Identifier
Mp00041: Integer compositions conjugateInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
Mp00324: Graphs chromatic difference sequenceInteger compositions
Images
=>
Cc0020;cc-rep-2
[1]=>[1]=>([],1)=>[1] [1,1]=>[2]=>([],2)=>[2] [2]=>[1,1]=>([(0,1)],2)=>[1,1] [1,1,1]=>[3]=>([],3)=>[3] [1,2]=>[1,2]=>([(1,2)],3)=>[2,1] [2,1]=>[2,1]=>([(0,2),(1,2)],3)=>[2,1] [3]=>[1,1,1]=>([(0,1),(0,2),(1,2)],3)=>[1,1,1] [1,1,1,1]=>[4]=>([],4)=>[4] [1,1,2]=>[1,3]=>([(2,3)],4)=>[3,1] [1,2,1]=>[2,2]=>([(1,3),(2,3)],4)=>[3,1] [1,3]=>[1,1,2]=>([(1,2),(1,3),(2,3)],4)=>[2,1,1] [2,1,1]=>[3,1]=>([(0,3),(1,3),(2,3)],4)=>[3,1] [2,2]=>[1,2,1]=>([(0,3),(1,2),(1,3),(2,3)],4)=>[2,1,1] [3,1]=>[2,1,1]=>([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[2,1,1] [4]=>[1,1,1,1]=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[1,1,1,1] [1,1,1,1,1]=>[5]=>([],5)=>[5] [1,1,1,2]=>[1,4]=>([(3,4)],5)=>[4,1] [1,1,2,1]=>[2,3]=>([(2,4),(3,4)],5)=>[4,1] [1,1,3]=>[1,1,3]=>([(2,3),(2,4),(3,4)],5)=>[3,1,1] [1,2,1,1]=>[3,2]=>([(1,4),(2,4),(3,4)],5)=>[4,1] [1,2,2]=>[1,2,2]=>([(1,4),(2,3),(2,4),(3,4)],5)=>[3,1,1] [1,3,1]=>[2,1,2]=>([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>[3,1,1] [1,4]=>[1,1,1,2]=>([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>[2,1,1,1] [2,1,1,1]=>[4,1]=>([(0,4),(1,4),(2,4),(3,4)],5)=>[4,1] [2,1,2]=>[1,3,1]=>([(0,4),(1,4),(2,3),(2,4),(3,4)],5)=>[3,1,1] [2,2,1]=>[2,2,1]=>([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>[3,1,1] [2,3]=>[1,1,2,1]=>([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>[2,1,1,1] [3,1,1]=>[3,1,1]=>([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>[3,1,1] [3,2]=>[1,2,1,1]=>([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>[2,1,1,1] [4,1]=>[2,1,1,1]=>([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>[2,1,1,1] [5]=>[1,1,1,1,1]=>([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>[1,1,1,1,1] [1,1,1,1,1,1]=>[6]=>([],6)=>[6] [1,1,1,1,2]=>[1,5]=>([(4,5)],6)=>[5,1] [1,1,1,2,1]=>[2,4]=>([(3,5),(4,5)],6)=>[5,1] [1,1,1,3]=>[1,1,4]=>([(3,4),(3,5),(4,5)],6)=>[4,1,1] [1,1,2,1,1]=>[3,3]=>([(2,5),(3,5),(4,5)],6)=>[5,1] [1,1,2,2]=>[1,2,3]=>([(2,5),(3,4),(3,5),(4,5)],6)=>[4,1,1] [1,1,3,1]=>[2,1,3]=>([(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>[4,1,1] [1,1,4]=>[1,1,1,3]=>([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>[3,1,1,1] [1,2,1,1,1]=>[4,2]=>([(1,5),(2,5),(3,5),(4,5)],6)=>[5,1] [1,2,1,2]=>[1,3,2]=>([(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>[4,1,1] [1,2,2,1]=>[2,2,2]=>([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>[4,1,1] [1,2,3]=>[1,1,2,2]=>([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>[3,1,1,1] [1,3,1,1]=>[3,1,2]=>([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>[4,1,1] [1,3,2]=>[1,2,1,2]=>([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>[3,1,1,1] [1,4,1]=>[2,1,1,2]=>([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>[3,1,1,1] [1,5]=>[1,1,1,1,2]=>([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>[2,1,1,1,1] [2,1,1,1,1]=>[5,1]=>([(0,5),(1,5),(2,5),(3,5),(4,5)],6)=>[5,1] [2,1,1,2]=>[1,4,1]=>([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>[4,1,1] [2,1,2,1]=>[2,3,1]=>([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>[4,1,1] [2,1,3]=>[1,1,3,1]=>([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>[3,1,1,1] [2,2,1,1]=>[3,2,1]=>([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>[4,1,1] [2,2,2]=>[1,2,2,1]=>([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>[3,1,1,1] [2,3,1]=>[2,1,2,1]=>([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>[3,1,1,1] [2,4]=>[1,1,1,2,1]=>([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>[2,1,1,1,1] [3,1,1,1]=>[4,1,1]=>([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>[4,1,1] [3,1,2]=>[1,3,1,1]=>([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>[3,1,1,1] [3,2,1]=>[2,2,1,1]=>([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>[3,1,1,1] [3,3]=>[1,1,2,1,1]=>([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>[2,1,1,1,1] [4,1,1]=>[3,1,1,1]=>([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>[3,1,1,1] [4,2]=>[1,2,1,1,1]=>([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>[2,1,1,1,1] [5,1]=>[2,1,1,1,1]=>([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>[2,1,1,1,1] [6]=>[1,1,1,1,1,1]=>([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>[1,1,1,1,1,1] [1,1,1,1,1,1,1]=>[7]=>([],7)=>[7] [1,1,1,1,1,2]=>[1,6]=>([(5,6)],7)=>[6,1] [1,1,1,1,2,1]=>[2,5]=>([(4,6),(5,6)],7)=>[6,1] [1,1,1,1,3]=>[1,1,5]=>([(4,5),(4,6),(5,6)],7)=>[5,1,1] [1,1,1,2,1,1]=>[3,4]=>([(3,6),(4,6),(5,6)],7)=>[6,1] [1,1,1,2,2]=>[1,2,4]=>([(3,6),(4,5),(4,6),(5,6)],7)=>[5,1,1] [1,1,1,3,1]=>[2,1,4]=>([(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[5,1,1] [1,1,1,4]=>[1,1,1,4]=>([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[4,1,1,1] [1,1,2,1,1,1]=>[4,3]=>([(2,6),(3,6),(4,6),(5,6)],7)=>[6,1] [1,1,2,1,2]=>[1,3,3]=>([(2,6),(3,6),(4,5),(4,6),(5,6)],7)=>[5,1,1] [1,1,2,2,1]=>[2,2,3]=>([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[5,1,1] [1,1,2,3]=>[1,1,2,3]=>([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[4,1,1,1] [1,1,3,1,1]=>[3,1,3]=>([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[5,1,1] [1,1,3,2]=>[1,2,1,3]=>([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[4,1,1,1] [1,1,4,1]=>[2,1,1,3]=>([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[4,1,1,1] [1,1,5]=>[1,1,1,1,3]=>([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[3,1,1,1,1] [1,2,1,1,1,1]=>[5,2]=>([(1,6),(2,6),(3,6),(4,6),(5,6)],7)=>[6,1] [1,2,1,1,2]=>[1,4,2]=>([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)=>[5,1,1] [1,2,1,2,1]=>[2,3,2]=>([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[5,1,1] [1,2,1,3]=>[1,1,3,2]=>([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[4,1,1,1] [1,2,2,1,1]=>[3,2,2]=>([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[5,1,1] [1,2,2,2]=>[1,2,2,2]=>([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[4,1,1,1] [1,2,3,1]=>[2,1,2,2]=>([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[4,1,1,1] [1,2,4]=>[1,1,1,2,2]=>([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[3,1,1,1,1] [1,3,1,1,1]=>[4,1,2]=>([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[5,1,1] [1,3,1,2]=>[1,3,1,2]=>([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[4,1,1,1] [1,3,2,1]=>[2,2,1,2]=>([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[4,1,1,1] [1,3,3]=>[1,1,2,1,2]=>([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[3,1,1,1,1] [1,4,1,1]=>[3,1,1,2]=>([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[4,1,1,1] [1,4,2]=>[1,2,1,1,2]=>([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[3,1,1,1,1] [1,5,1]=>[2,1,1,1,2]=>([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[3,1,1,1,1] [1,6]=>[1,1,1,1,1,2]=>([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[2,1,1,1,1,1] [2,1,1,1,1,1]=>[6,1]=>([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)=>[6,1] [2,1,1,1,2]=>[1,5,1]=>([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)=>[5,1,1] [2,1,1,2,1]=>[2,4,1]=>([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[5,1,1] [2,1,1,3]=>[1,1,4,1]=>([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[4,1,1,1] [2,1,2,1,1]=>[3,3,1]=>([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[5,1,1] [2,1,2,2]=>[1,2,3,1]=>([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[4,1,1,1] [2,1,3,1]=>[2,1,3,1]=>([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[4,1,1,1] [2,1,4]=>[1,1,1,3,1]=>([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[3,1,1,1,1] [2,2,1,1,1]=>[4,2,1]=>([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[5,1,1] [2,2,1,2]=>[1,3,2,1]=>([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[4,1,1,1] [2,2,2,1]=>[2,2,2,1]=>([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[4,1,1,1] [2,2,3]=>[1,1,2,2,1]=>([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[3,1,1,1,1] [2,3,1,1]=>[3,1,2,1]=>([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[4,1,1,1] [2,3,2]=>[1,2,1,2,1]=>([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[3,1,1,1,1] [2,4,1]=>[2,1,1,2,1]=>([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[3,1,1,1,1] [2,5]=>[1,1,1,1,2,1]=>([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[2,1,1,1,1,1] [3,1,1,1,1]=>[5,1,1]=>([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[5,1,1] [3,1,1,2]=>[1,4,1,1]=>([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[4,1,1,1] [3,1,2,1]=>[2,3,1,1]=>([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[4,1,1,1] [3,1,3]=>[1,1,3,1,1]=>([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[3,1,1,1,1] [3,2,1,1]=>[3,2,1,1]=>([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[4,1,1,1] [3,2,2]=>[1,2,2,1,1]=>([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[3,1,1,1,1] [3,3,1]=>[2,1,2,1,1]=>([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[3,1,1,1,1] [3,4]=>[1,1,1,2,1,1]=>([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[2,1,1,1,1,1] [4,1,1,1]=>[4,1,1,1]=>([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[4,1,1,1] [4,1,2]=>[1,3,1,1,1]=>([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[3,1,1,1,1] [4,2,1]=>[2,2,1,1,1]=>([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[3,1,1,1,1] [4,3]=>[1,1,2,1,1,1]=>([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[2,1,1,1,1,1] [5,1,1]=>[3,1,1,1,1]=>([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[3,1,1,1,1] [5,2]=>[1,2,1,1,1,1]=>([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[2,1,1,1,1,1] [6,1]=>[2,1,1,1,1,1]=>([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[2,1,1,1,1,1] [7]=>[1,1,1,1,1,1,1]=>([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>[1,1,1,1,1,1,1]
Map
conjugate
Description
The conjugate of a composition.
The conjugate of a composition $C$ is defined as the complement (Mp00039complement) of the reversal (Mp00038reverse) of $C$.
Equivalently, the ribbon shape corresponding to the conjugate of $C$ is the conjugate of the ribbon shape of $C$.
Map
to threshold graph
Description
The threshold graph corresponding to the composition.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
Map
chromatic difference sequence
Description
The chromatic difference sequence of a graph.
Let $G$ be a simple graph with chromatic number $\kappa$. Let $\alpha_m$ be the maximum number of vertices in a $m$-colorable subgraph of $G$. Set $\delta_m=\alpha_m-\alpha_{m-1}$. The sequence $\delta_1,\delta_2,\dots\delta_\kappa$ is the chromatic difference sequence of $G$.
All entries of the chromatic difference sequence are positive: $\alpha_m > \alpha_{m-1}$ for $m < \kappa$, because we can assign any uncolored vertex of a partial coloring with $m-1$ colors the color $m$. Therefore, the chromatic difference sequence is a composition of the number of vertices of $G$ into $\kappa$ parts.