Identifier
Images
([],1) => ([],1) => ([],1) => ([],1)
([],2) => ([],1) => ([],1) => ([],1)
([(0,1)],2) => ([(0,1)],2) => ([],2) => ([],2)
([],3) => ([],1) => ([],1) => ([],1)
([(1,2)],3) => ([(0,1)],2) => ([],2) => ([],2)
([(0,2),(1,2)],3) => ([(0,1)],2) => ([],2) => ([],2)
([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([],4) => ([],1) => ([],1) => ([],1)
([(2,3)],4) => ([(0,1)],2) => ([],2) => ([],2)
([(1,3),(2,3)],4) => ([(0,1)],2) => ([],2) => ([],2)
([(0,3),(1,3),(2,3)],4) => ([(0,1)],2) => ([],2) => ([],2)
([(0,3),(1,2)],4) => ([(0,1)],2) => ([],2) => ([],2)
([(0,3),(1,2),(2,3)],4) => ([(0,1)],2) => ([],2) => ([],2)
([(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,1)],2) => ([],2) => ([],2)
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([],4) => ([],4)
([],5) => ([],1) => ([],1) => ([],1)
([(3,4)],5) => ([(0,1)],2) => ([],2) => ([],2)
([(2,4),(3,4)],5) => ([(0,1)],2) => ([],2) => ([],2)
([(1,4),(2,4),(3,4)],5) => ([(0,1)],2) => ([],2) => ([],2)
([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1)],2) => ([],2) => ([],2)
([(1,4),(2,3)],5) => ([(0,1)],2) => ([],2) => ([],2)
([(1,4),(2,3),(3,4)],5) => ([(0,1)],2) => ([],2) => ([],2)
([(0,1),(2,4),(3,4)],5) => ([(0,1)],2) => ([],2) => ([],2)
([(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,1)],2) => ([],2) => ([],2)
([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1)],2) => ([],2) => ([],2)
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,1)],2) => ([],2) => ([],2)
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1)],2) => ([],2) => ([],2)
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,1)],2) => ([],2) => ([],2)
([(0,1),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([],4) => ([],4)
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([],4) => ([],4)
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([],4) => ([],4)
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([],4) => ([],4)
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([],5) => ([],5)
([],6) => ([],1) => ([],1) => ([],1)
([(4,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(3,5),(4,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(2,5),(3,4)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(2,5),(3,4),(4,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(1,2),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(1,5),(2,5),(3,4),(4,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(0,1),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(0,5),(1,5),(2,4),(3,4)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,5),(1,4),(2,3)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(1,5),(2,4),(3,4),(3,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(0,1),(2,5),(3,4),(4,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(1,2),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
>>> Load all 208 entries. <<<Map
core
Description
The core of a graph.
The core of a graph G is the smallest graph C such that there is a homomorphism from G to C and a homomorphism from C to G.
Note that the core of a graph is not necessarily connected, see [2].
The core of a graph G is the smallest graph C such that there is a homomorphism from G to C and a homomorphism from C to G.
Note that the core of a graph is not necessarily connected, see [2].
Map
complement
Description
The complement of a graph.
The complement of a graph has the same vertices, but exactly those edges that are not in the original graph.
The complement of a graph has the same vertices, but exactly those edges that are not in the original graph.
Map
clique graph
Description
The clique graph of a graph.
The clique graph of a graph G has as vertex set the set of maximal cliques G and an edge between vertices corresponding to cliques that intersect.
In other words, it is the intersection graph of the maximal cliques of G.
The clique graph of a graph G has as vertex set the set of maximal cliques G and an edge between vertices corresponding to cliques that intersect.
In other words, it is the intersection graph of the maximal cliques of G.
searching the database
Sorry, this map was not found in the database.