Identifier
Mp00045:
Integer partitions
—reading tableau⟶
Standard tableaux
Mp00207: Standard tableaux —horizontal strip sizes⟶ Integer compositions
Mp00315: Integer compositions —inverse Foata bijection⟶ Integer compositions
Mp00207: Standard tableaux —horizontal strip sizes⟶ Integer compositions
Mp00315: Integer compositions —inverse Foata bijection⟶ Integer compositions
Images
[1] => [[1]] => [1] => [1]
[2] => [[1,2]] => [2] => [2]
[1,1] => [[1],[2]] => [1,1] => [1,1]
[3] => [[1,2,3]] => [3] => [3]
[2,1] => [[1,3],[2]] => [1,2] => [1,2]
[1,1,1] => [[1],[2],[3]] => [1,1,1] => [1,1,1]
[4] => [[1,2,3,4]] => [4] => [4]
[3,1] => [[1,3,4],[2]] => [1,3] => [1,3]
[2,2] => [[1,2],[3,4]] => [2,2] => [2,2]
[2,1,1] => [[1,4],[2],[3]] => [1,1,2] => [1,1,2]
[1,1,1,1] => [[1],[2],[3],[4]] => [1,1,1,1] => [1,1,1,1]
[5] => [[1,2,3,4,5]] => [5] => [5]
[4,1] => [[1,3,4,5],[2]] => [1,4] => [1,4]
[3,2] => [[1,2,5],[3,4]] => [2,3] => [2,3]
[3,1,1] => [[1,4,5],[2],[3]] => [1,1,3] => [1,1,3]
[2,2,1] => [[1,3],[2,5],[4]] => [1,2,2] => [1,2,2]
[2,1,1,1] => [[1,5],[2],[3],[4]] => [1,1,1,2] => [1,1,1,2]
[1,1,1,1,1] => [[1],[2],[3],[4],[5]] => [1,1,1,1,1] => [1,1,1,1,1]
[6] => [[1,2,3,4,5,6]] => [6] => [6]
[5,1] => [[1,3,4,5,6],[2]] => [1,5] => [1,5]
[4,2] => [[1,2,5,6],[3,4]] => [2,4] => [2,4]
[4,1,1] => [[1,4,5,6],[2],[3]] => [1,1,4] => [1,1,4]
[3,3] => [[1,2,3],[4,5,6]] => [3,3] => [3,3]
[3,2,1] => [[1,3,6],[2,5],[4]] => [1,2,3] => [1,2,3]
[3,1,1,1] => [[1,5,6],[2],[3],[4]] => [1,1,1,3] => [1,1,1,3]
[2,2,2] => [[1,2],[3,4],[5,6]] => [2,2,2] => [2,2,2]
[2,2,1,1] => [[1,4],[2,6],[3],[5]] => [1,1,2,2] => [1,1,2,2]
[2,1,1,1,1] => [[1,6],[2],[3],[4],[5]] => [1,1,1,1,2] => [1,1,1,1,2]
[1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => [1,1,1,1,1,1] => [1,1,1,1,1,1]
[7] => [[1,2,3,4,5,6,7]] => [7] => [7]
[6,1] => [[1,3,4,5,6,7],[2]] => [1,6] => [1,6]
[5,2] => [[1,2,5,6,7],[3,4]] => [2,5] => [2,5]
[5,1,1] => [[1,4,5,6,7],[2],[3]] => [1,1,5] => [1,1,5]
[4,3] => [[1,2,3,7],[4,5,6]] => [3,4] => [3,4]
[4,2,1] => [[1,3,6,7],[2,5],[4]] => [1,2,4] => [1,2,4]
[4,1,1,1] => [[1,5,6,7],[2],[3],[4]] => [1,1,1,4] => [1,1,1,4]
[3,3,1] => [[1,3,4],[2,6,7],[5]] => [1,3,3] => [1,3,3]
[3,2,2] => [[1,2,7],[3,4],[5,6]] => [2,2,3] => [2,2,3]
[3,2,1,1] => [[1,4,7],[2,6],[3],[5]] => [1,1,2,3] => [1,1,2,3]
[3,1,1,1,1] => [[1,6,7],[2],[3],[4],[5]] => [1,1,1,1,3] => [1,1,1,1,3]
[2,2,2,1] => [[1,3],[2,5],[4,7],[6]] => [1,2,2,2] => [1,2,2,2]
[2,2,1,1,1] => [[1,5],[2,7],[3],[4],[6]] => [1,1,1,2,2] => [1,1,1,2,2]
[2,1,1,1,1,1] => [[1,7],[2],[3],[4],[5],[6]] => [1,1,1,1,1,2] => [1,1,1,1,1,2]
[1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7]] => [1,1,1,1,1,1,1] => [1,1,1,1,1,1,1]
[8] => [[1,2,3,4,5,6,7,8]] => [8] => [8]
[7,1] => [[1,3,4,5,6,7,8],[2]] => [1,7] => [1,7]
[6,2] => [[1,2,5,6,7,8],[3,4]] => [2,6] => [2,6]
[6,1,1] => [[1,4,5,6,7,8],[2],[3]] => [1,1,6] => [1,1,6]
[5,3] => [[1,2,3,7,8],[4,5,6]] => [3,5] => [3,5]
[5,2,1] => [[1,3,6,7,8],[2,5],[4]] => [1,2,5] => [1,2,5]
[5,1,1,1] => [[1,5,6,7,8],[2],[3],[4]] => [1,1,1,5] => [1,1,1,5]
[4,4] => [[1,2,3,4],[5,6,7,8]] => [4,4] => [4,4]
[4,3,1] => [[1,3,4,8],[2,6,7],[5]] => [1,3,4] => [1,3,4]
[4,2,2] => [[1,2,7,8],[3,4],[5,6]] => [2,2,4] => [2,2,4]
[4,2,1,1] => [[1,4,7,8],[2,6],[3],[5]] => [1,1,2,4] => [1,1,2,4]
[4,1,1,1,1] => [[1,6,7,8],[2],[3],[4],[5]] => [1,1,1,1,4] => [1,1,1,1,4]
[3,3,2] => [[1,2,5],[3,4,8],[6,7]] => [2,3,3] => [2,3,3]
[3,3,1,1] => [[1,4,5],[2,7,8],[3],[6]] => [1,1,3,3] => [1,1,3,3]
[3,2,2,1] => [[1,3,8],[2,5],[4,7],[6]] => [1,2,2,3] => [1,2,2,3]
[3,2,1,1,1] => [[1,5,8],[2,7],[3],[4],[6]] => [1,1,1,2,3] => [1,1,1,2,3]
[3,1,1,1,1,1] => [[1,7,8],[2],[3],[4],[5],[6]] => [1,1,1,1,1,3] => [1,1,1,1,1,3]
[2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => [2,2,2,2] => [2,2,2,2]
[2,2,2,1,1] => [[1,4],[2,6],[3,8],[5],[7]] => [1,1,2,2,2] => [1,1,2,2,2]
[2,2,1,1,1,1] => [[1,6],[2,8],[3],[4],[5],[7]] => [1,1,1,1,2,2] => [1,1,1,1,2,2]
[2,1,1,1,1,1,1] => [[1,8],[2],[3],[4],[5],[6],[7]] => [1,1,1,1,1,1,2] => [1,1,1,1,1,1,2]
[1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8]] => [1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1]
[9] => [[1,2,3,4,5,6,7,8,9]] => [9] => [9]
[8,1] => [[1,3,4,5,6,7,8,9],[2]] => [1,8] => [1,8]
[7,2] => [[1,2,5,6,7,8,9],[3,4]] => [2,7] => [2,7]
[7,1,1] => [[1,4,5,6,7,8,9],[2],[3]] => [1,1,7] => [1,1,7]
[6,3] => [[1,2,3,7,8,9],[4,5,6]] => [3,6] => [3,6]
[6,2,1] => [[1,3,6,7,8,9],[2,5],[4]] => [1,2,6] => [1,2,6]
[6,1,1,1] => [[1,5,6,7,8,9],[2],[3],[4]] => [1,1,1,6] => [1,1,1,6]
[5,4] => [[1,2,3,4,9],[5,6,7,8]] => [4,5] => [4,5]
[5,3,1] => [[1,3,4,8,9],[2,6,7],[5]] => [1,3,5] => [1,3,5]
[5,2,2] => [[1,2,7,8,9],[3,4],[5,6]] => [2,2,5] => [2,2,5]
[5,2,1,1] => [[1,4,7,8,9],[2,6],[3],[5]] => [1,1,2,5] => [1,1,2,5]
[5,1,1,1,1] => [[1,6,7,8,9],[2],[3],[4],[5]] => [1,1,1,1,5] => [1,1,1,1,5]
[4,4,1] => [[1,3,4,5],[2,7,8,9],[6]] => [1,4,4] => [1,4,4]
[4,3,2] => [[1,2,5,9],[3,4,8],[6,7]] => [2,3,4] => [2,3,4]
[4,3,1,1] => [[1,4,5,9],[2,7,8],[3],[6]] => [1,1,3,4] => [1,1,3,4]
[4,2,2,1] => [[1,3,8,9],[2,5],[4,7],[6]] => [1,2,2,4] => [1,2,2,4]
[4,2,1,1,1] => [[1,5,8,9],[2,7],[3],[4],[6]] => [1,1,1,2,4] => [1,1,1,2,4]
[4,1,1,1,1,1] => [[1,7,8,9],[2],[3],[4],[5],[6]] => [1,1,1,1,1,4] => [1,1,1,1,1,4]
[3,3,3] => [[1,2,3],[4,5,6],[7,8,9]] => [3,3,3] => [3,3,3]
[3,3,2,1] => [[1,3,6],[2,5,9],[4,8],[7]] => [1,2,3,3] => [1,2,3,3]
[3,3,1,1,1] => [[1,5,6],[2,8,9],[3],[4],[7]] => [1,1,1,3,3] => [1,1,1,3,3]
[3,2,2,2] => [[1,2,9],[3,4],[5,6],[7,8]] => [2,2,2,3] => [2,2,2,3]
[3,2,2,1,1] => [[1,4,9],[2,6],[3,8],[5],[7]] => [1,1,2,2,3] => [1,1,2,2,3]
[3,2,1,1,1,1] => [[1,6,9],[2,8],[3],[4],[5],[7]] => [1,1,1,1,2,3] => [1,1,1,1,2,3]
[3,1,1,1,1,1,1] => [[1,8,9],[2],[3],[4],[5],[6],[7]] => [1,1,1,1,1,1,3] => [1,1,1,1,1,1,3]
[2,2,2,2,1] => [[1,3],[2,5],[4,7],[6,9],[8]] => [1,2,2,2,2] => [1,2,2,2,2]
[2,2,2,1,1,1] => [[1,5],[2,7],[3,9],[4],[6],[8]] => [1,1,1,2,2,2] => [1,1,1,2,2,2]
[2,2,1,1,1,1,1] => [[1,7],[2,9],[3],[4],[5],[6],[8]] => [1,1,1,1,1,2,2] => [1,1,1,1,1,2,2]
[2,1,1,1,1,1,1,1] => [[1,9],[2],[3],[4],[5],[6],[7],[8]] => [1,1,1,1,1,1,1,2] => [1,1,1,1,1,1,1,2]
[1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9]] => [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1]
[10] => [[1,2,3,4,5,6,7,8,9,10]] => [10] => [10]
[9,1] => [[1,3,4,5,6,7,8,9,10],[2]] => [1,9] => [1,9]
[8,2] => [[1,2,5,6,7,8,9,10],[3,4]] => [2,8] => [2,8]
[8,1,1] => [[1,4,5,6,7,8,9,10],[2],[3]] => [1,1,8] => [1,1,8]
[7,3] => [[1,2,3,7,8,9,10],[4,5,6]] => [3,7] => [3,7]
>>> Load all 138 entries. <<<Map
reading tableau
Description
Return the RSK recording tableau of the reading word of the (standard) tableau T labeled down (in English convention) each column to the shape of a partition.
Map
horizontal strip sizes
Description
The composition of horizontal strip sizes.
We associate to a standard Young tableau T the composition (c1,…,ck), such that k is minimal and the numbers c1+⋯+ci+1,…,c1+⋯+ci+1 form a horizontal strip in T for all i.
We associate to a standard Young tableau T the composition (c1,…,ck), such that k is minimal and the numbers c1+⋯+ci+1,…,c1+⋯+ci+1 form a horizontal strip in T for all i.
Map
inverse Foata bijection
Description
The inverse of Foata's bijection.
See Mp00314Foata bijection.
See Mp00314Foata bijection.
searching the database
Sorry, this map was not found in the database.