Identifier
Mp00154: Graphs coreGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removal Integer partitions
Images
=>
Cc0020;cc-rep-0Cc0020;cc-rep-1Cc0002;cc-rep-2Cc0002;cc-rep-3
([],1)=>([],1)=>[1]=>[] ([],2)=>([],1)=>[1]=>[] ([(0,1)],2)=>([(0,1)],2)=>[2]=>[] ([],3)=>([],1)=>[1]=>[] ([(1,2)],3)=>([(0,1)],2)=>[2]=>[] ([(0,2),(1,2)],3)=>([(0,1)],2)=>[2]=>[] ([(0,1),(0,2),(1,2)],3)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([],4)=>([],1)=>[1]=>[] ([(2,3)],4)=>([(0,1)],2)=>[2]=>[] ([(1,3),(2,3)],4)=>([(0,1)],2)=>[2]=>[] ([(0,3),(1,3),(2,3)],4)=>([(0,1)],2)=>[2]=>[] ([(0,3),(1,2)],4)=>([(0,1)],2)=>[2]=>[] ([(0,3),(1,2),(2,3)],4)=>([(0,1)],2)=>[2]=>[] ([(1,2),(1,3),(2,3)],4)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,3),(1,2),(1,3),(2,3)],4)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,2),(0,3),(1,2),(1,3)],4)=>([(0,1)],2)=>[2]=>[] ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[] ([],5)=>([],1)=>[1]=>[] ([(3,4)],5)=>([(0,1)],2)=>[2]=>[] ([(2,4),(3,4)],5)=>([(0,1)],2)=>[2]=>[] ([(1,4),(2,4),(3,4)],5)=>([(0,1)],2)=>[2]=>[] ([(0,4),(1,4),(2,4),(3,4)],5)=>([(0,1)],2)=>[2]=>[] ([(1,4),(2,3)],5)=>([(0,1)],2)=>[2]=>[] ([(1,4),(2,3),(3,4)],5)=>([(0,1)],2)=>[2]=>[] ([(0,1),(2,4),(3,4)],5)=>([(0,1)],2)=>[2]=>[] ([(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,4),(1,4),(2,3),(3,4)],5)=>([(0,1)],2)=>[2]=>[] ([(1,4),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(1,3),(1,4),(2,3),(2,4)],5)=>([(0,1)],2)=>[2]=>[] ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)=>([(0,1)],2)=>[2]=>[] ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)=>([(0,1)],2)=>[2]=>[] ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,4),(1,3),(2,3),(2,4)],5)=>([(0,1)],2)=>[2]=>[] ([(0,1),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>[5]=>[] ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[] ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[] ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[] ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[] ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>[5]=>[] ([],6)=>([],1)=>[1]=>[] ([(4,5)],6)=>([(0,1)],2)=>[2]=>[] ([(3,5),(4,5)],6)=>([(0,1)],2)=>[2]=>[] ([(2,5),(3,5),(4,5)],6)=>([(0,1)],2)=>[2]=>[] ([(1,5),(2,5),(3,5),(4,5)],6)=>([(0,1)],2)=>[2]=>[] ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)=>([(0,1)],2)=>[2]=>[] ([(2,5),(3,4)],6)=>([(0,1)],2)=>[2]=>[] ([(2,5),(3,4),(4,5)],6)=>([(0,1)],2)=>[2]=>[] ([(1,2),(3,5),(4,5)],6)=>([(0,1)],2)=>[2]=>[] ([(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(1,5),(2,5),(3,4),(4,5)],6)=>([(0,1)],2)=>[2]=>[] ([(0,1),(2,5),(3,5),(4,5)],6)=>([(0,1)],2)=>[2]=>[] ([(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>([(0,1)],2)=>[2]=>[] ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1)],2)=>[2]=>[] ([(0,5),(1,5),(2,4),(3,4)],6)=>([(0,1)],2)=>[2]=>[] ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>([(0,1)],2)=>[2]=>[] ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>([(0,1)],2)=>[2]=>[] ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>([(0,1)],2)=>[2]=>[] ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>([(0,1)],2)=>[2]=>[] ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1)],2)=>[2]=>[] ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1)],2)=>[2]=>[] ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1)],2)=>[2]=>[] ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1)],2)=>[2]=>[] ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,5),(1,4),(2,3)],6)=>([(0,1)],2)=>[2]=>[] ([(1,5),(2,4),(3,4),(3,5)],6)=>([(0,1)],2)=>[2]=>[] ([(0,1),(2,5),(3,4),(4,5)],6)=>([(0,1)],2)=>[2]=>[] ([(1,2),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>([(0,1)],2)=>[2]=>[] ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>[5]=>[] ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>([(0,1)],2)=>[2]=>[] ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)=>([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>[5]=>[] ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>([(0,1)],2)=>[2]=>[] ([(0,1),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1)],2)=>[2]=>[] ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)=>([(0,1)],2)=>[2]=>[] ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[] ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[] ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[] ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>[5]=>[] ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[] ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[] ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[] ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[] ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>([(0,1)],2)=>[2]=>[] ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)=>([(0,1)],2)=>[2]=>[] ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)=>([(0,1)],2)=>[2]=>[] ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1)],2)=>[2]=>[] ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[] ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[] ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[] ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[] ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[] ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)=>([(0,1)],2)=>[2]=>[] ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[] ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[] ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[] ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[] ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[] ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[] ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[] ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[] ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>[6]=>[] ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[] ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[] ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[] ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[] ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[] ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[] ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>[5]=>[] ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>[5]=>[] ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>[5]=>[] ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>[5]=>[] ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[] ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[] ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[] ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[] ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[] ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>[5]=>[] ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>[6]=>[]
Map
core
Description
The core of a graph.
The core of a graph $G$ is the smallest graph $C$ such that there is a homomorphism from $G$ to $C$ and a homomorphism from $C$ to $G$.
Note that the core of a graph is not necessarily connected, see [2].
Map
to partition of connected components
Description
Return the partition of the sizes of the connected components of the graph.
Map
first row removal
Description
Removes the first entry of an integer partition