Your data matches 54 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000189: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 1 = 2 - 1
([],2)
=> 2 = 3 - 1
([(0,1)],2)
=> 2 = 3 - 1
([],3)
=> 3 = 4 - 1
([(1,2)],3)
=> 3 = 4 - 1
([(0,1),(0,2)],3)
=> 3 = 4 - 1
([(0,2),(2,1)],3)
=> 3 = 4 - 1
([(0,2),(1,2)],3)
=> 3 = 4 - 1
([],4)
=> 4 = 5 - 1
([(2,3)],4)
=> 4 = 5 - 1
([(1,2),(1,3)],4)
=> 4 = 5 - 1
([(0,1),(0,2),(0,3)],4)
=> 4 = 5 - 1
([(0,2),(0,3),(3,1)],4)
=> 4 = 5 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([(1,2),(2,3)],4)
=> 4 = 5 - 1
([(0,3),(3,1),(3,2)],4)
=> 4 = 5 - 1
([(1,3),(2,3)],4)
=> 4 = 5 - 1
([(0,3),(1,3),(3,2)],4)
=> 4 = 5 - 1
([(0,3),(1,3),(2,3)],4)
=> 4 = 5 - 1
([(0,3),(1,2)],4)
=> 4 = 5 - 1
([(0,3),(1,2),(1,3)],4)
=> 4 = 5 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> 4 = 5 - 1
([(0,3),(2,1),(3,2)],4)
=> 4 = 5 - 1
([(0,3),(1,2),(2,3)],4)
=> 4 = 5 - 1
([],5)
=> 5 = 6 - 1
([(3,4)],5)
=> 5 = 6 - 1
([(2,3),(2,4)],5)
=> 5 = 6 - 1
([(1,2),(1,3),(1,4)],5)
=> 5 = 6 - 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> 5 = 6 - 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> 5 = 6 - 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(1,3),(1,4),(4,2)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> 5 = 6 - 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> 5 = 6 - 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 5 = 6 - 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 5 = 6 - 1
([(2,3),(3,4)],5)
=> 5 = 6 - 1
([(1,4),(4,2),(4,3)],5)
=> 5 = 6 - 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> 5 = 6 - 1
([(2,4),(3,4)],5)
=> 5 = 6 - 1
([(1,4),(2,4),(4,3)],5)
=> 5 = 6 - 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> 5 = 6 - 1
([(1,4),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> 5 = 6 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,4),(1,4),(2,3)],5)
=> 5 = 6 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> 5 = 6 - 1
Description
The number of elements in the poset.
Mp00110: Posets Greene-Kleitman invariantInteger partitions
St000228: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> 1 = 2 - 1
([],2)
=> [1,1]
=> 2 = 3 - 1
([(0,1)],2)
=> [2]
=> 2 = 3 - 1
([],3)
=> [1,1,1]
=> 3 = 4 - 1
([(1,2)],3)
=> [2,1]
=> 3 = 4 - 1
([(0,1),(0,2)],3)
=> [2,1]
=> 3 = 4 - 1
([(0,2),(2,1)],3)
=> [3]
=> 3 = 4 - 1
([(0,2),(1,2)],3)
=> [2,1]
=> 3 = 4 - 1
([],4)
=> [1,1,1,1]
=> 4 = 5 - 1
([(2,3)],4)
=> [2,1,1]
=> 4 = 5 - 1
([(1,2),(1,3)],4)
=> [2,1,1]
=> 4 = 5 - 1
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> 4 = 5 - 1
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> 4 = 5 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 4 = 5 - 1
([(1,2),(2,3)],4)
=> [3,1]
=> 4 = 5 - 1
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> 4 = 5 - 1
([(1,3),(2,3)],4)
=> [2,1,1]
=> 4 = 5 - 1
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 4 = 5 - 1
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> 4 = 5 - 1
([(0,3),(1,2)],4)
=> [2,2]
=> 4 = 5 - 1
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> 4 = 5 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> 4 = 5 - 1
([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4 = 5 - 1
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 4 = 5 - 1
([],5)
=> [1,1,1,1,1]
=> 5 = 6 - 1
([(3,4)],5)
=> [2,1,1,1]
=> 5 = 6 - 1
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> 5 = 6 - 1
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> 5 = 6 - 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> 5 = 6 - 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> 5 = 6 - 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 5 = 6 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> 5 = 6 - 1
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> 5 = 6 - 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> 5 = 6 - 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 5 = 6 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> 5 = 6 - 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> 5 = 6 - 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> 5 = 6 - 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> 5 = 6 - 1
([(2,3),(3,4)],5)
=> [3,1,1]
=> 5 = 6 - 1
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> 5 = 6 - 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> 5 = 6 - 1
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> 5 = 6 - 1
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> 5 = 6 - 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> 5 = 6 - 1
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> 5 = 6 - 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> 5 = 6 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> 5 = 6 - 1
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> 5 = 6 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> 5 = 6 - 1
Description
The size of a partition. This statistic is the constant statistic of the level sets.
Mp00198: Posets incomparability graphGraphs
Mp00203: Graphs coneGraphs
St000718: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([(0,1)],2)
=> 2
([],2)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,1)],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 3
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 4
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 5
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 5
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 5
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
([(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 6
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 6
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
([(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 6
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 6
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
Description
The largest Laplacian eigenvalue of a graph if it is integral. This statistic is undefined if the largest Laplacian eigenvalue of the graph is not integral. Various results are collected in Section 3.9 of [1]
Mp00074: Posets to graphGraphs
Mp00259: Graphs vertex additionGraphs
St001342: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],2)
=> 2
([],2)
=> ([],2)
=> ([],3)
=> 3
([(0,1)],2)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> 3
([],3)
=> ([],3)
=> ([],4)
=> 4
([(1,2)],3)
=> ([(1,2)],3)
=> ([(2,3)],4)
=> 4
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,3),(2,3)],4)
=> 4
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,3),(2,3)],4)
=> 4
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,3),(2,3)],4)
=> 4
([],4)
=> ([],4)
=> ([],5)
=> 5
([(2,3)],4)
=> ([(2,3)],4)
=> ([(3,4)],5)
=> 5
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(2,4),(3,4)],5)
=> 5
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,4),(2,4),(3,4)],5)
=> 5
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 5
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 5
([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(2,4),(3,4)],5)
=> 5
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,4),(2,4),(3,4)],5)
=> 5
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(2,4),(3,4)],5)
=> 5
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,4),(2,4),(3,4)],5)
=> 5
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,4),(2,4),(3,4)],5)
=> 5
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(1,4),(2,3)],5)
=> 5
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 5
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 5
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 5
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,4),(2,3),(3,4)],5)
=> 5
([],5)
=> ([],5)
=> ([],6)
=> 6
([(3,4)],5)
=> ([(3,4)],5)
=> ([(4,5)],6)
=> 6
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(3,5),(4,5)],6)
=> 6
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(2,5),(3,5),(4,5)],6)
=> 6
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 6
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> 6
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 6
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 6
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(2,5),(3,4),(4,5)],6)
=> 6
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> 6
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> 6
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 6
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 6
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 6
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 6
([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(3,5),(4,5)],6)
=> 6
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(2,5),(3,5),(4,5)],6)
=> 6
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 6
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(3,5),(4,5)],6)
=> 6
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(2,5),(3,5),(4,5)],6)
=> 6
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 6
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(2,5),(3,5),(4,5)],6)
=> 6
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 6
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 6
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(1,2),(3,5),(4,5)],6)
=> 6
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 6
Description
The number of vertices in the center of a graph. The center of a graph is the set of vertices whose maximal distance to any other vertex is minimal. In particular, if the graph is disconnected, all vertices are in the certer.
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00095: Integer partitions to binary wordBinary words
St000293: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> 10 => 1 = 2 - 1
([],2)
=> [1,1]
=> 110 => 2 = 3 - 1
([(0,1)],2)
=> [2]
=> 100 => 2 = 3 - 1
([],3)
=> [1,1,1]
=> 1110 => 3 = 4 - 1
([(1,2)],3)
=> [2,1]
=> 1010 => 3 = 4 - 1
([(0,1),(0,2)],3)
=> [2,1]
=> 1010 => 3 = 4 - 1
([(0,2),(2,1)],3)
=> [3]
=> 1000 => 3 = 4 - 1
([(0,2),(1,2)],3)
=> [2,1]
=> 1010 => 3 = 4 - 1
([],4)
=> [1,1,1,1]
=> 11110 => 4 = 5 - 1
([(2,3)],4)
=> [2,1,1]
=> 10110 => 4 = 5 - 1
([(1,2),(1,3)],4)
=> [2,1,1]
=> 10110 => 4 = 5 - 1
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> 10110 => 4 = 5 - 1
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> 10010 => 4 = 5 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 10010 => 4 = 5 - 1
([(1,2),(2,3)],4)
=> [3,1]
=> 10010 => 4 = 5 - 1
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> 10010 => 4 = 5 - 1
([(1,3),(2,3)],4)
=> [2,1,1]
=> 10110 => 4 = 5 - 1
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 10010 => 4 = 5 - 1
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> 10110 => 4 = 5 - 1
([(0,3),(1,2)],4)
=> [2,2]
=> 1100 => 4 = 5 - 1
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> 1100 => 4 = 5 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> 1100 => 4 = 5 - 1
([(0,3),(2,1),(3,2)],4)
=> [4]
=> 10000 => 4 = 5 - 1
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 10010 => 4 = 5 - 1
([],5)
=> [1,1,1,1,1]
=> 111110 => 5 = 6 - 1
([(3,4)],5)
=> [2,1,1,1]
=> 101110 => 5 = 6 - 1
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> 101110 => 5 = 6 - 1
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> 101110 => 5 = 6 - 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> 101110 => 5 = 6 - 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> 100110 => 5 = 6 - 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => 5 = 6 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => 5 = 6 - 1
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> 100110 => 5 = 6 - 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> 100110 => 5 = 6 - 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => 5 = 6 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> 100010 => 5 = 6 - 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> 10100 => 5 = 6 - 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> 10100 => 5 = 6 - 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> 10100 => 5 = 6 - 1
([(2,3),(3,4)],5)
=> [3,1,1]
=> 100110 => 5 = 6 - 1
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> 100110 => 5 = 6 - 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> 100110 => 5 = 6 - 1
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> 101110 => 5 = 6 - 1
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> 100110 => 5 = 6 - 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> 10100 => 5 = 6 - 1
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> 101110 => 5 = 6 - 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> 100110 => 5 = 6 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> 101110 => 5 = 6 - 1
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> 11010 => 5 = 6 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> 11010 => 5 = 6 - 1
Description
The number of inversions of a binary word.
Mp00198: Posets incomparability graphGraphs
Mp00203: Graphs coneGraphs
St000987: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([(0,1)],2)
=> 1 = 2 - 1
([],2)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,1)],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 4 = 5 - 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 4 = 5 - 1
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 5 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
([(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 5 = 6 - 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 5 = 6 - 1
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
([(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 5 = 6 - 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 5 = 6 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
Description
The number of positive eigenvalues of the Laplacian matrix of the graph. This is the number of vertices minus the number of connected components of the graph.
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St001034: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [1,0]
=> 1 = 2 - 1
([],2)
=> [1,1]
=> [1,1,0,0]
=> 2 = 3 - 1
([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 2 = 3 - 1
([],3)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 3 = 4 - 1
([(1,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> 3 = 4 - 1
([(0,1),(0,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> 3 = 4 - 1
([(0,2),(2,1)],3)
=> [3]
=> [1,0,1,0,1,0]
=> 3 = 4 - 1
([(0,2),(1,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> 3 = 4 - 1
([],4)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 4 = 5 - 1
([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 4 = 5 - 1
([(1,2),(1,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 4 = 5 - 1
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 4 = 5 - 1
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 4 = 5 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 4 = 5 - 1
([(1,2),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 4 = 5 - 1
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 4 = 5 - 1
([(1,3),(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 4 = 5 - 1
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 4 = 5 - 1
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 4 = 5 - 1
([(0,3),(1,2)],4)
=> [2,2]
=> [1,1,1,0,0,0]
=> 4 = 5 - 1
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [1,1,1,0,0,0]
=> 4 = 5 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [1,1,1,0,0,0]
=> 4 = 5 - 1
([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 4 = 5 - 1
([],5)
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> 5 = 6 - 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 5 = 6 - 1
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 5 = 6 - 1
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 5 = 6 - 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 5 = 6 - 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 5 = 6 - 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 5 = 6 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 5 = 6 - 1
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 5 = 6 - 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 5 = 6 - 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 5 = 6 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 5 = 6 - 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 5 = 6 - 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 5 = 6 - 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 5 = 6 - 1
([(2,3),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 5 = 6 - 1
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 5 = 6 - 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 5 = 6 - 1
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 5 = 6 - 1
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 5 = 6 - 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 5 = 6 - 1
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 5 = 6 - 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 5 = 6 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 5 = 6 - 1
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 5 = 6 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 5 = 6 - 1
Description
The area of the parallelogram polyomino associated with the Dyck path. The (bivariate) generating function is given in [1].
Mp00074: Posets to graphGraphs
Mp00111: Graphs complementGraphs
St001746: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([],2)
=> ([],2)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 2 = 3 - 1
([],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 3 = 4 - 1
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 3 = 4 - 1
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 3 = 4 - 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 3 = 4 - 1
([],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 5 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 4 = 5 - 1
([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4 = 5 - 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 5 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 4 = 5 - 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 5 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 5 - 1
([],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(3,4)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 5 = 6 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
Description
The coalition number of a graph. This is the maximal cardinality of a set partition such that each block is either a dominating set of cardinality one, or is not a dominating set but can be joined with a second block to form a dominating set.
Mp00074: Posets to graphGraphs
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St000998: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [1] => [1,0]
=> 2
([],2)
=> ([],2)
=> [2] => [1,1,0,0]
=> 3
([(0,1)],2)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 3
([],3)
=> ([],3)
=> [3] => [1,1,1,0,0,0]
=> 4
([(1,2)],3)
=> ([(1,2)],3)
=> [1,2] => [1,0,1,1,0,0]
=> 4
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> [1,1,1] => [1,0,1,0,1,0]
=> 4
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> [1,1,1] => [1,0,1,0,1,0]
=> 4
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [1,1,1] => [1,0,1,0,1,0]
=> 4
([],4)
=> ([],4)
=> [4] => [1,1,1,1,0,0,0,0]
=> 5
([(2,3)],4)
=> ([(2,3)],4)
=> [1,3] => [1,0,1,1,1,0,0,0]
=> 5
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> 5
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 5
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 5
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 5
([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> 5
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 5
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> 5
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 5
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 5
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 5
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 5
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 5
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 5
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 5
([],5)
=> ([],5)
=> [5] => [1,1,1,1,1,0,0,0,0,0]
=> 6
([(3,4)],5)
=> ([(3,4)],5)
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 6
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 6
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 6
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 6
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 6
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 6
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 6
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 6
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 6
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 6
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 6
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 6
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 6
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 6
([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 6
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 6
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 6
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 6
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 6
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 6
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 6
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 6
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 6
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 6
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 6
Description
Number of indecomposable projective modules with injective dimension smaller than or equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path.
Mp00074: Posets to graphGraphs
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St001240: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [1] => [1,0]
=> 2
([],2)
=> ([],2)
=> [2] => [1,1,0,0]
=> 3
([(0,1)],2)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 3
([],3)
=> ([],3)
=> [3] => [1,1,1,0,0,0]
=> 4
([(1,2)],3)
=> ([(1,2)],3)
=> [1,2] => [1,0,1,1,0,0]
=> 4
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> [1,1,1] => [1,0,1,0,1,0]
=> 4
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> [1,1,1] => [1,0,1,0,1,0]
=> 4
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [1,1,1] => [1,0,1,0,1,0]
=> 4
([],4)
=> ([],4)
=> [4] => [1,1,1,1,0,0,0,0]
=> 5
([(2,3)],4)
=> ([(2,3)],4)
=> [1,3] => [1,0,1,1,1,0,0,0]
=> 5
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> 5
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 5
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 5
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 5
([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> 5
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 5
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> 5
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 5
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 5
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 5
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 5
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 5
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 5
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 5
([],5)
=> ([],5)
=> [5] => [1,1,1,1,1,0,0,0,0,0]
=> 6
([(3,4)],5)
=> ([(3,4)],5)
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 6
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 6
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 6
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 6
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 6
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 6
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 6
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 6
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 6
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 6
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 6
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 6
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 6
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 6
([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 6
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 6
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 6
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 6
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 6
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 6
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 6
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 6
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 6
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 6
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 6
Description
The number of indecomposable modules e_i J^2 that have injective dimension at most one in the corresponding Nakayama algebra
The following 44 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001650The order of Ringel's homological bijection associated to the linear Nakayama algebra corresponding to the Dyck path. St000018The number of inversions of a permutation. St000144The pyramid weight of the Dyck path. St000229Sum of the difference between the maximal and the minimal elements of the blocks plus the number of blocks of a set partition. St000246The number of non-inversions of a permutation. St000290The major index of a binary word. St000395The sum of the heights of the peaks of a Dyck path. St000967The value p(1) for the Coxeterpolynomial p of the corresponding LNakayama algebra. St001018Sum of projective dimension of the indecomposable injective modules of the Nakayama algebra corresponding to the Dyck path. St001020Sum of the codominant dimensions of the non-projective indecomposable injective modules of the Nakayama algebra corresponding to the Dyck path. St001218Smallest index k greater than or equal to one such that the Coxeter matrix C of the corresponding Nakayama algebra has C^k=1. St001300The rank of the boundary operator in degree 1 of the chain complex of the order complex of the poset. St001641The number of ascent tops in the flattened set partition such that all smaller elements appear before. St001759The Rajchgot index of a permutation. St001723The differential of a graph. St001724The 2-packing differential of a graph. St000171The degree of the graph. St001707The length of a longest path in a graph such that the remaining vertices can be partitioned into two sets of the same size without edges between them. St001120The length of a longest path in a graph. St000719The number of alignments in a perfect matching. St001645The pebbling number of a connected graph. St001622The number of join-irreducible elements of a lattice. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St001725The harmonious chromatic number of a graph. St000147The largest part of an integer partition. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St000380Half of the maximal perimeter of a rectangle fitting into the diagram of an integer partition. St000384The maximal part of the shifted composition of an integer partition. St000784The maximum of the length and the largest part of the integer partition. St001615The number of join prime elements of a lattice. St001617The dimension of the space of valuations of a lattice. St000093The cardinality of a maximal independent set of vertices of a graph. St000186The sum of the first row in a Gelfand-Tsetlin pattern. St000273The domination number of a graph. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St000916The packing number of a graph. St001286The annihilation number of a graph. St001322The size of a minimal independent dominating set in a graph. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St001339The irredundance number of a graph. St001829The common independence number of a graph. St000259The diameter of a connected graph. St001340The cardinality of a minimal non-edge isolating set of a graph.