Your data matches 13 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000189
Mp00282: Posets Dedekind-MacNeille completionLattices
Mp00193: Lattices to posetPosets
St000189: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([],3)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 5
([(1,2)],3)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 5
([(0,1),(0,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
Description
The number of elements in the poset.
Matching statistic: St001717
Mp00282: Posets Dedekind-MacNeille completionLattices
Mp00193: Lattices to posetPosets
St001717: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([],3)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 5
([(1,2)],3)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 5
([(0,1),(0,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
Description
The largest size of an interval in a poset.
Matching statistic: St001300
Mp00282: Posets Dedekind-MacNeille completionLattices
Mp00193: Lattices to posetPosets
St001300: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([],3)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 4 = 5 - 1
([(1,2)],3)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4 = 5 - 1
([(0,1),(0,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
Description
The rank of the boundary operator in degree 1 of the chain complex of the order complex of the poset.
St000656: Posets ⟶ ℤResult quality: 80% values known / values provided: 88%distinct values known / distinct values provided: 80%
Values
([],1)
=> ? = 1
([],2)
=> 4
([(0,1)],2)
=> 2
([],3)
=> 5
([(1,2)],3)
=> 5
([(0,1),(0,2)],3)
=> 4
([(0,2),(2,1)],3)
=> 3
([(0,2),(1,2)],3)
=> 4
Description
The number of cuts of a poset. A cut is a subset $A$ of the poset such that the set of lower bounds of the set of upper bounds of $A$ is exactly $A$.
Matching statistic: St000327
Mp00195: Posets order idealsLattices
Mp00193: Lattices to posetPosets
St000327: Posets ⟶ ℤResult quality: 75% values known / values provided: 75%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {4,4}
([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? ∊ {4,4}
([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
Description
The number of cover relations in a poset. Equivalently, this is also the number of edges in the Hasse diagram [1].
Matching statistic: St001846
Mp00195: Posets order idealsLattices
Mp00193: Lattices to posetPosets
Mp00195: Posets order idealsLattices
St001846: Lattices ⟶ ℤResult quality: 75% values known / values provided: 75%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 1
([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 4
([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,2),(2,6),(2,7),(2,8),(3,17),(4,16),(5,15),(6,12),(6,13),(7,12),(7,14),(8,13),(8,14),(9,19),(10,19),(11,19),(12,5),(12,18),(13,4),(13,18),(14,3),(14,18),(15,9),(15,10),(16,9),(16,11),(17,10),(17,11),(18,15),(18,16),(18,17),(19,1)],20)
=> ? ∊ {4,4}
([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? ∊ {4,4}
([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 5
([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 3
([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 5
Description
The number of elements which do not have a complement in the lattice. A complement of an element $x$ in a lattice is an element $y$ such that the meet of $x$ and $y$ is the bottom element and their join is the top element.
Matching statistic: St000550
Mp00195: Posets order idealsLattices
Mp00193: Lattices to posetPosets
Mp00195: Posets order idealsLattices
St000550: Lattices ⟶ ℤResult quality: 75% values known / values provided: 75%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 6 = 4 + 2
([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,2),(2,6),(2,7),(2,8),(3,17),(4,16),(5,15),(6,12),(6,13),(7,12),(7,14),(8,13),(8,14),(9,19),(10,19),(11,19),(12,5),(12,18),(13,4),(13,18),(14,3),(14,18),(15,9),(15,10),(16,9),(16,11),(17,10),(17,11),(18,15),(18,16),(18,17),(19,1)],20)
=> ? ∊ {4,4} + 2
([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? ∊ {4,4} + 2
([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 7 = 5 + 2
([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 7 = 5 + 2
Description
The number of modular elements of a lattice. A pair $(x, y)$ of elements of a lattice $L$ is a modular pair if for every $z\geq y$ we have that $(y\vee x) \wedge z = y \vee (x \wedge z)$. An element $x$ is left-modular if $(x, y)$ is a modular pair for every $y\in L$, and is modular if both $(x, y)$ and $(y, x)$ are modular pairs for every $y\in L$.
Matching statistic: St000551
Mp00195: Posets order idealsLattices
Mp00193: Lattices to posetPosets
Mp00195: Posets order idealsLattices
St000551: Lattices ⟶ ℤResult quality: 75% values known / values provided: 75%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 6 = 4 + 2
([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,2),(2,6),(2,7),(2,8),(3,17),(4,16),(5,15),(6,12),(6,13),(7,12),(7,14),(8,13),(8,14),(9,19),(10,19),(11,19),(12,5),(12,18),(13,4),(13,18),(14,3),(14,18),(15,9),(15,10),(16,9),(16,11),(17,10),(17,11),(18,15),(18,16),(18,17),(19,1)],20)
=> ? ∊ {4,4} + 2
([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? ∊ {4,4} + 2
([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 7 = 5 + 2
([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 7 = 5 + 2
Description
The number of left modular elements of a lattice. A pair $(x, y)$ of elements of a lattice $L$ is a modular pair if for every $z\geq y$ we have that $(y\vee x) \wedge z = y \vee (x \wedge z)$. An element $x$ is left-modular if $(x, y)$ is a modular pair for every $y\in L$.
Matching statistic: St001616
Mp00195: Posets order idealsLattices
Mp00193: Lattices to posetPosets
Mp00195: Posets order idealsLattices
St001616: Lattices ⟶ ℤResult quality: 75% values known / values provided: 75%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 6 = 4 + 2
([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,2),(2,6),(2,7),(2,8),(3,17),(4,16),(5,15),(6,12),(6,13),(7,12),(7,14),(8,13),(8,14),(9,19),(10,19),(11,19),(12,5),(12,18),(13,4),(13,18),(14,3),(14,18),(15,9),(15,10),(16,9),(16,11),(17,10),(17,11),(18,15),(18,16),(18,17),(19,1)],20)
=> ? ∊ {4,4} + 2
([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ? ∊ {4,4} + 2
([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 7 = 5 + 2
([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 7 = 5 + 2
Description
The number of neutral elements in a lattice. An element $e$ of the lattice $L$ is neutral if the sublattice generated by $e$, $x$ and $y$ is distributive for all $x, y \in L$.
Matching statistic: St001003
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00227: Dyck paths Delest-Viennot-inverseDyck paths
St001003: Dyck paths ⟶ ℤResult quality: 75% values known / values provided: 75%distinct values known / distinct values provided: 80%
Values
([],1)
=> [2]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 6 = 1 + 5
([],2)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 7 = 2 + 5
([(0,1)],2)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 9 = 4 + 5
([],3)
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> ? ∊ {3,5} + 5
([(1,2)],3)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> ? ∊ {3,5} + 5
([(0,1),(0,2)],3)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 9 = 4 + 5
([(0,2),(2,1)],3)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 10 = 5 + 5
([(0,2),(1,2)],3)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 9 = 4 + 5
Description
The number of indecomposable modules with projective dimension at most 1 in the Nakayama algebra corresponding to the Dyck path.
The following 3 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001645The pebbling number of a connected graph. St000454The largest eigenvalue of a graph if it is integral. St001529The number of monomials in the expansion of the nabla operator applied to the power-sum symmetric function indexed by the partition.