Identifier
Mp00058: Perfect matchings to permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00235: Permutations descent views to invisible inversion bottomsPermutations
Images
=>
Cc0012;cc-rep-0
[(1,2)]=>[2,1]=>[1,2]=>[1,2] [(1,2),(3,4)]=>[2,1,4,3]=>[1,2,3,4]=>[1,2,3,4] [(1,3),(2,4)]=>[3,4,1,2]=>[1,3,2,4]=>[1,3,2,4] [(1,4),(2,3)]=>[4,3,2,1]=>[1,4,2,3]=>[1,4,2,3] [(1,2),(3,4),(5,6)]=>[2,1,4,3,6,5]=>[1,2,3,4,5,6]=>[1,2,3,4,5,6] [(1,3),(2,4),(5,6)]=>[3,4,1,2,6,5]=>[1,3,2,4,5,6]=>[1,3,2,4,5,6] [(1,4),(2,3),(5,6)]=>[4,3,2,1,6,5]=>[1,4,2,3,5,6]=>[1,4,2,3,5,6] [(1,5),(2,3),(4,6)]=>[5,3,2,6,1,4]=>[1,5,2,3,4,6]=>[1,5,2,3,4,6] [(1,6),(2,3),(4,5)]=>[6,3,2,5,4,1]=>[1,6,2,3,4,5]=>[1,6,2,3,4,5] [(1,6),(2,4),(3,5)]=>[6,4,5,2,3,1]=>[1,6,2,4,3,5]=>[1,6,4,2,3,5] [(1,5),(2,4),(3,6)]=>[5,4,6,2,1,3]=>[1,5,2,4,3,6]=>[1,5,4,2,3,6] [(1,4),(2,5),(3,6)]=>[4,5,6,1,2,3]=>[1,4,2,5,3,6]=>[1,4,5,2,3,6] [(1,3),(2,5),(4,6)]=>[3,5,1,6,2,4]=>[1,3,2,5,4,6]=>[1,3,2,5,4,6] [(1,2),(3,5),(4,6)]=>[2,1,5,6,3,4]=>[1,2,3,5,4,6]=>[1,2,3,5,4,6] [(1,2),(3,6),(4,5)]=>[2,1,6,5,4,3]=>[1,2,3,6,4,5]=>[1,2,3,6,4,5] [(1,3),(2,6),(4,5)]=>[3,6,1,5,4,2]=>[1,3,2,6,4,5]=>[1,3,2,6,4,5] [(1,4),(2,6),(3,5)]=>[4,6,5,1,3,2]=>[1,4,2,6,3,5]=>[1,4,6,2,3,5] [(1,5),(2,6),(3,4)]=>[5,6,4,3,1,2]=>[1,5,2,6,3,4]=>[1,5,6,3,2,4] [(1,6),(2,5),(3,4)]=>[6,5,4,3,2,1]=>[1,6,2,5,3,4]=>[1,6,5,3,2,4] [(1,2),(3,4),(5,6),(7,8)]=>[2,1,4,3,6,5,8,7]=>[1,2,3,4,5,6,7,8]=>[1,2,3,4,5,6,7,8] [(1,3),(2,4),(5,6),(7,8)]=>[3,4,1,2,6,5,8,7]=>[1,3,2,4,5,6,7,8]=>[1,3,2,4,5,6,7,8] [(1,4),(2,3),(5,6),(7,8)]=>[4,3,2,1,6,5,8,7]=>[1,4,2,3,5,6,7,8]=>[1,4,2,3,5,6,7,8] [(1,5),(2,3),(4,6),(7,8)]=>[5,3,2,6,1,4,8,7]=>[1,5,2,3,4,6,7,8]=>[1,5,2,3,4,6,7,8] [(1,6),(2,3),(4,5),(7,8)]=>[6,3,2,5,4,1,8,7]=>[1,6,2,3,4,5,7,8]=>[1,6,2,3,4,5,7,8] [(1,7),(2,3),(4,5),(6,8)]=>[7,3,2,5,4,8,1,6]=>[1,7,2,3,4,5,6,8]=>[1,7,2,3,4,5,6,8] [(1,8),(2,3),(4,5),(6,7)]=>[8,3,2,5,4,7,6,1]=>[1,8,2,3,4,5,6,7]=>[1,8,2,3,4,5,6,7] [(1,8),(2,4),(3,5),(6,7)]=>[8,4,5,2,3,7,6,1]=>[1,8,2,4,3,5,6,7]=>[1,8,4,2,3,5,6,7] [(1,7),(2,4),(3,5),(6,8)]=>[7,4,5,2,3,8,1,6]=>[1,7,2,4,3,5,6,8]=>[1,7,4,2,3,5,6,8] [(1,6),(2,4),(3,5),(7,8)]=>[6,4,5,2,3,1,8,7]=>[1,6,2,4,3,5,7,8]=>[1,6,4,2,3,5,7,8] [(1,5),(2,4),(3,6),(7,8)]=>[5,4,6,2,1,3,8,7]=>[1,5,2,4,3,6,7,8]=>[1,5,4,2,3,6,7,8] [(1,4),(2,5),(3,6),(7,8)]=>[4,5,6,1,2,3,8,7]=>[1,4,2,5,3,6,7,8]=>[1,4,5,2,3,6,7,8] [(1,3),(2,5),(4,6),(7,8)]=>[3,5,1,6,2,4,8,7]=>[1,3,2,5,4,6,7,8]=>[1,3,2,5,4,6,7,8] [(1,2),(3,5),(4,6),(7,8)]=>[2,1,5,6,3,4,8,7]=>[1,2,3,5,4,6,7,8]=>[1,2,3,5,4,6,7,8] [(1,2),(3,6),(4,5),(7,8)]=>[2,1,6,5,4,3,8,7]=>[1,2,3,6,4,5,7,8]=>[1,2,3,6,4,5,7,8] [(1,3),(2,6),(4,5),(7,8)]=>[3,6,1,5,4,2,8,7]=>[1,3,2,6,4,5,7,8]=>[1,3,2,6,4,5,7,8] [(1,4),(2,6),(3,5),(7,8)]=>[4,6,5,1,3,2,8,7]=>[1,4,2,6,3,5,7,8]=>[1,4,6,2,3,5,7,8] [(1,5),(2,6),(3,4),(7,8)]=>[5,6,4,3,1,2,8,7]=>[1,5,2,6,3,4,7,8]=>[1,5,6,3,2,4,7,8] [(1,6),(2,5),(3,4),(7,8)]=>[6,5,4,3,2,1,8,7]=>[1,6,2,5,3,4,7,8]=>[1,6,5,3,2,4,7,8] [(1,7),(2,5),(3,4),(6,8)]=>[7,5,4,3,2,8,1,6]=>[1,7,2,5,3,4,6,8]=>[1,7,5,3,2,4,6,8] [(1,8),(2,5),(3,4),(6,7)]=>[8,5,4,3,2,7,6,1]=>[1,8,2,5,3,4,6,7]=>[1,8,5,3,2,4,6,7] [(1,8),(2,6),(3,4),(5,7)]=>[8,6,4,3,7,2,5,1]=>[1,8,2,6,3,4,5,7]=>[1,8,6,3,4,2,5,7] [(1,7),(2,6),(3,4),(5,8)]=>[7,6,4,3,8,2,1,5]=>[1,7,2,6,3,4,5,8]=>[1,7,6,3,4,2,5,8] [(1,6),(2,7),(3,4),(5,8)]=>[6,7,4,3,8,1,2,5]=>[1,6,2,7,3,4,5,8]=>[1,6,7,3,4,2,5,8] [(1,5),(2,7),(3,4),(6,8)]=>[5,7,4,3,1,8,2,6]=>[1,5,2,7,3,4,6,8]=>[1,5,7,3,2,4,6,8] [(1,4),(2,7),(3,5),(6,8)]=>[4,7,5,1,3,8,2,6]=>[1,4,2,7,3,5,6,8]=>[1,4,7,2,3,5,6,8] [(1,3),(2,7),(4,5),(6,8)]=>[3,7,1,5,4,8,2,6]=>[1,3,2,7,4,5,6,8]=>[1,3,2,7,4,5,6,8] [(1,2),(3,7),(4,5),(6,8)]=>[2,1,7,5,4,8,3,6]=>[1,2,3,7,4,5,6,8]=>[1,2,3,7,4,5,6,8] [(1,2),(3,8),(4,5),(6,7)]=>[2,1,8,5,4,7,6,3]=>[1,2,3,8,4,5,6,7]=>[1,2,3,8,4,5,6,7] [(1,3),(2,8),(4,5),(6,7)]=>[3,8,1,5,4,7,6,2]=>[1,3,2,8,4,5,6,7]=>[1,3,2,8,4,5,6,7] [(1,4),(2,8),(3,5),(6,7)]=>[4,8,5,1,3,7,6,2]=>[1,4,2,8,3,5,6,7]=>[1,4,8,2,3,5,6,7] [(1,5),(2,8),(3,4),(6,7)]=>[5,8,4,3,1,7,6,2]=>[1,5,2,8,3,4,6,7]=>[1,5,8,3,2,4,6,7] [(1,6),(2,8),(3,4),(5,7)]=>[6,8,4,3,7,1,5,2]=>[1,6,2,8,3,4,5,7]=>[1,6,8,3,4,2,5,7] [(1,7),(2,8),(3,4),(5,6)]=>[7,8,4,3,6,5,1,2]=>[1,7,2,8,3,4,5,6]=>[1,7,8,3,4,5,2,6] [(1,8),(2,7),(3,4),(5,6)]=>[8,7,4,3,6,5,2,1]=>[1,8,2,7,3,4,5,6]=>[1,8,7,3,4,5,2,6] [(1,8),(2,7),(3,5),(4,6)]=>[8,7,5,6,3,4,2,1]=>[1,8,2,7,3,5,4,6]=>[1,8,7,5,3,4,2,6] [(1,7),(2,8),(3,5),(4,6)]=>[7,8,5,6,3,4,1,2]=>[1,7,2,8,3,5,4,6]=>[1,7,8,5,3,4,2,6] [(1,6),(2,8),(3,5),(4,7)]=>[6,8,5,7,3,1,4,2]=>[1,6,2,8,3,5,4,7]=>[1,6,8,5,3,2,4,7] [(1,5),(2,8),(3,6),(4,7)]=>[5,8,6,7,1,3,4,2]=>[1,5,2,8,3,6,4,7]=>[1,5,8,6,2,3,4,7] [(1,4),(2,8),(3,6),(5,7)]=>[4,8,6,1,7,3,5,2]=>[1,4,2,8,3,6,5,7]=>[1,4,8,2,6,3,5,7] [(1,3),(2,8),(4,6),(5,7)]=>[3,8,1,6,7,4,5,2]=>[1,3,2,8,4,6,5,7]=>[1,3,2,8,6,4,5,7] [(1,2),(3,8),(4,6),(5,7)]=>[2,1,8,6,7,4,5,3]=>[1,2,3,8,4,6,5,7]=>[1,2,3,8,6,4,5,7] [(1,2),(3,7),(4,6),(5,8)]=>[2,1,7,6,8,4,3,5]=>[1,2,3,7,4,6,5,8]=>[1,2,3,7,6,4,5,8] [(1,3),(2,7),(4,6),(5,8)]=>[3,7,1,6,8,4,2,5]=>[1,3,2,7,4,6,5,8]=>[1,3,2,7,6,4,5,8] [(1,4),(2,7),(3,6),(5,8)]=>[4,7,6,1,8,3,2,5]=>[1,4,2,7,3,6,5,8]=>[1,4,7,2,6,3,5,8] [(1,5),(2,7),(3,6),(4,8)]=>[5,7,6,8,1,3,2,4]=>[1,5,2,7,3,6,4,8]=>[1,5,7,6,2,3,4,8] [(1,6),(2,7),(3,5),(4,8)]=>[6,7,5,8,3,1,2,4]=>[1,6,2,7,3,5,4,8]=>[1,6,7,5,3,2,4,8] [(1,7),(2,6),(3,5),(4,8)]=>[7,6,5,8,3,2,1,4]=>[1,7,2,6,3,5,4,8]=>[1,7,6,5,3,2,4,8] [(1,8),(2,6),(3,5),(4,7)]=>[8,6,5,7,3,2,4,1]=>[1,8,2,6,3,5,4,7]=>[1,8,6,5,3,2,4,7] [(1,8),(2,5),(3,6),(4,7)]=>[8,5,6,7,2,3,4,1]=>[1,8,2,5,3,6,4,7]=>[1,8,5,6,2,3,4,7] [(1,7),(2,5),(3,6),(4,8)]=>[7,5,6,8,2,3,1,4]=>[1,7,2,5,3,6,4,8]=>[1,7,5,6,2,3,4,8] [(1,6),(2,5),(3,7),(4,8)]=>[6,5,7,8,2,1,3,4]=>[1,6,2,5,3,7,4,8]=>[1,6,5,7,2,3,4,8] [(1,5),(2,6),(3,7),(4,8)]=>[5,6,7,8,1,2,3,4]=>[1,5,2,6,3,7,4,8]=>[1,5,6,7,2,3,4,8] [(1,4),(2,6),(3,7),(5,8)]=>[4,6,7,1,8,2,3,5]=>[1,4,2,6,3,7,5,8]=>[1,4,6,2,7,3,5,8] [(1,3),(2,6),(4,7),(5,8)]=>[3,6,1,7,8,2,4,5]=>[1,3,2,6,4,7,5,8]=>[1,3,2,6,7,4,5,8] [(1,2),(3,6),(4,7),(5,8)]=>[2,1,6,7,8,3,4,5]=>[1,2,3,6,4,7,5,8]=>[1,2,3,6,7,4,5,8] [(1,2),(3,5),(4,7),(6,8)]=>[2,1,5,7,3,8,4,6]=>[1,2,3,5,4,7,6,8]=>[1,2,3,5,4,7,6,8] [(1,3),(2,5),(4,7),(6,8)]=>[3,5,1,7,2,8,4,6]=>[1,3,2,5,4,7,6,8]=>[1,3,2,5,4,7,6,8] [(1,4),(2,5),(3,7),(6,8)]=>[4,5,7,1,2,8,3,6]=>[1,4,2,5,3,7,6,8]=>[1,4,5,2,3,7,6,8] [(1,5),(2,4),(3,7),(6,8)]=>[5,4,7,2,1,8,3,6]=>[1,5,2,4,3,7,6,8]=>[1,5,4,2,3,7,6,8] [(1,6),(2,4),(3,7),(5,8)]=>[6,4,7,2,8,1,3,5]=>[1,6,2,4,3,7,5,8]=>[1,6,4,2,7,3,5,8] [(1,7),(2,4),(3,6),(5,8)]=>[7,4,6,2,8,3,1,5]=>[1,7,2,4,3,6,5,8]=>[1,7,4,2,6,3,5,8] [(1,8),(2,4),(3,6),(5,7)]=>[8,4,6,2,7,3,5,1]=>[1,8,2,4,3,6,5,7]=>[1,8,4,2,6,3,5,7] [(1,6),(2,3),(4,7),(5,8)]=>[6,3,2,7,8,1,4,5]=>[1,6,2,3,4,7,5,8]=>[1,6,2,3,7,4,5,8] [(1,5),(2,3),(4,7),(6,8)]=>[5,3,2,7,1,8,4,6]=>[1,5,2,3,4,7,6,8]=>[1,5,2,3,4,7,6,8] [(1,4),(2,3),(5,7),(6,8)]=>[4,3,2,1,7,8,5,6]=>[1,4,2,3,5,7,6,8]=>[1,4,2,3,5,7,6,8] [(1,3),(2,4),(5,7),(6,8)]=>[3,4,1,2,7,8,5,6]=>[1,3,2,4,5,7,6,8]=>[1,3,2,4,5,7,6,8] [(1,2),(3,4),(5,7),(6,8)]=>[2,1,4,3,7,8,5,6]=>[1,2,3,4,5,7,6,8]=>[1,2,3,4,5,7,6,8] [(1,2),(3,4),(5,8),(6,7)]=>[2,1,4,3,8,7,6,5]=>[1,2,3,4,5,8,6,7]=>[1,2,3,4,5,8,6,7] [(1,3),(2,4),(5,8),(6,7)]=>[3,4,1,2,8,7,6,5]=>[1,3,2,4,5,8,6,7]=>[1,3,2,4,5,8,6,7] [(1,4),(2,3),(5,8),(6,7)]=>[4,3,2,1,8,7,6,5]=>[1,4,2,3,5,8,6,7]=>[1,4,2,3,5,8,6,7] [(1,5),(2,3),(4,8),(6,7)]=>[5,3,2,8,1,7,6,4]=>[1,5,2,3,4,8,6,7]=>[1,5,2,3,4,8,6,7] [(1,6),(2,3),(4,8),(5,7)]=>[6,3,2,8,7,1,5,4]=>[1,6,2,3,4,8,5,7]=>[1,6,2,3,8,4,5,7] [(1,8),(2,3),(4,7),(5,6)]=>[8,3,2,7,6,5,4,1]=>[1,8,2,3,4,7,5,6]=>[1,8,2,3,7,5,4,6] [(1,8),(2,4),(3,7),(5,6)]=>[8,4,7,2,6,5,3,1]=>[1,8,2,4,3,7,5,6]=>[1,8,4,2,7,5,3,6] [(1,7),(2,4),(3,8),(5,6)]=>[7,4,8,2,6,5,1,3]=>[1,7,2,4,3,8,5,6]=>[1,7,4,2,8,5,3,6] [(1,6),(2,4),(3,8),(5,7)]=>[6,4,8,2,7,1,5,3]=>[1,6,2,4,3,8,5,7]=>[1,6,4,2,8,3,5,7] [(1,5),(2,4),(3,8),(6,7)]=>[5,4,8,2,1,7,6,3]=>[1,5,2,4,3,8,6,7]=>[1,5,4,2,3,8,6,7] [(1,4),(2,5),(3,8),(6,7)]=>[4,5,8,1,2,7,6,3]=>[1,4,2,5,3,8,6,7]=>[1,4,5,2,3,8,6,7] [(1,3),(2,5),(4,8),(6,7)]=>[3,5,1,8,2,7,6,4]=>[1,3,2,5,4,8,6,7]=>[1,3,2,5,4,8,6,7] [(1,2),(3,5),(4,8),(6,7)]=>[2,1,5,8,3,7,6,4]=>[1,2,3,5,4,8,6,7]=>[1,2,3,5,4,8,6,7] [(1,2),(3,6),(4,8),(5,7)]=>[2,1,6,8,7,3,5,4]=>[1,2,3,6,4,8,5,7]=>[1,2,3,6,8,4,5,7] [(1,3),(2,6),(4,8),(5,7)]=>[3,6,1,8,7,2,5,4]=>[1,3,2,6,4,8,5,7]=>[1,3,2,6,8,4,5,7] [(1,4),(2,6),(3,8),(5,7)]=>[4,6,8,1,7,2,5,3]=>[1,4,2,6,3,8,5,7]=>[1,4,6,2,8,3,5,7] [(1,5),(2,6),(3,8),(4,7)]=>[5,6,8,7,1,2,4,3]=>[1,5,2,6,3,8,4,7]=>[1,5,6,8,2,3,4,7] [(1,6),(2,5),(3,8),(4,7)]=>[6,5,8,7,2,1,4,3]=>[1,6,2,5,3,8,4,7]=>[1,6,5,8,2,3,4,7] [(1,7),(2,5),(3,8),(4,6)]=>[7,5,8,6,2,4,1,3]=>[1,7,2,5,3,8,4,6]=>[1,7,5,8,2,4,3,6] [(1,8),(2,5),(3,7),(4,6)]=>[8,5,7,6,2,4,3,1]=>[1,8,2,5,3,7,4,6]=>[1,8,5,7,2,4,3,6] [(1,8),(2,6),(3,7),(4,5)]=>[8,6,7,5,4,2,3,1]=>[1,8,2,6,3,7,4,5]=>[1,8,6,7,4,2,3,5] [(1,7),(2,6),(3,8),(4,5)]=>[7,6,8,5,4,2,1,3]=>[1,7,2,6,3,8,4,5]=>[1,7,6,8,4,2,3,5] [(1,6),(2,7),(3,8),(4,5)]=>[6,7,8,5,4,1,2,3]=>[1,6,2,7,3,8,4,5]=>[1,6,7,8,4,2,3,5] [(1,5),(2,7),(3,8),(4,6)]=>[5,7,8,6,1,4,2,3]=>[1,5,2,7,3,8,4,6]=>[1,5,7,8,2,4,3,6] [(1,4),(2,7),(3,8),(5,6)]=>[4,7,8,1,6,5,2,3]=>[1,4,2,7,3,8,5,6]=>[1,4,7,2,8,5,3,6] [(1,3),(2,7),(4,8),(5,6)]=>[3,7,1,8,6,5,2,4]=>[1,3,2,7,4,8,5,6]=>[1,3,2,7,8,5,4,6] [(1,2),(3,7),(4,8),(5,6)]=>[2,1,7,8,6,5,3,4]=>[1,2,3,7,4,8,5,6]=>[1,2,3,7,8,5,4,6] [(1,2),(3,8),(4,7),(5,6)]=>[2,1,8,7,6,5,4,3]=>[1,2,3,8,4,7,5,6]=>[1,2,3,8,7,5,4,6] [(1,3),(2,8),(4,7),(5,6)]=>[3,8,1,7,6,5,4,2]=>[1,3,2,8,4,7,5,6]=>[1,3,2,8,7,5,4,6] [(1,4),(2,8),(3,7),(5,6)]=>[4,8,7,1,6,5,3,2]=>[1,4,2,8,3,7,5,6]=>[1,4,8,2,7,5,3,6] [(1,5),(2,8),(3,7),(4,6)]=>[5,8,7,6,1,4,3,2]=>[1,5,2,8,3,7,4,6]=>[1,5,8,7,2,4,3,6] [(1,6),(2,8),(3,7),(4,5)]=>[6,8,7,5,4,1,3,2]=>[1,6,2,8,3,7,4,5]=>[1,6,8,7,4,2,3,5] [(1,7),(2,8),(3,6),(4,5)]=>[7,8,6,5,4,3,1,2]=>[1,7,2,8,3,6,4,5]=>[1,7,8,6,4,3,2,5] [(1,8),(2,7),(3,6),(4,5)]=>[8,7,6,5,4,3,2,1]=>[1,8,2,7,3,6,4,5]=>[1,8,7,6,4,3,2,5] [(1,2),(3,4),(5,6),(7,8),(9,10)]=>[2,1,4,3,6,5,8,7,10,9]=>[1,2,3,4,5,6,7,8,9,10]=>[1,2,3,4,5,6,7,8,9,10] [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)]=>[2,1,4,3,6,5,8,7,10,9,12,11]=>[1,2,3,4,5,6,7,8,9,10,11,12]=>[1,2,3,4,5,6,7,8,9,10,11,12]
Map
to permutation
Description
Returns the fixed point free involution whose transpositions are the pairs in the perfect matching.
Map
cycle-as-one-line notation
Description
Return the permutation obtained by concatenating the cycles of a permutation, each written with minimal element first, sorted by minimal element.
Map
descent views to invisible inversion bottoms
Description
Return a permutation whose multiset of invisible inversion bottoms is the multiset of descent views of the given permutation.
An invisible inversion of a permutation $\sigma$ is a pair $i < j$ such that $i < \sigma(j) < \sigma(i)$. The element $\sigma(j)$ is then an invisible inversion bottom.
A descent view in a permutation $\pi$ is an element $\pi(j)$ such that $\pi(i+1) < \pi(j) < \pi(i)$, and additionally the smallest element in the decreasing run containing $\pi(i)$ is smaller than the smallest element in the decreasing run containing $\pi(j)$.
This map is a bijection $\chi:\mathfrak S_n \to \mathfrak S_n$, such that
  • the multiset of descent views in $\pi$ is the multiset of invisible inversion bottoms in $\chi(\pi)$,
  • the set of left-to-right maxima of $\pi$ is the set of maximal elements in the cycles of $\chi(\pi)$,
  • the set of global ascent of $\pi$ is the set of global ascent of $\chi(\pi)$,
  • the set of maximal elements in the decreasing runs of $\pi$ is the set of weak deficiency positions of $\chi(\pi)$, and
  • the set of minimal elements in the decreasing runs of $\pi$ is the set of weak deficiency values of $\chi(\pi)$.