Identifier
Mp00184: Integer compositions to threshold graphGraphs
Mp00259: Graphs vertex addition Graphs
Images
=>
Cc0020;cc-rep-1Cc0020;cc-rep-2
[1]=>([],1)=>([],2) [1,1]=>([(0,1)],2)=>([(1,2)],3) [2]=>([],2)=>([],3) [1,1,1]=>([(0,1),(0,2),(1,2)],3)=>([(1,2),(1,3),(2,3)],4) [1,2]=>([(1,2)],3)=>([(2,3)],4) [2,1]=>([(0,2),(1,2)],3)=>([(1,3),(2,3)],4) [3]=>([],3)=>([],4) [1,1,1,1]=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) [1,1,2]=>([(1,2),(1,3),(2,3)],4)=>([(2,3),(2,4),(3,4)],5) [1,2,1]=>([(0,3),(1,2),(1,3),(2,3)],4)=>([(1,4),(2,3),(2,4),(3,4)],5) [1,3]=>([(2,3)],4)=>([(3,4)],5) [2,1,1]=>([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>([(1,3),(1,4),(2,3),(2,4),(3,4)],5) [2,2]=>([(1,3),(2,3)],4)=>([(2,4),(3,4)],5) [3,1]=>([(0,3),(1,3),(2,3)],4)=>([(1,4),(2,4),(3,4)],5) [4]=>([],4)=>([],5) [1,1,1,1,1]=>([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) [1,1,1,2]=>([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) [1,1,2,1]=>([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) [1,1,3]=>([(2,3),(2,4),(3,4)],5)=>([(3,4),(3,5),(4,5)],6) [1,2,1,1]=>([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) [1,2,2]=>([(1,4),(2,3),(2,4),(3,4)],5)=>([(2,5),(3,4),(3,5),(4,5)],6) [1,3,1]=>([(0,4),(1,4),(2,3),(2,4),(3,4)],5)=>([(1,5),(2,5),(3,4),(3,5),(4,5)],6) [1,4]=>([(3,4)],5)=>([(4,5)],6) [2,1,1,1]=>([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) [2,1,2]=>([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(2,4),(2,5),(3,4),(3,5),(4,5)],6) [2,2,1]=>([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) [2,3]=>([(2,4),(3,4)],5)=>([(3,5),(4,5)],6) [3,1,1]=>([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) [3,2]=>([(1,4),(2,4),(3,4)],5)=>([(2,5),(3,5),(4,5)],6) [4,1]=>([(0,4),(1,4),(2,4),(3,4)],5)=>([(1,5),(2,5),(3,5),(4,5)],6) [5]=>([],5)=>([],6) [1,1,1,1,1,1]=>([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) [1,1,1,1,2]=>([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) [1,1,1,2,1]=>([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) [1,1,1,3]=>([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) [1,1,2,1,1]=>([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) [1,1,2,2]=>([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) [1,1,3,1]=>([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) [1,1,4]=>([(3,4),(3,5),(4,5)],6)=>([(4,5),(4,6),(5,6)],7) [1,2,1,1,1]=>([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) [1,2,1,2]=>([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) [1,2,2,1]=>([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) [1,2,3]=>([(2,5),(3,4),(3,5),(4,5)],6)=>([(3,6),(4,5),(4,6),(5,6)],7) [1,3,1,1]=>([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) [1,3,2]=>([(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>([(2,6),(3,6),(4,5),(4,6),(5,6)],7) [1,4,1]=>([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) [1,5]=>([(4,5)],6)=>([(5,6)],7) [2,1,1,1,1]=>([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) [2,1,1,2]=>([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) [2,1,2,1]=>([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) [2,1,3]=>([(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(3,5),(3,6),(4,5),(4,6),(5,6)],7) [2,2,1,1]=>([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) [2,2,2]=>([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) [2,3,1]=>([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) [2,4]=>([(3,5),(4,5)],6)=>([(4,6),(5,6)],7) [3,1,1,1]=>([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) [3,1,2]=>([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) [3,2,1]=>([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) [3,3]=>([(2,5),(3,5),(4,5)],6)=>([(3,6),(4,6),(5,6)],7) [4,1,1]=>([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) [4,2]=>([(1,5),(2,5),(3,5),(4,5)],6)=>([(2,6),(3,6),(4,6),(5,6)],7) [5,1]=>([(0,5),(1,5),(2,5),(3,5),(4,5)],6)=>([(1,6),(2,6),(3,6),(4,6),(5,6)],7) [6]=>([],6)=>([],7) [1,1,1,1,1,1,1]=>([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [1,1,1,1,1,2]=>([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [1,1,1,1,2,1]=>([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [1,1,1,1,3]=>([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [1,1,1,2,1,1]=>([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [1,1,1,2,2]=>([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [1,1,1,3,1]=>([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [1,1,1,4]=>([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [1,1,2,1,1,1]=>([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [1,1,2,1,2]=>([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [1,1,2,2,1]=>([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [1,1,2,3]=>([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [1,1,3,1,1]=>([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [1,1,3,2]=>([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [1,1,4,1]=>([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [1,1,5]=>([(4,5),(4,6),(5,6)],7)=>([(5,6),(5,7),(6,7)],8) [1,2,1,1,1,1]=>([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [1,2,1,1,2]=>([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [1,2,1,2,1]=>([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [1,2,1,3]=>([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [1,2,2,1,1]=>([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [1,2,2,2]=>([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [1,2,3,1]=>([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [1,2,4]=>([(3,6),(4,5),(4,6),(5,6)],7)=>([(4,7),(5,6),(5,7),(6,7)],8) [1,3,1,1,1]=>([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [1,3,1,2]=>([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [1,3,2,1]=>([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [1,3,3]=>([(2,6),(3,6),(4,5),(4,6),(5,6)],7)=>([(3,7),(4,7),(5,6),(5,7),(6,7)],8) [1,4,1,1]=>([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [1,4,2]=>([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)=>([(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8) [1,5,1]=>([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)=>([(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8) [1,6]=>([(5,6)],7)=>([(6,7)],8) [2,1,1,1,1,1]=>([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [2,1,1,1,2]=>([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [2,1,1,2,1]=>([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [2,1,1,3]=>([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [2,1,2,1,1]=>([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [2,1,2,2]=>([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [2,1,3,1]=>([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [2,1,4]=>([(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(4,6),(4,7),(5,6),(5,7),(6,7)],8) [2,2,1,1,1]=>([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [2,2,1,2]=>([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [2,2,2,1]=>([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [2,2,3]=>([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [2,3,1,1]=>([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [2,3,2]=>([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [2,4,1]=>([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [2,5]=>([(4,6),(5,6)],7)=>([(5,7),(6,7)],8) [3,1,1,1,1]=>([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [3,1,1,2]=>([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [3,1,2,1]=>([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [3,1,3]=>([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [3,2,1,1]=>([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [3,2,2]=>([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [3,3,1]=>([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [3,4]=>([(3,6),(4,6),(5,6)],7)=>([(4,7),(5,7),(6,7)],8) [4,1,1,1]=>([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [4,1,2]=>([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [4,2,1]=>([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [4,3]=>([(2,6),(3,6),(4,6),(5,6)],7)=>([(3,7),(4,7),(5,7),(6,7)],8) [5,1,1]=>([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) [5,2]=>([(1,6),(2,6),(3,6),(4,6),(5,6)],7)=>([(2,7),(3,7),(4,7),(5,7),(6,7)],8) [6,1]=>([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)=>([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) [7]=>([],7)=>([],8)
Map
to threshold graph
Description
The threshold graph corresponding to the composition.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
Map
vertex addition
Description
Adds a disconnected vertex to a graph.