Your data matches 209 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000298: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 1
([],2)
=> 2
([(0,1)],2)
=> 1
([],3)
=> 2
([(1,2)],3)
=> 2
([(0,1),(0,2)],3)
=> 2
([(0,2),(2,1)],3)
=> 1
([(0,2),(1,2)],3)
=> 2
([],4)
=> 2
([(2,3)],4)
=> 2
([(1,2),(1,3)],4)
=> 2
([(0,1),(0,2),(0,3)],4)
=> 2
([(0,2),(0,3),(3,1)],4)
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,2),(2,3)],4)
=> 2
([(0,3),(3,1),(3,2)],4)
=> 2
([(1,3),(2,3)],4)
=> 2
([(0,3),(1,3),(3,2)],4)
=> 2
([(0,3),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,3),(2,1),(3,2)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> 2
([],5)
=> 2
([(3,4)],5)
=> 2
([(2,3),(2,4)],5)
=> 2
([(1,2),(1,3),(1,4)],5)
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> 2
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(1,3),(1,4),(4,2)],5)
=> 2
([(0,3),(0,4),(4,1),(4,2)],5)
=> 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(2,3),(3,4)],5)
=> 2
([(1,4),(4,2),(4,3)],5)
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> 2
([(2,4),(3,4)],5)
=> 2
([(1,4),(2,4),(4,3)],5)
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> 2
([(1,4),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,3)],5)
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
Description
The order dimension or Dushnik-Miller dimension of a poset. This is the minimal number of linear orderings whose intersection is the given poset.
Mp00074: Posets to graphGraphs
St000097: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> 1
([],2)
=> ([],2)
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> 2
([],3)
=> ([],3)
=> 1
([(1,2)],3)
=> ([(1,2)],3)
=> 2
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
([],4)
=> ([],4)
=> 1
([(2,3)],4)
=> ([(2,3)],4)
=> 2
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([],5)
=> ([],5)
=> 1
([(3,4)],5)
=> ([(3,4)],5)
=> 2
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> 2
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 2
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 2
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
Description
The order of the largest clique of the graph. A clique in a graph $G$ is a subset $U \subseteq V(G)$ such that any pair of vertices in $U$ are adjacent. I.e. the subgraph induced by $U$ is a complete graph.
Mp00110: Posets Greene-Kleitman invariantInteger partitions
St000480: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> 0 = 1 - 1
([],2)
=> [1,1]
=> 0 = 1 - 1
([(0,1)],2)
=> [2]
=> 1 = 2 - 1
([],3)
=> [1,1,1]
=> 0 = 1 - 1
([(1,2)],3)
=> [2,1]
=> 1 = 2 - 1
([(0,1),(0,2)],3)
=> [2,1]
=> 1 = 2 - 1
([(0,2),(2,1)],3)
=> [3]
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> [2,1]
=> 1 = 2 - 1
([],4)
=> [1,1,1,1]
=> 0 = 1 - 1
([(2,3)],4)
=> [2,1,1]
=> 1 = 2 - 1
([(1,2),(1,3)],4)
=> [2,1,1]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> 1 = 2 - 1
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> 1 = 2 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1 = 2 - 1
([(1,2),(2,3)],4)
=> [3,1]
=> 1 = 2 - 1
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> [2,1,1]
=> 1 = 2 - 1
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> [2,2]
=> 1 = 2 - 1
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> 1 = 2 - 1
([(0,3),(2,1),(3,2)],4)
=> [4]
=> 1 = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 1 = 2 - 1
([],5)
=> [1,1,1,1,1]
=> 0 = 1 - 1
([(3,4)],5)
=> [2,1,1,1]
=> 1 = 2 - 1
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> 1 = 2 - 1
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> 1 = 2 - 1
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> 1 = 2 - 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> 1 = 2 - 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 1 = 2 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> 1 = 2 - 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> 1 = 2 - 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> 1 = 2 - 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> 1 = 2 - 1
([(2,3),(3,4)],5)
=> [3,1,1]
=> 1 = 2 - 1
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> 1 = 2 - 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> 1 = 2 - 1
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> 1 = 2 - 1
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> 1 = 2 - 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> 1 = 2 - 1
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> 1 = 2 - 1
Description
The number of lower covers of a partition in dominance order. According to [1], Corollary 2.4, the maximum number of elements one element (apparently for $n\neq 2$) can cover is $$ \frac{1}{2}(\sqrt{1+8n}-3) $$ and an element which covers this number of elements is given by $(c+i,c,c-1,\dots,3,2,1)$, where $1\leq i\leq c+2$.
Mp00110: Posets Greene-Kleitman invariantInteger partitions
St000481: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> 0 = 1 - 1
([],2)
=> [1,1]
=> 1 = 2 - 1
([(0,1)],2)
=> [2]
=> 0 = 1 - 1
([],3)
=> [1,1,1]
=> 1 = 2 - 1
([(1,2)],3)
=> [2,1]
=> 1 = 2 - 1
([(0,1),(0,2)],3)
=> [2,1]
=> 1 = 2 - 1
([(0,2),(2,1)],3)
=> [3]
=> 0 = 1 - 1
([(0,2),(1,2)],3)
=> [2,1]
=> 1 = 2 - 1
([],4)
=> [1,1,1,1]
=> 1 = 2 - 1
([(2,3)],4)
=> [2,1,1]
=> 1 = 2 - 1
([(1,2),(1,3)],4)
=> [2,1,1]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> 1 = 2 - 1
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> 1 = 2 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 1 = 2 - 1
([(1,2),(2,3)],4)
=> [3,1]
=> 1 = 2 - 1
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> [2,1,1]
=> 1 = 2 - 1
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> [2,2]
=> 1 = 2 - 1
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> 1 = 2 - 1
([(0,3),(2,1),(3,2)],4)
=> [4]
=> 0 = 1 - 1
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 1 = 2 - 1
([],5)
=> [1,1,1,1,1]
=> 1 = 2 - 1
([(3,4)],5)
=> [2,1,1,1]
=> 1 = 2 - 1
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> 1 = 2 - 1
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> 1 = 2 - 1
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> 1 = 2 - 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> 1 = 2 - 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 1 = 2 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> 1 = 2 - 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> 1 = 2 - 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> 1 = 2 - 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> 1 = 2 - 1
([(2,3),(3,4)],5)
=> [3,1,1]
=> 1 = 2 - 1
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> 1 = 2 - 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> 1 = 2 - 1
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> 1 = 2 - 1
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> 1 = 2 - 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> 1 = 2 - 1
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> 1 = 2 - 1
Description
The number of upper covers of a partition in dominance order.
Mp00074: Posets to graphGraphs
Mp00111: Graphs complementGraphs
St000093: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 2
([],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
([],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 2
([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(3,4)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2
([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
Description
The cardinality of a maximal independent set of vertices of a graph. An independent set of a graph is a set of pairwise non-adjacent vertices. A maximum independent set is an independent set of maximum cardinality. This statistic is also called the independence number or stability number $\alpha(G)$ of $G$.
Matching statistic: St000147
Mp00074: Posets to graphGraphs
Mp00251: Graphs clique sizesInteger partitions
St000147: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [1]
=> 1
([],2)
=> ([],2)
=> [1,1]
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 2
([],3)
=> ([],3)
=> [1,1,1]
=> 1
([(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 2
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> 2
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> 2
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> 2
([],4)
=> ([],4)
=> [1,1,1,1]
=> 1
([(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 2
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> 2
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 2
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> 2
([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> 2
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 2
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> 2
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 2
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 2
([],5)
=> ([],5)
=> [1,1,1,1,1]
=> 1
([(3,4)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 2
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> 2
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> 2
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> 2
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> 2
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> 2
([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> 2
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 2
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> 2
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 2
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 2
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> 2
Description
The largest part of an integer partition.
Mp00198: Posets incomparability graphGraphs
Mp00154: Graphs coreGraphs
St000258: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,1)],2)
=> ([],2)
=> ([],1)
=> 1
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> 2
([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> 2
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> 2
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> 2
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(0,1)],2)
=> 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> 2
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
Description
The burning number of a graph. This is the minimum number of rounds needed to burn all vertices of a graph. In each round, the neighbours of all burned vertices are burnt. Additionally, an unburned vertex may be chosen to be burned.
Mp00198: Posets incomparability graphGraphs
Mp00203: Graphs coneGraphs
St000259: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([(0,1)],2)
=> 1
([],2)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,1)],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 2
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
Description
The diameter of a connected graph. This is the greatest distance between any pair of vertices.
Mp00198: Posets incomparability graphGraphs
Mp00154: Graphs coreGraphs
St000299: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,1)],2)
=> ([],2)
=> ([],1)
=> 1
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> 2
([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> 2
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> 2
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> 2
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(0,1)],2)
=> 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> 2
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
Description
The number of nonisomorphic vertex-induced subtrees.
Mp00198: Posets incomparability graphGraphs
Mp00154: Graphs coreGraphs
St000452: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,1)],2)
=> ([],2)
=> ([],1)
=> 1
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> 2
([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> 2
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> 2
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> 2
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(0,1)],2)
=> 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> 2
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
Description
The number of distinct eigenvalues of a graph.
The following 199 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000453The number of distinct Laplacian eigenvalues of a graph. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St000917The open packing number of a graph. St000918The 2-limited packing number of a graph. St001093The detour number of a graph. St001235The global dimension of the corresponding Comp-Nakayama algebra. St001261The Castelnuovo-Mumford regularity of a graph. St001315The dissociation number of a graph. St001316The domatic number of a graph. St001318The number of vertices of the largest induced subforest with the same number of connected components of a graph. St001321The number of vertices of the largest induced subforest of a graph. St001330The hat guessing number of a graph. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St001654The monophonic hull number of a graph. St001656The monophonic position number of a graph. St001674The number of vertices of the largest induced star graph in the graph. St000183The side length of the Durfee square of an integer partition. St000260The radius of a connected graph. St000535The rank-width of a graph. St000897The number of different multiplicities of parts of an integer partition. St000985The number of positive eigenvalues of the adjacency matrix of the graph. St001056The Grundy value for the game of deleting vertices of a graph until it has no edges. St001071The beta invariant of the graph. St001092The number of distinct even parts of a partition. St001271The competition number of a graph. St001333The cardinality of a minimal edge-isolating set of a graph. St001335The cardinality of a minimal cycle-isolating set of a graph. St001336The minimal number of vertices in a graph whose complement is triangle-free. St001340The cardinality of a minimal non-edge isolating set of a graph. St001349The number of different graphs obtained from the given graph by removing an edge. St001354The number of series nodes in the modular decomposition of a graph. St001393The induced matching number of a graph. St001512The minimum rank of a graph. St001587Half of the largest even part of an integer partition. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St000007The number of saliances of the permutation. St000010The length of the partition. St000013The height of a Dyck path. St000058The order of a permutation. St000092The number of outer peaks of a permutation. St000098The chromatic number of a graph. St000099The number of valleys of a permutation, including the boundary. St000273The domination number of a graph. St000346The number of coarsenings of a partition. St000378The diagonal inversion number of an integer partition. St000381The largest part of an integer composition. St000382The first part of an integer composition. St000451The length of the longest pattern of the form k 1 2. St000482The (zero)-forcing number of a graph. St000544The cop number of a graph. St000636The hull number of a graph. St000757The length of the longest weakly inreasing subsequence of parts of an integer composition. St000765The number of weak records in an integer composition. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000773The multiplicity of the largest Laplacian eigenvalue in a graph. St000774The maximal multiplicity of a Laplacian eigenvalue in a graph. St000776The maximal multiplicity of an eigenvalue in a graph. St000778The metric dimension of a graph. St000808The number of up steps of the associated bargraph. St000899The maximal number of repetitions of an integer composition. St000904The maximal number of repetitions of an integer composition. St000920The logarithmic height of a Dyck path. St001029The size of the core of a graph. St001057The Grundy value of the game of creating an independent set in a graph. St001109The number of proper colourings of a graph with as few colours as possible. St001165Number of simple modules with even projective dimension in the corresponding Nakayama algebra. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St001286The annihilation number of a graph. St001322The size of a minimal independent dominating set in a graph. St001339The irredundance number of a graph. St001357The maximal degree of a regular spanning subgraph of a graph. St001358The largest degree of a regular subgraph of a graph. St001471The magnitude of a Dyck path. St001486The number of corners of the ribbon associated with an integer composition. St001642The Prague dimension of a graph. St001746The coalition number of a graph. St001784The minimum of the smallest closer and the second element of the block containing 1 in a set partition. St001792The arboricity of a graph. St001829The common independence number of a graph. St001884The number of borders of a binary word. St001949The rigidity index of a graph. St000023The number of inner peaks of a permutation. St000120The number of left tunnels of a Dyck path. St000162The number of nontrivial cycles in the cycle decomposition of a permutation. St000256The number of parts from which one can substract 2 and still get an integer partition. St000292The number of ascents of a binary word. St000353The number of inner valleys of a permutation. St000374The number of exclusive right-to-left minima of a permutation. St000469The distinguishing number of a graph. St000473The number of parts of a partition that are strictly bigger than the number of ones. St000624The normalized sum of the minimal distances to a greater element. St000651The maximal size of a rise in a permutation. St000703The number of deficiencies of a permutation. St000741The Colin de Verdière graph invariant. St000742The number of big ascents of a permutation after prepending zero. St000834The number of right outer peaks of a permutation. St000994The number of cycle peaks and the number of cycle valleys of a permutation. St001011Number of simple modules of projective dimension 2 in the Nakayama algebra corresponding to the Dyck path. St001035The convexity degree of the parallelogram polyomino associated with the Dyck path. St001188The number of simple modules $S$ with grade $\inf \{ i \geq 0 | Ext^i(S,A) \neq 0 \}$ at least two in the Nakayama algebra $A$ corresponding to the Dyck path. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St001251The number of parts of a partition that are not congruent 1 modulo 3. St001269The sum of the minimum of the number of exceedances and deficiencies in each cycle of a permutation. St001280The number of parts of an integer partition that are at least two. St001323The independence gap of a graph. St001395The number of strictly unfriendly partitions of a graph. St001507The sum of projective dimension of simple modules with even projective dimension divided by 2 in the LNakayama algebra corresponding to Dyck paths. St001613The binary logarithm of the size of the center of a lattice. St001621The number of atoms of a lattice. St001655The general position number of a graph. St001665The number of pure excedances of a permutation. St001729The number of visible descents of a permutation. St001737The number of descents of type 2 in a permutation. St001743The discrepancy of a graph. St001761The maximal multiplicity of a letter in a reduced word of a permutation. St001777The number of weak descents in an integer composition. St001931The weak major index of an integer composition regarded as a word. St000668The least common multiple of the parts of the partition. St001720The minimal length of a chain of small intervals in a lattice. St000659The number of rises of length at least 2 of a Dyck path. St001031The height of the bicoloured Motzkin path associated with the Dyck path. St000444The length of the maximal rise of a Dyck path. St000485The length of the longest cycle of a permutation. St000253The crossing number of a set partition. St000254The nesting number of a set partition. St000354The number of recoils of a permutation. St000442The maximal area to the right of an up step of a Dyck path. St000730The maximal arc length of a set partition. St000919The number of maximal left branches of a binary tree. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001859The number of factors of the Stanley symmetric function associated with a permutation. St001625The Möbius invariant of a lattice. St000454The largest eigenvalue of a graph if it is integral. St001044The number of pairs whose larger element is at most one more than half the size of the perfect matching. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000318The number of addable cells of the Ferrers diagram of an integer partition. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000630The length of the shortest palindromic decomposition of a binary word. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001624The breadth of a lattice. St000907The number of maximal antichains of minimal length in a poset. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St000660The number of rises of length at least 3 of a Dyck path. St001732The number of peaks visible from the left. St001037The number of inner corners of the upper path of the parallelogram polyomino associated with the Dyck path. St000932The number of occurrences of the pattern UDU in a Dyck path. St001067The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra. St001217The projective dimension of the indecomposable injective module I[n-2] in the corresponding Nakayama algebra with simples enumerated from 0 to n-1. St001257The dominant dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001205The number of non-simple indecomposable projective-injective modules of the algebra $eAe$ in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001060The distinguishing index of a graph. St001118The acyclic chromatic index of a graph. St001545The second Elser number of a connected graph. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St000272The treewidth of a graph. St000536The pathwidth of a graph. St001270The bandwidth of a graph. St001277The degeneracy of a graph. St001494The Alon-Tarsi number of a graph. St001580The acyclic chromatic number of a graph. St001883The mutual visibility number of a graph. St001951The number of factors in the disjoint direct product decomposition of the automorphism group of a graph. St001962The proper pathwidth of a graph. St000537The cutwidth of a graph. St000671The maximin edge-connectivity for choosing a subgraph. St001116The game chromatic number of a graph. St001331The size of the minimal feedback vertex set. St001592The maximal number of simple paths between any two different vertices of a graph. St001638The book thickness of a graph. St001644The dimension of a graph. St001826The maximal number of leaves on a vertex of a graph. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000640The rank of the largest boolean interval in a poset. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St000307The number of rowmotion orbits of a poset. St000822The Hadwiger number of the graph. St001734The lettericity of a graph. St001568The smallest positive integer that does not appear twice in the partition. St001877Number of indecomposable injective modules with projective dimension 2.