
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [2,4,5,1,3] => [3,1,5,4,2] => 2
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [3,1,4,5,2] => [2,5,4,1,3] => 3
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [2,3,1,5,4] => [4,5,1,3,2] => 2
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [2,3,1,4,5] => [5,4,1,3,2] => 2
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [3,2,5,1,4] => [4,1,5,2,3] => 3
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [4,1,5,2,3] => [3,2,5,1,4] => 4
Description
The last entry of a permutation.
This statistic is undefined for the empty permutation.
Matching statistic: St001050
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00089: Permutations —Inverse Kreweras complement⟶ Permutations
Mp00240: Permutations —weak exceedance partition⟶ Set partitions
St001050: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00089: Permutations —Inverse Kreweras complement⟶ Permutations
Mp00240: Permutations —weak exceedance partition⟶ Set partitions
St001050: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => {{1}}
=> 1
{{1,2}}
=> [2,1] => [1,2] => {{1},{2}}
=> 2
{{1},{2}}
=> [1,2] => [2,1] => {{1,2}}
=> 1
{{1,2,3}}
=> [2,3,1] => [1,2,3] => {{1},{2},{3}}
=> 3
{{1,2},{3}}
=> [2,1,3] => [1,3,2] => {{1},{2,3}}
=> 1
{{1,3},{2}}
=> [3,2,1] => [2,1,3] => {{1,2},{3}}
=> 2
{{1},{2,3}}
=> [1,3,2] => [3,2,1] => {{1,3},{2}}
=> 2
{{1},{2},{3}}
=> [1,2,3] => [2,3,1] => {{1,2,3}}
=> 1
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => {{1},{2},{3},{4}}
=> 4
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,4,3] => {{1},{2},{3,4}}
=> 1
{{1,2,4},{3}}
=> [2,4,3,1] => [1,3,2,4] => {{1},{2,3},{4}}
=> 2
{{1,2},{3,4}}
=> [2,1,4,3] => [1,4,3,2] => {{1},{2,4},{3}}
=> 2
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,3,4,2] => {{1},{2,3,4}}
=> 1
{{1,3,4},{2}}
=> [3,2,4,1] => [2,1,3,4] => {{1,2},{3},{4}}
=> 3
{{1,3},{2,4}}
=> [3,4,1,2] => [4,1,2,3] => {{1,4},{2},{3}}
=> 3
{{1,3},{2},{4}}
=> [3,2,1,4] => [2,1,4,3] => {{1,2},{3,4}}
=> 1
{{1,4},{2,3}}
=> [4,3,2,1] => [3,2,1,4] => {{1,3},{2},{4}}
=> 3
{{1},{2,3,4}}
=> [1,3,4,2] => [4,2,3,1] => {{1,4},{2},{3}}
=> 3
{{1},{2,3},{4}}
=> [1,3,2,4] => [3,2,4,1] => {{1,3,4},{2}}
=> 1
{{1,4},{2},{3}}
=> [4,2,3,1] => [2,3,1,4] => {{1,2,3},{4}}
=> 2
{{1},{2,4},{3}}
=> [1,4,3,2] => [4,3,2,1] => {{1,4},{2,3}}
=> 2
{{1},{2},{3,4}}
=> [1,2,4,3] => [2,4,3,1] => {{1,2,4},{3}}
=> 2
{{1},{2},{3},{4}}
=> [1,2,3,4] => [2,3,4,1] => {{1,2,3,4}}
=> 1
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => {{1},{2},{3},{4},{5}}
=> 5
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,5,4] => {{1},{2},{3},{4,5}}
=> 1
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,4,3,5] => {{1},{2},{3,4},{5}}
=> 2
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,5,4,3] => {{1},{2},{3,5},{4}}
=> 2
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,4,5,3] => {{1},{2},{3,4,5}}
=> 1
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,3,2,4,5] => {{1},{2,3},{4},{5}}
=> 3
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,5,2,3,4] => {{1},{2,5},{3},{4}}
=> 3
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,3,2,5,4] => {{1},{2,3},{4,5}}
=> 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,4,3,2,5] => {{1},{2,4},{3},{5}}
=> 3
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,5,3,4,2] => {{1},{2,5},{3},{4}}
=> 3
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,4,3,5,2] => {{1},{2,4,5},{3}}
=> 1
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,3,4,2,5] => {{1},{2,3,4},{5}}
=> 2
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,5,4,3,2] => {{1},{2,5},{3,4}}
=> 2
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,3,5,4,2] => {{1},{2,3,5},{4}}
=> 2
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,3,4,5,2] => {{1},{2,3,4,5}}
=> 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [2,1,3,4,5] => {{1,2},{3},{4},{5}}
=> 4
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [5,1,3,2,4] => {{1,5},{2},{3},{4}}
=> 4
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [2,1,3,5,4] => {{1,2},{3},{4,5}}
=> 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [4,1,2,3,5] => {{1,4},{2},{3},{5}}
=> 4
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [5,1,2,4,3] => {{1,5},{2},{3},{4}}
=> 4
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [4,1,2,5,3] => {{1,4,5},{2},{3}}
=> 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [2,1,4,3,5] => {{1,2},{3,4},{5}}
=> 2
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [5,1,4,2,3] => {{1,5},{2},{3,4}}
=> 2
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [2,1,5,4,3] => {{1,2},{3,5},{4}}
=> 2
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [2,1,4,5,3] => {{1,2},{3,4,5}}
=> 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [3,2,1,4,5] => {{1,3},{2},{4},{5}}
=> 4
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [5,2,1,3,4] => {{1,5},{2},{3},{4}}
=> 4
Description
The number of terminal closers of a set partition.
A closer of a set partition is a number that is maximal in its block. In particular, a singleton is a closer. This statistic counts the number of terminal closers. In other words, this is the number of closers such that all larger elements are also closers.
Matching statistic: St000051
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
St000051: Binary trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
St000051: Binary trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => [.,.]
=> 0 = 1 - 1
{{1,2}}
=> [2,1] => [2,1] => [[.,.],.]
=> 1 = 2 - 1
{{1},{2}}
=> [1,2] => [1,2] => [.,[.,.]]
=> 0 = 1 - 1
{{1,2,3}}
=> [2,3,1] => [3,1,2] => [[.,[.,.]],.]
=> 2 = 3 - 1
{{1,2},{3}}
=> [2,1,3] => [2,1,3] => [[.,.],[.,.]]
=> 1 = 2 - 1
{{1,3},{2}}
=> [3,2,1] => [2,3,1] => [[.,.],[.,.]]
=> 1 = 2 - 1
{{1},{2,3}}
=> [1,3,2] => [1,3,2] => [.,[[.,.],.]]
=> 0 = 1 - 1
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => [.,[.,[.,.]]]
=> 0 = 1 - 1
{{1,2,3,4}}
=> [2,3,4,1] => [4,1,2,3] => [[.,[.,[.,.]]],.]
=> 3 = 4 - 1
{{1,2,3},{4}}
=> [2,3,1,4] => [3,1,2,4] => [[.,[.,.]],[.,.]]
=> 2 = 3 - 1
{{1,2,4},{3}}
=> [2,4,3,1] => [3,4,1,2] => [[.,[.,.]],[.,.]]
=> 2 = 3 - 1
{{1,2},{3,4}}
=> [2,1,4,3] => [2,1,4,3] => [[.,.],[[.,.],.]]
=> 1 = 2 - 1
{{1,2},{3},{4}}
=> [2,1,3,4] => [2,1,3,4] => [[.,.],[.,[.,.]]]
=> 1 = 2 - 1
{{1,3,4},{2}}
=> [3,2,4,1] => [2,4,1,3] => [[.,.],[[.,.],.]]
=> 1 = 2 - 1
{{1,3},{2,4}}
=> [3,4,1,2] => [3,1,4,2] => [[.,[.,.]],[.,.]]
=> 2 = 3 - 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [2,3,1,4] => [[.,.],[.,[.,.]]]
=> 1 = 2 - 1
{{1,4},{2,3}}
=> [4,3,2,1] => [3,2,4,1] => [[[.,.],.],[.,.]]
=> 2 = 3 - 1
{{1},{2,3,4}}
=> [1,3,4,2] => [1,4,2,3] => [.,[[.,[.,.]],.]]
=> 0 = 1 - 1
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,3,2,4] => [.,[[.,.],[.,.]]]
=> 0 = 1 - 1
{{1,4},{2},{3}}
=> [4,2,3,1] => [2,3,4,1] => [[.,.],[.,[.,.]]]
=> 1 = 2 - 1
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,3,4,2] => [.,[[.,.],[.,.]]]
=> 0 = 1 - 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,4,3] => [.,[.,[[.,.],.]]]
=> 0 = 1 - 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 0 = 1 - 1
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [5,1,2,3,4] => [[.,[.,[.,[.,.]]]],.]
=> 4 = 5 - 1
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [4,1,2,3,5] => [[.,[.,[.,.]]],[.,.]]
=> 3 = 4 - 1
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [4,5,1,2,3] => [[.,[.,[.,.]]],[.,.]]
=> 3 = 4 - 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [3,1,2,5,4] => [[.,[.,.]],[[.,.],.]]
=> 2 = 3 - 1
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [3,1,2,4,5] => [[.,[.,.]],[.,[.,.]]]
=> 2 = 3 - 1
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [3,5,1,2,4] => [[.,[.,.]],[[.,.],.]]
=> 2 = 3 - 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [4,1,2,5,3] => [[.,[.,[.,.]]],[.,.]]
=> 3 = 4 - 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [3,4,1,2,5] => [[.,[.,.]],[.,[.,.]]]
=> 2 = 3 - 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [4,3,5,1,2] => [[[.,[.,.]],.],[.,.]]
=> 3 = 4 - 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [2,1,5,3,4] => [[.,.],[[.,[.,.]],.]]
=> 1 = 2 - 1
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [2,1,4,3,5] => [[.,.],[[.,.],[.,.]]]
=> 1 = 2 - 1
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [3,4,5,1,2] => [[.,[.,.]],[.,[.,.]]]
=> 2 = 3 - 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [2,1,4,5,3] => [[.,.],[[.,.],[.,.]]]
=> 1 = 2 - 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [2,1,3,5,4] => [[.,.],[.,[[.,.],.]]]
=> 1 = 2 - 1
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [2,1,3,4,5] => [[.,.],[.,[.,[.,.]]]]
=> 1 = 2 - 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [2,5,1,3,4] => [[.,.],[[.,[.,.]],.]]
=> 1 = 2 - 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [4,1,3,5,2] => [[.,[[.,.],.]],[.,.]]
=> 3 = 4 - 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [2,4,1,3,5] => [[.,.],[[.,.],[.,.]]]
=> 1 = 2 - 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [4,2,5,1,3] => [[[.,.],[.,.]],[.,.]]
=> 3 = 4 - 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [3,1,5,2,4] => [[.,[.,.]],[[.,.],.]]
=> 2 = 3 - 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [3,1,4,2,5] => [[.,[.,.]],[.,[.,.]]]
=> 2 = 3 - 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [2,4,5,1,3] => [[.,.],[[.,.],[.,.]]]
=> 1 = 2 - 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [3,1,4,5,2] => [[.,[.,.]],[.,[.,.]]]
=> 2 = 3 - 1
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [2,3,1,5,4] => [[.,.],[.,[[.,.],.]]]
=> 1 = 2 - 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [2,3,1,4,5] => [[.,.],[.,[.,[.,.]]]]
=> 1 = 2 - 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [3,2,5,1,4] => [[[.,.],.],[[.,.],.]]
=> 2 = 3 - 1
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [4,1,5,2,3] => [[.,[.,[.,.]]],[.,.]]
=> 3 = 4 - 1
Description
The size of the left subtree of a binary tree.
Matching statistic: St000439
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St000439: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St000439: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => [1,0]
=> 2 = 1 + 1
{{1,2}}
=> [2,1] => [2,1] => [1,1,0,0]
=> 3 = 2 + 1
{{1},{2}}
=> [1,2] => [1,2] => [1,0,1,0]
=> 2 = 1 + 1
{{1,2,3}}
=> [2,3,1] => [3,1,2] => [1,1,1,0,0,0]
=> 4 = 3 + 1
{{1,2},{3}}
=> [2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> 3 = 2 + 1
{{1,3},{2}}
=> [3,2,1] => [2,3,1] => [1,1,0,1,0,0]
=> 3 = 2 + 1
{{1},{2,3}}
=> [1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> 2 = 1 + 1
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> 2 = 1 + 1
{{1,2,3,4}}
=> [2,3,4,1] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
{{1,2,3},{4}}
=> [2,3,1,4] => [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 4 = 3 + 1
{{1,2,4},{3}}
=> [2,4,3,1] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 4 = 3 + 1
{{1,2},{3,4}}
=> [2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
{{1,2},{3},{4}}
=> [2,1,3,4] => [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
{{1,3,4},{2}}
=> [3,2,4,1] => [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 3 = 2 + 1
{{1,3},{2,4}}
=> [3,4,1,2] => [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 4 = 3 + 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> 3 = 2 + 1
{{1,4},{2,3}}
=> [4,3,2,1] => [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> 4 = 3 + 1
{{1},{2,3,4}}
=> [1,3,4,2] => [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
{{1,4},{2},{3}}
=> [4,2,3,1] => [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> 6 = 5 + 1
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [4,1,2,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> 5 = 4 + 1
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [4,5,1,2,3] => [1,1,1,1,0,1,0,0,0,0]
=> 5 = 4 + 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 4 = 3 + 1
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 4 = 3 + 1
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [3,5,1,2,4] => [1,1,1,0,1,1,0,0,0,0]
=> 4 = 3 + 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [4,1,2,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> 5 = 4 + 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> 4 = 3 + 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> 5 = 4 + 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> 3 = 2 + 1
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0]
=> 4 = 3 + 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> 3 = 2 + 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> 3 = 2 + 1
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> 3 = 2 + 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0]
=> 3 = 2 + 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [4,1,3,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> 5 = 4 + 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [2,4,1,3,5] => [1,1,0,1,1,0,0,0,1,0]
=> 3 = 2 + 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [4,2,5,1,3] => [1,1,1,1,0,0,1,0,0,0]
=> 5 = 4 + 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0]
=> 4 = 3 + 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [3,1,4,2,5] => [1,1,1,0,0,1,0,0,1,0]
=> 4 = 3 + 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0]
=> 3 = 2 + 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> 4 = 3 + 1
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> 3 = 2 + 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> 3 = 2 + 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [3,2,5,1,4] => [1,1,1,0,0,1,1,0,0,0]
=> 4 = 3 + 1
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [4,1,5,2,3] => [1,1,1,1,0,0,1,0,0,0]
=> 5 = 4 + 1
Description
The position of the first down step of a Dyck path.
Matching statistic: St000297
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00236: Permutations —Clarke-Steingrimsson-Zeng inverse⟶ Permutations
Mp00131: Permutations —descent bottoms⟶ Binary words
St000297: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00236: Permutations —Clarke-Steingrimsson-Zeng inverse⟶ Permutations
Mp00131: Permutations —descent bottoms⟶ Binary words
St000297: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => => ? = 1 - 1
{{1,2}}
=> [2,1] => [2,1] => 1 => 1 = 2 - 1
{{1},{2}}
=> [1,2] => [1,2] => 0 => 0 = 1 - 1
{{1,2,3}}
=> [2,3,1] => [3,2,1] => 11 => 2 = 3 - 1
{{1,2},{3}}
=> [2,1,3] => [2,1,3] => 10 => 1 = 2 - 1
{{1,3},{2}}
=> [3,2,1] => [2,3,1] => 10 => 1 = 2 - 1
{{1},{2,3}}
=> [1,3,2] => [1,3,2] => 01 => 0 = 1 - 1
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => 00 => 0 = 1 - 1
{{1,2,3,4}}
=> [2,3,4,1] => [4,3,2,1] => 111 => 3 = 4 - 1
{{1,2,3},{4}}
=> [2,3,1,4] => [3,2,1,4] => 110 => 2 = 3 - 1
{{1,2,4},{3}}
=> [2,4,3,1] => [3,4,2,1] => 110 => 2 = 3 - 1
{{1,2},{3,4}}
=> [2,1,4,3] => [2,1,4,3] => 101 => 1 = 2 - 1
{{1,2},{3},{4}}
=> [2,1,3,4] => [2,1,3,4] => 100 => 1 = 2 - 1
{{1,3,4},{2}}
=> [3,2,4,1] => [2,4,3,1] => 101 => 1 = 2 - 1
{{1,3},{2,4}}
=> [3,4,1,2] => [4,1,3,2] => 110 => 2 = 3 - 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [2,3,1,4] => 100 => 1 = 2 - 1
{{1,4},{2,3}}
=> [4,3,2,1] => [3,2,4,1] => 110 => 2 = 3 - 1
{{1},{2,3,4}}
=> [1,3,4,2] => [1,4,3,2] => 011 => 0 = 1 - 1
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,3,2,4] => 010 => 0 = 1 - 1
{{1,4},{2},{3}}
=> [4,2,3,1] => [2,3,4,1] => 100 => 1 = 2 - 1
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,3,4,2] => 010 => 0 = 1 - 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,4,3] => 001 => 0 = 1 - 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => 000 => 0 = 1 - 1
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [5,4,3,2,1] => 1111 => 4 = 5 - 1
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [4,3,2,1,5] => 1110 => 3 = 4 - 1
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [4,5,3,2,1] => 1110 => 3 = 4 - 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [3,2,1,5,4] => 1101 => 2 = 3 - 1
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [3,2,1,4,5] => 1100 => 2 = 3 - 1
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [3,5,4,2,1] => 1101 => 2 = 3 - 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [5,2,1,4,3] => 1110 => 3 = 4 - 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [3,4,2,1,5] => 1100 => 2 = 3 - 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [4,3,5,2,1] => 1110 => 3 = 4 - 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [2,1,5,4,3] => 1011 => 1 = 2 - 1
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [2,1,4,3,5] => 1010 => 1 = 2 - 1
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [3,4,5,2,1] => 1100 => 2 = 3 - 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [2,1,4,5,3] => 1010 => 1 = 2 - 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [2,1,3,5,4] => 1001 => 1 = 2 - 1
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [2,1,3,4,5] => 1000 => 1 = 2 - 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [2,5,4,3,1] => 1011 => 1 = 2 - 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [4,1,5,3,2] => 1110 => 3 = 4 - 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [2,4,3,1,5] => 1010 => 1 = 2 - 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [5,2,4,3,1] => 1110 => 3 = 4 - 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [5,4,1,3,2] => 1101 => 2 = 3 - 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [4,1,3,2,5] => 1100 => 2 = 3 - 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [2,4,5,3,1] => 1010 => 1 = 2 - 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [4,5,1,3,2] => 1100 => 2 = 3 - 1
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [2,3,1,5,4] => 1001 => 1 = 2 - 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [2,3,1,4,5] => 1000 => 1 = 2 - 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [3,2,5,4,1] => 1101 => 2 = 3 - 1
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [5,3,1,4,2] => 1110 => 3 = 4 - 1
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [3,2,4,1,5] => 1100 => 2 = 3 - 1
Description
The number of leading ones in a binary word.
Matching statistic: St000771
(load all 17 compositions to match this statistic)
(load all 17 compositions to match this statistic)
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00062: Permutations —Lehmer-code to major-code bijection⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 48% ●values known / values provided: 48%●distinct values known / distinct values provided: 83%
Mp00062: Permutations —Lehmer-code to major-code bijection⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 48% ●values known / values provided: 48%●distinct values known / distinct values provided: 83%
Values
{{1}}
=> [1] => [1] => ([],1)
=> 1
{{1,2}}
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
{{1},{2}}
=> [1,2] => [1,2] => ([],2)
=> ? = 2
{{1,2,3}}
=> [2,3,1] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {1,2,3}
{{1,2},{3}}
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,2,3}
{{1,3},{2}}
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
{{1},{2,3}}
=> [1,3,2] => [3,1,2] => ([(0,2),(1,2)],3)
=> 1
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,2,3}
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {1,2,2,2,3,3,3,4}
{{1,2,3},{4}}
=> [2,3,1,4] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {1,2,2,2,3,3,3,4}
{{1,2,4},{3}}
=> [2,4,3,1] => [4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
{{1,2},{3,4}}
=> [2,1,4,3] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,3,3,3,4}
{{1,2},{3},{4}}
=> [2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {1,2,2,2,3,3,3,4}
{{1,3,4},{2}}
=> [3,2,4,1] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {1,2,2,2,3,3,3,4}
{{1,3},{2,4}}
=> [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,3,3,3,4}
{{1,4},{2,3}}
=> [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
{{1},{2,3,4}}
=> [1,3,4,2] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 1
{{1},{2,3},{4}}
=> [1,3,2,4] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,3,3,3,4}
{{1,4},{2},{3}}
=> [4,2,3,1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
{{1},{2,4},{3}}
=> [1,4,3,2] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
{{1},{2},{3,4}}
=> [1,2,4,3] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,2,2,2,3,3,3,4}
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [5,1,2,4,3] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,3,2,4,5] => ([(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [5,4,1,3,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [4,2,1,5,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
{{1},{2,3,4,5}}
=> [1,3,4,5,2] => [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
{{1},{2,3,5},{4}}
=> [1,3,5,4,2] => [5,2,4,1,3] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
{{1},{2,3},{4,5}}
=> [1,3,2,5,4] => [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => [4,1,5,3,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
{{1,4},{2},{3},{5}}
=> [4,2,3,1,5] => [2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
{{1},{2,4,5},{3}}
=> [1,4,3,5,2] => [3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
{{1},{2,4},{3,5}}
=> [1,4,5,2,3] => [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
{{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
{{1,5},{2},{3,4}}
=> [5,2,4,3,1] => [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
{{1},{2,5},{3,4}}
=> [1,5,4,3,2] => [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
{{1},{2},{3,4,5}}
=> [1,2,4,5,3] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1
{{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
{{1},{2,5},{3},{4}}
=> [1,5,3,4,2] => [3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 1
{{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
{{1},{2},{3},{4,5}}
=> [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
{{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
{{1,2,3,4,5,6}}
=> [2,3,4,5,6,1] => [1,2,3,4,6,5] => ([(4,5)],6)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
{{1,2,3,4,5},{6}}
=> [2,3,4,5,1,6] => [1,2,3,5,4,6] => ([(4,5)],6)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
{{1,2,3,4,6},{5}}
=> [2,3,4,6,5,1] => [6,1,2,3,5,4] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
{{1,2,3,4},{5,6}}
=> [2,3,4,1,6,5] => [1,2,3,6,4,5] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
{{1,2,3,4},{5},{6}}
=> [2,3,4,1,5,6] => [1,2,4,3,5,6] => ([(4,5)],6)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
{{1,2,3,5,6},{4}}
=> [2,3,5,4,6,1] => [4,1,2,3,6,5] => ([(0,1),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
{{1,2,3,5},{4,6}}
=> [2,3,5,6,1,4] => [5,1,2,3,6,4] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2
{{1,2,3,5},{4},{6}}
=> [2,3,5,4,1,6] => [5,1,2,4,3,6] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
{{1,2,3,6},{4,5}}
=> [2,3,6,5,4,1] => [6,5,1,2,4,3] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
{{1,2,3},{4,5,6}}
=> [2,3,1,5,6,4] => [1,2,4,6,3,5] => ([(2,5),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
{{1,2,3},{4,5},{6}}
=> [2,3,1,5,4,6] => [1,2,5,3,4,6] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
{{1,2,3,6},{4},{5}}
=> [2,3,6,4,5,1] => [4,6,1,2,5,3] => ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> 1
{{1,2,3},{4,6},{5}}
=> [2,3,1,6,5,4] => [6,1,2,5,3,4] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
{{1,2,3},{4},{5,6}}
=> [2,3,1,4,6,5] => [1,2,6,3,4,5] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
{{1,2,4,5},{3,6}}
=> [2,4,6,5,1,3] => [2,5,6,1,4,3] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 3
{{1,2,4,6},{3,5}}
=> [2,4,5,6,3,1] => [2,3,6,1,5,4] => ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 1
{{1,2,4},{3,5,6}}
=> [2,4,5,1,6,3] => [2,6,1,4,3,5] => ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 1
{{1,2,4,6},{3},{5}}
=> [2,4,3,6,5,1] => [2,6,1,3,5,4] => ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 1
{{1,2,4},{3,6},{5}}
=> [2,4,6,1,5,3] => [2,6,1,4,5,3] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> 1
{{1,2,5},{3,4,6}}
=> [2,5,4,6,1,3] => [5,3,1,2,6,4] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> 1
{{1,2,6},{3,4,5}}
=> [2,6,4,5,3,1] => [3,6,5,1,4,2] => ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1
{{1,2,6},{3,4},{5}}
=> [2,6,4,3,5,1] => [4,3,6,1,5,2] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 2
{{1,2},{3,4,6},{5}}
=> [2,1,4,6,5,3] => [6,1,3,5,2,4] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
{{1,2,5},{3,6},{4}}
=> [2,5,6,4,1,3] => [5,2,6,1,4,3] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 2
{{1,2,5},{3},{4,6}}
=> [2,5,3,6,1,4] => [3,5,1,2,6,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 1
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $2$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
The following 14 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000454The largest eigenvalue of a graph if it is integral. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001875The number of simple modules with projective dimension at most 1. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000260The radius of a connected graph. St000193The row of the unique '1' in the first column of the alternating sign matrix. St000264The girth of a graph, which is not a tree. St001060The distinguishing index of a graph. St000455The second largest eigenvalue of a graph if it is integral. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000942The number of critical left to right maxima of the parking functions. St001621The number of atoms of a lattice.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!