Identifier
Mp00045:
Integer partitions
—reading tableau⟶
Standard tableaux
Mp00294: Standard tableaux —peak composition⟶ Integer compositions
Mp00315: Integer compositions —inverse Foata bijection⟶ Integer compositions
Mp00294: Standard tableaux —peak composition⟶ Integer compositions
Mp00315: Integer compositions —inverse Foata bijection⟶ Integer compositions
Images
[1] => [[1]] => [1] => [1]
[2] => [[1,2]] => [2] => [2]
[1,1] => [[1],[2]] => [2] => [2]
[3] => [[1,2,3]] => [3] => [3]
[2,1] => [[1,3],[2]] => [3] => [3]
[1,1,1] => [[1],[2],[3]] => [3] => [3]
[4] => [[1,2,3,4]] => [4] => [4]
[3,1] => [[1,3,4],[2]] => [4] => [4]
[2,2] => [[1,2],[3,4]] => [2,2] => [2,2]
[2,1,1] => [[1,4],[2],[3]] => [4] => [4]
[1,1,1,1] => [[1],[2],[3],[4]] => [4] => [4]
[5] => [[1,2,3,4,5]] => [5] => [5]
[4,1] => [[1,3,4,5],[2]] => [5] => [5]
[3,2] => [[1,2,5],[3,4]] => [2,3] => [2,3]
[3,1,1] => [[1,4,5],[2],[3]] => [5] => [5]
[2,2,1] => [[1,3],[2,5],[4]] => [3,2] => [3,2]
[2,1,1,1] => [[1,5],[2],[3],[4]] => [5] => [5]
[1,1,1,1,1] => [[1],[2],[3],[4],[5]] => [5] => [5]
[6] => [[1,2,3,4,5,6]] => [6] => [6]
[5,1] => [[1,3,4,5,6],[2]] => [6] => [6]
[4,2] => [[1,2,5,6],[3,4]] => [2,4] => [2,4]
[4,1,1] => [[1,4,5,6],[2],[3]] => [6] => [6]
[3,3] => [[1,2,3],[4,5,6]] => [3,3] => [3,3]
[3,2,1] => [[1,3,6],[2,5],[4]] => [3,3] => [3,3]
[3,1,1,1] => [[1,5,6],[2],[3],[4]] => [6] => [6]
[2,2,2] => [[1,2],[3,4],[5,6]] => [2,2,2] => [2,2,2]
[2,2,1,1] => [[1,4],[2,6],[3],[5]] => [4,2] => [4,2]
[2,1,1,1,1] => [[1,6],[2],[3],[4],[5]] => [6] => [6]
[1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => [6] => [6]
[7] => [[1,2,3,4,5,6,7]] => [7] => [7]
[6,1] => [[1,3,4,5,6,7],[2]] => [7] => [7]
[5,2] => [[1,2,5,6,7],[3,4]] => [2,5] => [2,5]
[5,1,1] => [[1,4,5,6,7],[2],[3]] => [7] => [7]
[4,3] => [[1,2,3,7],[4,5,6]] => [3,4] => [3,4]
[4,2,1] => [[1,3,6,7],[2,5],[4]] => [3,4] => [3,4]
[4,1,1,1] => [[1,5,6,7],[2],[3],[4]] => [7] => [7]
[3,3,1] => [[1,3,4],[2,6,7],[5]] => [4,3] => [4,3]
[3,2,2] => [[1,2,7],[3,4],[5,6]] => [2,2,3] => [2,2,3]
[3,2,1,1] => [[1,4,7],[2,6],[3],[5]] => [4,3] => [4,3]
[3,1,1,1,1] => [[1,6,7],[2],[3],[4],[5]] => [7] => [7]
[2,2,2,1] => [[1,3],[2,5],[4,7],[6]] => [3,2,2] => [2,3,2]
[2,2,1,1,1] => [[1,5],[2,7],[3],[4],[6]] => [5,2] => [5,2]
[2,1,1,1,1,1] => [[1,7],[2],[3],[4],[5],[6]] => [7] => [7]
[1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7]] => [7] => [7]
[8] => [[1,2,3,4,5,6,7,8]] => [8] => [8]
[7,1] => [[1,3,4,5,6,7,8],[2]] => [8] => [8]
[6,2] => [[1,2,5,6,7,8],[3,4]] => [2,6] => [2,6]
[6,1,1] => [[1,4,5,6,7,8],[2],[3]] => [8] => [8]
[5,3] => [[1,2,3,7,8],[4,5,6]] => [3,5] => [3,5]
[5,2,1] => [[1,3,6,7,8],[2,5],[4]] => [3,5] => [3,5]
[5,1,1,1] => [[1,5,6,7,8],[2],[3],[4]] => [8] => [8]
[4,4] => [[1,2,3,4],[5,6,7,8]] => [4,4] => [4,4]
[4,3,1] => [[1,3,4,8],[2,6,7],[5]] => [4,4] => [4,4]
[4,2,2] => [[1,2,7,8],[3,4],[5,6]] => [2,2,4] => [2,2,4]
[4,2,1,1] => [[1,4,7,8],[2,6],[3],[5]] => [4,4] => [4,4]
[4,1,1,1,1] => [[1,6,7,8],[2],[3],[4],[5]] => [8] => [8]
[3,3,2] => [[1,2,5],[3,4,8],[6,7]] => [2,3,3] => [2,3,3]
[3,3,1,1] => [[1,4,5],[2,7,8],[3],[6]] => [5,3] => [5,3]
[3,2,2,1] => [[1,3,8],[2,5],[4,7],[6]] => [3,2,3] => [3,2,3]
[3,2,1,1,1] => [[1,5,8],[2,7],[3],[4],[6]] => [5,3] => [5,3]
[3,1,1,1,1,1] => [[1,7,8],[2],[3],[4],[5],[6]] => [8] => [8]
[2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => [2,2,2,2] => [2,2,2,2]
[2,2,2,1,1] => [[1,4],[2,6],[3,8],[5],[7]] => [4,2,2] => [2,4,2]
[2,2,1,1,1,1] => [[1,6],[2,8],[3],[4],[5],[7]] => [6,2] => [6,2]
[2,1,1,1,1,1,1] => [[1,8],[2],[3],[4],[5],[6],[7]] => [8] => [8]
[1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8]] => [8] => [8]
[9] => [[1,2,3,4,5,6,7,8,9]] => [9] => [9]
[8,1] => [[1,3,4,5,6,7,8,9],[2]] => [9] => [9]
[7,2] => [[1,2,5,6,7,8,9],[3,4]] => [2,7] => [2,7]
[7,1,1] => [[1,4,5,6,7,8,9],[2],[3]] => [9] => [9]
[6,3] => [[1,2,3,7,8,9],[4,5,6]] => [3,6] => [3,6]
[6,2,1] => [[1,3,6,7,8,9],[2,5],[4]] => [3,6] => [3,6]
[6,1,1,1] => [[1,5,6,7,8,9],[2],[3],[4]] => [9] => [9]
[5,4] => [[1,2,3,4,9],[5,6,7,8]] => [4,5] => [4,5]
[5,3,1] => [[1,3,4,8,9],[2,6,7],[5]] => [4,5] => [4,5]
[5,2,2] => [[1,2,7,8,9],[3,4],[5,6]] => [2,2,5] => [2,2,5]
[5,2,1,1] => [[1,4,7,8,9],[2,6],[3],[5]] => [4,5] => [4,5]
[5,1,1,1,1] => [[1,6,7,8,9],[2],[3],[4],[5]] => [9] => [9]
[4,4,1] => [[1,3,4,5],[2,7,8,9],[6]] => [5,4] => [5,4]
[4,3,2] => [[1,2,5,9],[3,4,8],[6,7]] => [2,3,4] => [2,3,4]
[4,3,1,1] => [[1,4,5,9],[2,7,8],[3],[6]] => [5,4] => [5,4]
[4,2,2,1] => [[1,3,8,9],[2,5],[4,7],[6]] => [3,2,4] => [3,2,4]
[4,2,1,1,1] => [[1,5,8,9],[2,7],[3],[4],[6]] => [5,4] => [5,4]
[4,1,1,1,1,1] => [[1,7,8,9],[2],[3],[4],[5],[6]] => [9] => [9]
[3,3,3] => [[1,2,3],[4,5,6],[7,8,9]] => [3,3,3] => [3,3,3]
[3,3,2,1] => [[1,3,6],[2,5,9],[4,8],[7]] => [3,3,3] => [3,3,3]
[3,3,1,1,1] => [[1,5,6],[2,8,9],[3],[4],[7]] => [6,3] => [6,3]
[3,2,2,2] => [[1,2,9],[3,4],[5,6],[7,8]] => [2,2,2,3] => [2,2,2,3]
[3,2,2,1,1] => [[1,4,9],[2,6],[3,8],[5],[7]] => [4,2,3] => [2,4,3]
[3,2,1,1,1,1] => [[1,6,9],[2,8],[3],[4],[5],[7]] => [6,3] => [6,3]
[3,1,1,1,1,1,1] => [[1,8,9],[2],[3],[4],[5],[6],[7]] => [9] => [9]
[2,2,2,2,1] => [[1,3],[2,5],[4,7],[6,9],[8]] => [3,2,2,2] => [2,2,3,2]
[2,2,2,1,1,1] => [[1,5],[2,7],[3,9],[4],[6],[8]] => [5,2,2] => [2,5,2]
[2,2,1,1,1,1,1] => [[1,7],[2,9],[3],[4],[5],[6],[8]] => [7,2] => [7,2]
[2,1,1,1,1,1,1,1] => [[1,9],[2],[3],[4],[5],[6],[7],[8]] => [9] => [9]
[1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9]] => [9] => [9]
[10] => [[1,2,3,4,5,6,7,8,9,10]] => [10] => [10]
[9,1] => [[1,3,4,5,6,7,8,9,10],[2]] => [10] => [10]
[8,2] => [[1,2,5,6,7,8,9,10],[3,4]] => [2,8] => [2,8]
[8,1,1] => [[1,4,5,6,7,8,9,10],[2],[3]] => [10] => [10]
[7,3] => [[1,2,3,7,8,9,10],[4,5,6]] => [3,7] => [3,7]
>>> Load all 138 entries. <<<Map
reading tableau
Description
Return the RSK recording tableau of the reading word of the (standard) tableau T labeled down (in English convention) each column to the shape of a partition.
Map
peak composition
Description
The composition corresponding to the peak set of a standard tableau.
Let T be a standard tableau of size n.
An entry i of T is a descent if i+1 is in a lower row (in English notation), otherwise i is an ascent.
An entry 2≤i≤n−1 is a peak, if i−1 is an ascent and i is a descent.
This map returns the composition c1,…,ck of n such that {c1,c1+c2,…,c1+⋯+ck} is the peak set of T.
Let T be a standard tableau of size n.
An entry i of T is a descent if i+1 is in a lower row (in English notation), otherwise i is an ascent.
An entry 2≤i≤n−1 is a peak, if i−1 is an ascent and i is a descent.
This map returns the composition c1,…,ck of n such that {c1,c1+c2,…,c1+⋯+ck} is the peak set of T.
Map
inverse Foata bijection
Description
The inverse of Foata's bijection.
See Mp00314Foata bijection.
See Mp00314Foata bijection.
searching the database
Sorry, this map was not found in the database.