Identifier
Mp00046:
Ordered trees
—to graph⟶
Graphs
Mp00324: Graphs —chromatic difference sequence⟶ Integer compositions
Mp00315: Integer compositions —inverse Foata bijection⟶ Integer compositions
Mp00324: Graphs —chromatic difference sequence⟶ Integer compositions
Mp00315: Integer compositions —inverse Foata bijection⟶ Integer compositions
Images
=>
Cc0021;cc-rep-0Cc0020;cc-rep-1
[]=>([],1)=>[1]=>[1]
[[]]=>([(0,1)],2)=>[1,1]=>[1,1]
[[],[]]=>([(0,2),(1,2)],3)=>[2,1]=>[2,1]
[[[]]]=>([(0,2),(1,2)],3)=>[2,1]=>[2,1]
[[],[],[]]=>([(0,3),(1,3),(2,3)],4)=>[3,1]=>[3,1]
[[],[[]]]=>([(0,3),(1,2),(2,3)],4)=>[2,2]=>[2,2]
[[[]],[]]=>([(0,3),(1,2),(2,3)],4)=>[2,2]=>[2,2]
[[[],[]]]=>([(0,3),(1,3),(2,3)],4)=>[3,1]=>[3,1]
[[[[]]]]=>([(0,3),(1,2),(2,3)],4)=>[2,2]=>[2,2]
[[],[],[],[]]=>([(0,4),(1,4),(2,4),(3,4)],5)=>[4,1]=>[4,1]
[[],[],[[]]]=>([(0,4),(1,4),(2,3),(3,4)],5)=>[3,2]=>[3,2]
[[],[[]],[]]=>([(0,4),(1,4),(2,3),(3,4)],5)=>[3,2]=>[3,2]
[[],[[],[]]]=>([(0,4),(1,4),(2,3),(3,4)],5)=>[3,2]=>[3,2]
[[],[[[]]]]=>([(0,4),(1,3),(2,3),(2,4)],5)=>[3,2]=>[3,2]
[[[]],[],[]]=>([(0,4),(1,4),(2,3),(3,4)],5)=>[3,2]=>[3,2]
[[[]],[[]]]=>([(0,4),(1,3),(2,3),(2,4)],5)=>[3,2]=>[3,2]
[[[],[]],[]]=>([(0,4),(1,4),(2,3),(3,4)],5)=>[3,2]=>[3,2]
[[[[]]],[]]=>([(0,4),(1,3),(2,3),(2,4)],5)=>[3,2]=>[3,2]
[[[],[],[]]]=>([(0,4),(1,4),(2,4),(3,4)],5)=>[4,1]=>[4,1]
[[[],[[]]]]=>([(0,4),(1,4),(2,3),(3,4)],5)=>[3,2]=>[3,2]
[[[[]],[]]]=>([(0,4),(1,4),(2,3),(3,4)],5)=>[3,2]=>[3,2]
[[[[],[]]]]=>([(0,4),(1,4),(2,3),(3,4)],5)=>[3,2]=>[3,2]
[[[[[]]]]]=>([(0,4),(1,3),(2,3),(2,4)],5)=>[3,2]=>[3,2]
[[],[],[],[],[]]=>([(0,5),(1,5),(2,5),(3,5),(4,5)],6)=>[5,1]=>[5,1]
[[],[],[],[[]]]=>([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>[4,2]=>[4,2]
[[],[],[[]],[]]=>([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>[4,2]=>[4,2]
[[],[],[[],[]]]=>([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>[4,2]=>[4,2]
[[],[],[[[]]]]=>([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>[4,2]=>[4,2]
[[],[[]],[],[]]=>([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>[4,2]=>[4,2]
[[],[[]],[[]]]=>([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>[3,3]=>[3,3]
[[],[[],[]],[]]=>([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>[4,2]=>[4,2]
[[],[[[]]],[]]=>([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>[4,2]=>[4,2]
[[],[[],[],[]]]=>([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>[4,2]=>[4,2]
[[],[[],[[]]]]=>([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>[3,3]=>[3,3]
[[],[[[]],[]]]=>([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>[3,3]=>[3,3]
[[],[[[],[]]]]=>([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>[4,2]=>[4,2]
[[],[[[[]]]]]=>([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>[3,3]=>[3,3]
[[[]],[],[],[]]=>([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>[4,2]=>[4,2]
[[[]],[],[[]]]=>([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>[3,3]=>[3,3]
[[[]],[[]],[]]=>([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>[3,3]=>[3,3]
[[[]],[[],[]]]=>([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>[4,2]=>[4,2]
[[[]],[[[]]]]=>([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>[3,3]=>[3,3]
[[[],[]],[],[]]=>([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>[4,2]=>[4,2]
[[[[]]],[],[]]=>([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>[4,2]=>[4,2]
[[[],[]],[[]]]=>([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>[4,2]=>[4,2]
[[[[]]],[[]]]=>([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>[3,3]=>[3,3]
[[[],[],[]],[]]=>([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>[4,2]=>[4,2]
[[[],[[]]],[]]=>([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>[3,3]=>[3,3]
[[[[]],[]],[]]=>([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>[3,3]=>[3,3]
[[[[],[]]],[]]=>([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>[4,2]=>[4,2]
[[[[[]]]],[]]=>([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>[3,3]=>[3,3]
[[[],[],[],[]]]=>([(0,5),(1,5),(2,5),(3,5),(4,5)],6)=>[5,1]=>[5,1]
[[[],[],[[]]]]=>([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>[4,2]=>[4,2]
[[[],[[]],[]]]=>([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>[4,2]=>[4,2]
[[[],[[],[]]]]=>([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>[4,2]=>[4,2]
[[[],[[[]]]]]=>([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>[4,2]=>[4,2]
[[[[]],[],[]]]=>([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>[4,2]=>[4,2]
[[[[]],[[]]]]=>([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>[3,3]=>[3,3]
[[[[],[]],[]]]=>([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>[4,2]=>[4,2]
[[[[[]]],[]]]=>([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>[4,2]=>[4,2]
[[[[],[],[]]]]=>([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>[4,2]=>[4,2]
[[[[],[[]]]]]=>([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>[3,3]=>[3,3]
[[[[[]],[]]]]=>([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>[3,3]=>[3,3]
[[[[[],[]]]]]=>([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>[4,2]=>[4,2]
[[[[[[]]]]]]=>([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>[3,3]=>[3,3]
[[],[],[],[],[],[]]=>([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)=>[6,1]=>[6,1]
[[],[],[],[],[[]]]=>([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)=>[5,2]=>[5,2]
[[],[],[],[[]],[]]=>([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)=>[5,2]=>[5,2]
[[],[],[],[[],[]]]=>([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>[5,2]=>[5,2]
[[],[],[],[[[]]]]=>([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)=>[5,2]=>[5,2]
[[],[],[[]],[],[]]=>([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)=>[5,2]=>[5,2]
[[],[],[[]],[[]]]=>([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[],[],[[],[]],[]]=>([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>[5,2]=>[5,2]
[[],[],[[[]]],[]]=>([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)=>[5,2]=>[5,2]
[[],[],[[],[],[]]]=>([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>[5,2]=>[5,2]
[[],[],[[],[[]]]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[],[],[[[]],[]]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[],[],[[[],[]]]]=>([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)=>[5,2]=>[5,2]
[[],[],[[[[]]]]]=>([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)=>[4,3]=>[4,3]
[[],[[]],[],[],[]]=>([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)=>[5,2]=>[5,2]
[[],[[]],[],[[]]]=>([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[],[[]],[[]],[]]=>([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[],[[]],[[],[]]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[],[[]],[[[]]]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[4,3]
[[],[[],[]],[],[]]=>([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>[5,2]=>[5,2]
[[],[[[]]],[],[]]=>([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)=>[5,2]=>[5,2]
[[],[[],[]],[[]]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[],[[[]]],[[]]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[4,3]
[[],[[],[],[]],[]]=>([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>[5,2]=>[5,2]
[[],[[],[[]]],[]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[],[[[]],[]],[]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[],[[[],[]]],[]]=>([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)=>[5,2]=>[5,2]
[[],[[[[]]]],[]]=>([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)=>[4,3]=>[4,3]
[[],[[],[],[],[]]]=>([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)=>[5,2]=>[5,2]
[[],[[],[],[[]]]]=>([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[],[[],[[]],[]]]=>([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[],[[],[[],[]]]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[],[[],[[[]]]]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[4,3]
[[],[[[]],[],[]]]=>([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[],[[[]],[[]]]]=>([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[],[[[],[]],[]]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[],[[[[]]],[]]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[4,3]
[[],[[[],[],[]]]]=>([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)=>[5,2]=>[5,2]
[[],[[[],[[]]]]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[4,3]
[[],[[[[]],[]]]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[4,3]
[[],[[[[],[]]]]]=>([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)=>[4,3]=>[4,3]
[[],[[[[[]]]]]]=>([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)=>[4,3]=>[4,3]
[[[]],[],[],[],[]]=>([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)=>[5,2]=>[5,2]
[[[]],[],[],[[]]]=>([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[[]],[],[[]],[]]=>([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[[]],[],[[],[]]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[[]],[],[[[]]]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[4,3]
[[[]],[[]],[],[]]=>([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[[]],[[]],[[]]]=>([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[[]],[[],[]],[]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[[]],[[[]]],[]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[4,3]
[[[]],[[],[],[]]]=>([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)=>[5,2]=>[5,2]
[[[]],[[],[[]]]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[4,3]
[[[]],[[[]],[]]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[4,3]
[[[]],[[[],[]]]]=>([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)=>[4,3]=>[4,3]
[[[]],[[[[]]]]]=>([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)=>[4,3]=>[4,3]
[[[],[]],[],[],[]]=>([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>[5,2]=>[5,2]
[[[[]]],[],[],[]]=>([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)=>[5,2]=>[5,2]
[[[],[]],[],[[]]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[[[]]],[],[[]]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[4,3]
[[[],[]],[[]],[]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[[[]]],[[]],[]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[4,3]
[[[],[]],[[],[]]]=>([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)=>[5,2]=>[5,2]
[[[],[]],[[[]]]]=>([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)=>[4,3]=>[4,3]
[[[[]]],[[],[]]]=>([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)=>[4,3]=>[4,3]
[[[[]]],[[[]]]]=>([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)=>[4,3]=>[4,3]
[[[],[],[]],[],[]]=>([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>[5,2]=>[5,2]
[[[],[[]]],[],[]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[[[]],[]],[],[]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[[[],[]]],[],[]]=>([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)=>[5,2]=>[5,2]
[[[[[]]]],[],[]]=>([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)=>[4,3]=>[4,3]
[[[],[],[]],[[]]]=>([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)=>[5,2]=>[5,2]
[[[],[[]]],[[]]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[4,3]
[[[[]],[]],[[]]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[4,3]
[[[[],[]]],[[]]]=>([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)=>[4,3]=>[4,3]
[[[[[]]]],[[]]]=>([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)=>[4,3]=>[4,3]
[[[],[],[],[]],[]]=>([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)=>[5,2]=>[5,2]
[[[],[],[[]]],[]]=>([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[[],[[]],[]],[]]=>([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[[],[[],[]]],[]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[[],[[[]]]],[]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[4,3]
[[[[]],[],[]],[]]=>([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[[[]],[[]]],[]]=>([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[[[],[]],[]],[]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[[[[]]],[]],[]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[4,3]
[[[[],[],[]]],[]]=>([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)=>[5,2]=>[5,2]
[[[[],[[]]]],[]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[4,3]
[[[[[]],[]]],[]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[4,3]
[[[[[],[]]]],[]]=>([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)=>[4,3]=>[4,3]
[[[[[[]]]]],[]]=>([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)=>[4,3]=>[4,3]
[[[],[],[],[],[]]]=>([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)=>[6,1]=>[6,1]
[[[],[],[],[[]]]]=>([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)=>[5,2]=>[5,2]
[[[],[],[[]],[]]]=>([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)=>[5,2]=>[5,2]
[[[],[],[[],[]]]]=>([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>[5,2]=>[5,2]
[[[],[],[[[]]]]]=>([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)=>[5,2]=>[5,2]
[[[],[[]],[],[]]]=>([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)=>[5,2]=>[5,2]
[[[],[[]],[[]]]]=>([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[[],[[],[]],[]]]=>([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>[5,2]=>[5,2]
[[[],[[[]]],[]]]=>([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)=>[5,2]=>[5,2]
[[[],[[],[],[]]]]=>([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>[5,2]=>[5,2]
[[[],[[],[[]]]]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[[],[[[]],[]]]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[[],[[[],[]]]]]=>([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)=>[5,2]=>[5,2]
[[[],[[[[]]]]]]=>([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)=>[4,3]=>[4,3]
[[[[]],[],[],[]]]=>([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)=>[5,2]=>[5,2]
[[[[]],[],[[]]]]=>([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[[[]],[[]],[]]]=>([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[[[]],[[],[]]]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[[[]],[[[]]]]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[4,3]
[[[[],[]],[],[]]]=>([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>[5,2]=>[5,2]
[[[[[]]],[],[]]]=>([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)=>[5,2]=>[5,2]
[[[[],[]],[[]]]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[[[[]]],[[]]]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[4,3]
[[[[],[],[]],[]]]=>([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>[5,2]=>[5,2]
[[[[],[[]]],[]]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[[[[]],[]],[]]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[[[[],[]]],[]]]=>([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)=>[5,2]=>[5,2]
[[[[[[]]]],[]]]=>([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)=>[4,3]=>[4,3]
[[[[],[],[],[]]]]=>([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)=>[5,2]=>[5,2]
[[[[],[],[[]]]]]=>([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[[[],[[]],[]]]]=>([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[[[],[[],[]]]]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[[[],[[[]]]]]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[4,3]
[[[[[]],[],[]]]]=>([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[[[[]],[[]]]]]=>([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[[[[],[]],[]]]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[4,3]
[[[[[[]]],[]]]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[4,3]
[[[[[],[],[]]]]]=>([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)=>[5,2]=>[5,2]
[[[[[],[[]]]]]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[4,3]
[[[[[[]],[]]]]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[4,3]
[[[[[[],[]]]]]]=>([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)=>[4,3]=>[4,3]
[[[[[[[]]]]]]]=>([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)=>[4,3]=>[4,3]
Map
to graph
Description
Return the undirected graph obtained from the tree nodes and edges.
Map
chromatic difference sequence
Description
The chromatic difference sequence of a graph.
Let $G$ be a simple graph with chromatic number $\kappa$. Let $\alpha_m$ be the maximum number of vertices in a $m$-colorable subgraph of $G$. Set $\delta_m=\alpha_m-\alpha_{m-1}$. The sequence $\delta_1,\delta_2,\dots\delta_\kappa$ is the chromatic difference sequence of $G$.
All entries of the chromatic difference sequence are positive: $\alpha_m > \alpha_{m-1}$ for $m < \kappa$, because we can assign any uncolored vertex of a partial coloring with $m-1$ colors the color $m$. Therefore, the chromatic difference sequence is a composition of the number of vertices of $G$ into $\kappa$ parts.
Let $G$ be a simple graph with chromatic number $\kappa$. Let $\alpha_m$ be the maximum number of vertices in a $m$-colorable subgraph of $G$. Set $\delta_m=\alpha_m-\alpha_{m-1}$. The sequence $\delta_1,\delta_2,\dots\delta_\kappa$ is the chromatic difference sequence of $G$.
All entries of the chromatic difference sequence are positive: $\alpha_m > \alpha_{m-1}$ for $m < \kappa$, because we can assign any uncolored vertex of a partial coloring with $m-1$ colors the color $m$. Therefore, the chromatic difference sequence is a composition of the number of vertices of $G$ into $\kappa$ parts.
Map
inverse Foata bijection
Description
The inverse of Foata's bijection.
See Mp00314Foata bijection.
See Mp00314Foata bijection.
searching the database
Sorry, this map was not found in the database.