Identifier
Mp00154:
Graphs
—core⟶
Graphs
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Images
=>
Cc0020;cc-rep-0Cc0020;cc-rep-1Cc0002;cc-rep-2Cc0002;cc-rep-3
([],1)=>([],1)=>[1]=>[]
([],2)=>([],1)=>[1]=>[]
([(0,1)],2)=>([(0,1)],2)=>[2]=>[]
([],3)=>([],1)=>[1]=>[]
([(1,2)],3)=>([(0,1)],2)=>[2]=>[]
([(0,2),(1,2)],3)=>([(0,1)],2)=>[2]=>[]
([(0,1),(0,2),(1,2)],3)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([],4)=>([],1)=>[1]=>[]
([(2,3)],4)=>([(0,1)],2)=>[2]=>[]
([(1,3),(2,3)],4)=>([(0,1)],2)=>[2]=>[]
([(0,3),(1,3),(2,3)],4)=>([(0,1)],2)=>[2]=>[]
([(0,3),(1,2)],4)=>([(0,1)],2)=>[2]=>[]
([(0,3),(1,2),(2,3)],4)=>([(0,1)],2)=>[2]=>[]
([(1,2),(1,3),(2,3)],4)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,3),(1,2),(1,3),(2,3)],4)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,2),(0,3),(1,2),(1,3)],4)=>([(0,1)],2)=>[2]=>[]
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[]
([],5)=>([],1)=>[1]=>[]
([(3,4)],5)=>([(0,1)],2)=>[2]=>[]
([(2,4),(3,4)],5)=>([(0,1)],2)=>[2]=>[]
([(1,4),(2,4),(3,4)],5)=>([(0,1)],2)=>[2]=>[]
([(0,4),(1,4),(2,4),(3,4)],5)=>([(0,1)],2)=>[2]=>[]
([(1,4),(2,3)],5)=>([(0,1)],2)=>[2]=>[]
([(1,4),(2,3),(3,4)],5)=>([(0,1)],2)=>[2]=>[]
([(0,1),(2,4),(3,4)],5)=>([(0,1)],2)=>[2]=>[]
([(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,4),(1,4),(2,3),(3,4)],5)=>([(0,1)],2)=>[2]=>[]
([(1,4),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(1,3),(1,4),(2,3),(2,4)],5)=>([(0,1)],2)=>[2]=>[]
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)=>([(0,1)],2)=>[2]=>[]
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)=>([(0,1)],2)=>[2]=>[]
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,4),(1,3),(2,3),(2,4)],5)=>([(0,1)],2)=>[2]=>[]
([(0,1),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>[5]=>[]
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[]
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[]
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[]
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[]
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>[5]=>[]
([],6)=>([],1)=>[1]=>[]
([(4,5)],6)=>([(0,1)],2)=>[2]=>[]
([(3,5),(4,5)],6)=>([(0,1)],2)=>[2]=>[]
([(2,5),(3,5),(4,5)],6)=>([(0,1)],2)=>[2]=>[]
([(1,5),(2,5),(3,5),(4,5)],6)=>([(0,1)],2)=>[2]=>[]
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)=>([(0,1)],2)=>[2]=>[]
([(2,5),(3,4)],6)=>([(0,1)],2)=>[2]=>[]
([(2,5),(3,4),(4,5)],6)=>([(0,1)],2)=>[2]=>[]
([(1,2),(3,5),(4,5)],6)=>([(0,1)],2)=>[2]=>[]
([(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(1,5),(2,5),(3,4),(4,5)],6)=>([(0,1)],2)=>[2]=>[]
([(0,1),(2,5),(3,5),(4,5)],6)=>([(0,1)],2)=>[2]=>[]
([(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>([(0,1)],2)=>[2]=>[]
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1)],2)=>[2]=>[]
([(0,5),(1,5),(2,4),(3,4)],6)=>([(0,1)],2)=>[2]=>[]
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>([(0,1)],2)=>[2]=>[]
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>([(0,1)],2)=>[2]=>[]
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>([(0,1)],2)=>[2]=>[]
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>([(0,1)],2)=>[2]=>[]
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1)],2)=>[2]=>[]
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1)],2)=>[2]=>[]
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1)],2)=>[2]=>[]
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1)],2)=>[2]=>[]
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,5),(1,4),(2,3)],6)=>([(0,1)],2)=>[2]=>[]
([(1,5),(2,4),(3,4),(3,5)],6)=>([(0,1)],2)=>[2]=>[]
([(0,1),(2,5),(3,4),(4,5)],6)=>([(0,1)],2)=>[2]=>[]
([(1,2),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>([(0,1)],2)=>[2]=>[]
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>[5]=>[]
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>([(0,1)],2)=>[2]=>[]
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)=>([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>[5]=>[]
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>([(0,1)],2)=>[2]=>[]
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1)],2)=>[2]=>[]
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)=>([(0,1)],2)=>[2]=>[]
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[]
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[]
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[]
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>[5]=>[]
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[]
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[]
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[]
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[]
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>([(0,1)],2)=>[2]=>[]
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)=>([(0,1)],2)=>[2]=>[]
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)=>([(0,1)],2)=>[2]=>[]
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1)],2)=>[2]=>[]
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[]
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[]
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[]
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[]
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[]
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)=>([(0,1)],2)=>[2]=>[]
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[]
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[]
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[]
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[]
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[]
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[]
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[]
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[]
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>[6]=>[]
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[]
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[]
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[]
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[]
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[]
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[]
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>[5]=>[]
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>[5]=>[]
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>[5]=>[]
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>[5]=>[]
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[]
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[]
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[]
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>([(0,1),(0,2),(1,2)],3)=>[3]=>[]
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>[4]=>[]
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>[5]=>[]
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>[6]=>[]
Map
core
Description
The core of a graph.
The core of a graph $G$ is the smallest graph $C$ such that there is a homomorphism from $G$ to $C$ and a homomorphism from $C$ to $G$.
Note that the core of a graph is not necessarily connected, see [2].
The core of a graph $G$ is the smallest graph $C$ such that there is a homomorphism from $G$ to $C$ and a homomorphism from $C$ to $G$.
Note that the core of a graph is not necessarily connected, see [2].
Map
to partition of connected components
Description
Return the partition of the sizes of the connected components of the graph.
Map
first row removal
Description
Removes the first entry of an integer partition
searching the database
Sorry, this map was not found in the database.